JPH05108126A - Mispositioning calibrating device - Google Patents

Mispositioning calibrating device

Info

Publication number
JPH05108126A
JPH05108126A JP26913991A JP26913991A JPH05108126A JP H05108126 A JPH05108126 A JP H05108126A JP 26913991 A JP26913991 A JP 26913991A JP 26913991 A JP26913991 A JP 26913991A JP H05108126 A JPH05108126 A JP H05108126A
Authority
JP
Japan
Prior art keywords
work
robot
camera
positional deviation
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26913991A
Other languages
Japanese (ja)
Inventor
Yasuo Morita
康夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26913991A priority Critical patent/JPH05108126A/en
Publication of JPH05108126A publication Critical patent/JPH05108126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To detect an error of an assembling position of a work and parts and to calibrate the control of a robot by the detected value. CONSTITUTION:By a misregistration calibrating method to provide a camera 6 in the upper part of the work position to assemble parts 5 by a robot 1 to a work 4 delivered into an assembling position, input the image by the camera 6 to a visual recognition device 7, detect the misregistration of the work 4 and the parts 5, input the misregistration quantity to a robot control board 2, and control the robot 1 corresponding to the misregistration quantity of the work 4; plural measurement reference points are set onto the above- mentioned work 4 and the parts 5 beforehand, and from the misregistration quantity on the camera coordinates of the measurement reference points, the misregistration vector to the regular position data on the already-known camera coordinates is obtained concerning the work 4 and the parts 5, the misregistration quantity vector of the work 4 and the misregistration quantity vector of the parts 5 are synthesized, the coordinates conversion matrix of the coordinates system of the camera obtained beforehand and the coordinates system of the robot is performed, the misregistration quantity is fed back to the robot control board 2 and the misregistration is calibrated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ロボットによる自動組
立工程におけるワークと部品との組立位置のずれを検出
し,較正する位置ずれ較正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position deviation calibrating device for detecting and calibrating a deviation between an assembly position of a work and a part in an automatic assembly process by a robot.

【0002】[0002]

【従来の技術】搬送コンベアにより組立作業位置に搬入
されたワークを所定位置に位置決めし,部品供給装置か
ら供給される部品をロボットによりハンドリングして,
ワークへの取付位置に運び,取り付ける,ロボットによ
る自動組立工程においては,ワーク及び部品の位置決め
が精度良く実行されることが重要で,そのため,高精度
な位置決め装置を設置したり,あるいは,位置決め誤差
の検出とその較正のための装置が設けられる。位置決め
誤差の検出とその修正のための装置として,ワーク及び
部品のそれぞれに複数の基準点を定め,各基準点につい
て3次元測定装置により3次元的な位置ずれ量を検出す
ることが行われる。また,ロボットの先端に搭載したカ
メラによりワーク及び部品を撮像し,予め教示された基
準位置との比較を行って位置ずれを較正する装置などが
用いられている。
2. Description of the Related Art A work carried in to an assembly work position is positioned at a predetermined position by a conveyer, and parts supplied from a parts supply device are handled by a robot.
In the automatic assembly process by the robot, which is carried to the mounting position on the work and mounted, it is important that the positioning of the work and parts is performed accurately. Therefore, it is necessary to install a high-precision positioning device or position error. A device is provided for the detection of and the calibration thereof. As a device for detecting and correcting a positioning error, a plurality of reference points are set for each of a work and a part, and a three-dimensional measuring device detects a three-dimensional displacement amount for each reference point. Further, there is used a device for calibrating the positional deviation by imaging a work and a part with a camera mounted on the tip of the robot and comparing the image with a reference position taught in advance.

【0003】[0003]

【発明が解決しようとする課題】組立作業位置にワーク
及び部品を高精度に位置決めするための位置決め装置
は,極めて複雑な構造を要し,従って高価な装置となっ
てしまう問題点を有している。そこで,上記のごとく位
置決め誤差を検出して,誤差を較正する方法が多く採用
される。しかしながら,従来用いられている位置ずれ検
出装置において,3次元測定装置により複数の基準点そ
れぞれについて位置ずれ量を測定するものは,例えば,
ワークと部品とに,それぞれ3点の基準点を設定する
と,合計6台の3次元測定装置を必要とし,高価なもの
となる上に,各検出値を正確に合致させることが容易で
ない問題点を有している。また,ロボットにカメラを搭
載する位置ずれ検出装置は,ロボットの移動誤差が検出
値に含まれてしまうため,検出精度が良くない問題点を
有している。本発明は上記の問題点に鑑み,1台の固定
カメラと視覚認識装置との組合せにより,ワークと部品
の位置ずれを検出し,その検出値によってロボットを制
御してワークと部品とを精度良く位置合わせすることの
できる位置ずれ較正装置を提供することを目的とする。
A positioning device for positioning workpieces and parts with high precision at an assembly work position requires a very complicated structure, and thus has a problem of becoming an expensive device. There is. Therefore, a method of detecting the positioning error and calibrating the error is often adopted as described above. However, in the conventional positional deviation detecting device, which measures the positional deviation amount for each of the plurality of reference points by the three-dimensional measuring device, for example,
If three reference points are set for each of the work and the part, a total of six three-dimensional measuring devices are required, which is expensive and it is not easy to accurately match each detected value. have. Further, the positional deviation detection device in which the camera is mounted on the robot has a problem that the detection accuracy is not good because the movement error of the robot is included in the detection value. In view of the above problems, the present invention detects a positional deviation between a work and a component by combining one fixed camera and a visual recognition device, and controls the robot based on the detected value to accurately control the work and the component. An object of the present invention is to provide a misalignment calibration device that can be aligned.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,組立位置に搬入されたワー
クに部品を取り付けるロボットと,前記組立位置の上方
に配され,ワーク及び部品を撮像するカメラと,該カメ
ラの画像上におけるワーク及び部品の撮像位置と既知の
正規位置との位置ずれを検出する視覚認識装置と,該視
覚認識装置から入力されるワークと部品との間の位置ず
れ量により前記ロボットの制御位置を補正するロボット
制御装置とを具備してなる位置ずれ較正装置において,
上記視覚認識装置が前記ワーク及び部品に予め設定され
た複数の基準点のカメラ座標上での位置と,既知のカメ
ラ座標上の正規位置とのワーク及び部品の位置ずれ量ベ
クトルを求め,ワークの位置ずれ量ベクトルと部品の位
置ずれ量ベクトルとを合成して,予め求められているカ
メラの座標系とロボットの座標系との座標変換マトリッ
クスを演算し,前記ロボット制御装置にワークと部品と
の間の位置ずれ量を検出するものであることを特徴とす
る位置ずれ較正装置として構成される。
Means adopted by the present invention for achieving the above object are a robot for mounting parts on a work carried into an assembly position, and a work and a part arranged above the assembly position. Between a camera for picking up images, a visual recognition device for detecting the positional deviation between the imaging positions of the work and parts on the image of the camera and a known regular position, and the work and the parts input from the visual recognition device. A position deviation calibration device comprising a robot controller that corrects the control position of the robot according to the amount of position deviation,
The visual recognition device obtains a positional deviation amount vector of the work and the component between the positions on the camera coordinate of a plurality of reference points set in advance on the work and the component and the normal position on the known camera coordinate, The position shift amount vector and the component position shift amount vector are combined to calculate a coordinate transformation matrix between the camera coordinate system and the robot coordinate system, which are obtained in advance, and the robot control device is configured to calculate the workpiece and the component. It is configured as a positional deviation calibrating device characterized by detecting the positional deviation amount between them.

【0005】[0005]

【作用】本発明によれば,組立位置の上方に配した固定
カメラにより,搬入されたワークを前記カメラで撮像し
て視覚認識装置に入力し,予めワーク上に設定された測
定基準点のカメラ座標上の位置と,既知のカメラ座標上
の正規位置との位置ずれ量を検出する。一方,ロボット
によりハンドリングされてワーク上に移動した部品を,
同様に前記カメラで撮像して,予め部品上に設定された
測定基準点のカメラ座標上の位置と,既知のカメラ座標
上の正規位置との位置ずれ量を検出する。そこで,検出
された前記ワークの位置ずれ量と部品の位置ずれ量との
ベクトルを合成し,予め求められているカメラの座標系
とロボットの座標系との座標変換を行ってロボット制御
装置にワークと部品との間の位置ずれ量を出力する。ロ
ボット制御装置は入力されたワークと部品との間の位置
ずれ量により部品の制御位置を補正して,ワークへの正
確な取付け位置に移動する。
According to the present invention, the fixed camera arranged above the assembling position captures the image of the work carried in by the camera, inputs the work into the visual recognition device, and the camera of the measurement reference point set on the work in advance. The amount of positional deviation between the position on the coordinates and the normal position on the known camera coordinates is detected. On the other hand, the parts handled by the robot and moved to the work are
Similarly, an image is picked up by the camera to detect the amount of positional deviation between the position on the camera coordinates of the measurement reference point set on the part in advance and the normal position on the known camera coordinates. Therefore, the vector of the detected positional deviation amount of the work and the vector of the positional deviation amount of the component are combined, and the coordinate conversion between the camera coordinate system and the robot coordinate system, which has been obtained in advance, is performed and the robot control device is made to work. The amount of positional deviation between the component and the component is output. The robot controller corrects the control position of the component based on the input positional deviation amount between the workpiece and the component, and moves to the correct mounting position on the workpiece.

【0006】[0006]

【実施例】以下,添付図面を参照して,本発明を具体化
した実施例につき説明する。尚,以下の実施例は本発明
を具体化した一例であって,本発明の技術的範囲を限定
するものではない。ここに,図1は位置ずれ較正装置の
概略構成図,図2はワーク及び部品の位置ずれの例を示
す平面図,図3は位置ずれ検出方法を示す原理図,図4
は検出位置と既知の正規位置とのカメラ座標上のずれを
示す説明図,図5は位置ずれ検出及び較正の処理手順を
示すフローチャートである。図1において,ワーク4は
搬送コンベア3により所定の組立位置に搬入され,ロボ
ット1は部品5をハンドリングしてワーク4の所定位置
に移動する。組立位置の上方にはカメラ6が配置されて
おり,ワーク4及び部品5を撮影して,視覚認識装置7
に入力している。ワーク4及び部品5には,図2に示す
ように,位置ずれを検出するための測定基準点が3点設
定されており,また,視覚認識装置7にはワーク4及び
部品5の正規位置における前記測定基準点のカメラ座標
における位置が記憶されている。視覚認識装置7は,カ
メラ6から入力したワーク4及び部品5の測定基準点に
ついて,記憶する正規位置とのずれを検出し,カメラ座
標における位置ずれ量を算出してロボット座標データに
変換してロボット制御盤2へ出力する。ロボット制御盤
2は入力された位置ずれ量のデータにもとずきロボット
1を制御してワーク4の位置ずれに対応した位置に部品
5を移動させるので,正確な取付け位置への組立てが実
行される。カメラ6と視覚認識装置7とにより位置ずれ
検出を行い,ロボットを制御する方法は,次のように実
施される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. Here, FIG. 1 is a schematic configuration diagram of the positional deviation calibrating device, FIG. 2 is a plan view showing an example of positional deviation of a work and a component, FIG. 3 is a principle diagram showing a positional deviation detection method, and FIG.
FIG. 5 is an explanatory view showing a shift in camera coordinates between a detected position and a known regular position, and FIG. 5 is a flow chart showing a processing procedure of position shift detection and calibration. In FIG. 1, the work 4 is carried into a predetermined assembly position by the conveyor 3, and the robot 1 handles the component 5 to move the work 4 to a predetermined position. A camera 6 is arranged above the assembling position so that the work 4 and the component 5 are photographed and the visual recognition device 7
Are typing in. As shown in FIG. 2, the work 4 and the component 5 are set with three measurement reference points for detecting the positional deviation, and the visual recognition device 7 is set at the normal position of the work 4 and the component 5. The position of the measurement reference point in camera coordinates is stored. The visual recognition device 7 detects the deviation of the measurement reference points of the work 4 and the component 5 input from the camera 6 from the stored normal position, calculates the positional deviation amount in the camera coordinates, and converts it into robot coordinate data. Output to the robot control panel 2. The robot control panel 2 controls the robot 1 based on the input data of the positional deviation amount to move the component 5 to a position corresponding to the positional deviation of the work 4, so that the assembly to the correct mounting position is executed. To be done. The method of detecting the positional deviation by the camera 6 and the visual recognition device 7 and controlling the robot is carried out as follows.

【0007】図3は位置ずれ検出方法を示す原理図で,
カメラ6の中心点をCとして,ワーク4に設定した3点
の測定基準点をP1,P2,P3とすると,P1−P2
間,P2−P3間,P3−P1間のそれぞれの長さK
1,K2,K3は,測定基準点P1,P2,P3の既知
データにより算出される。次いで,測定基準点P1,P
2,P3のカメラ座標上のポイントをQ1,Q2,Q3
とし,カメラ座標系での位置をそれぞれ(x1,1),
(x2,2),(x3,3)とすると,余弦の定理によりカ
メラ中心点Cからカメラ画像A上の位置Q1,Q2,Q
3への視角θ1,θ2,θ3が算出される。次に,カメ
ラ中心点Cから測定基準点P1,P2,P3それぞれま
での距離L1,L2,L3は,数式(1)に示す連立方
程式を逐次近似法により解いて算出することができる。
FIG. 3 is a principle diagram showing a position shift detection method.
When the center point of the camera 6 is C and the three measurement reference points set on the work 4 are P1, P2, and P3, P1-P2
Length K, between P2-P3, and between P3-P1
1, K2, K3 are calculated from known data of the measurement reference points P1, P2, P3. Next, the measurement reference points P1 and P
The points on the camera coordinates of 2, P3 are Q1, Q2, Q3.
And the position in the camera coordinate system is (x 1, y 1 ),
If (x 2, y 2 ), (x 3, y 3 ), the positions Q 1, Q 2, Q on the camera image A from the camera center point C are calculated by the cosine theorem.
The viewing angles θ1, θ2, θ3 to 3 are calculated. Next, the distances L1, L2, L3 from the camera center point C to the measurement reference points P1, P2, P3 can be calculated by solving the simultaneous equations shown in Formula (1) by the successive approximation method.

【数1】 上記により求めた視角θ1,θ2,θ3と距離L1,L
2,L3から,カメラ座標系における位置Q1,Q2,
Q3の座標値が求められる。求められたカメラ座標系に
おける測定基準点Q1,Q2,Q3を,図4に示すよう
に,予め算出されたマスターモデルによるロボットティ
ーチング時におけるワーク4の測定基準点P1′,P
2′,P3′のカメラ座標系の位置Q1′,Q2′,Q
3′に対応させるための変換ベクトルを,数式(2)か
ら逐次近似法により求める。
[Equation 1] The viewing angles θ1, θ2, θ3 and the distances L1, L obtained above
2, L3 to positions Q1, Q2 in the camera coordinate system
The coordinate value of Q3 is obtained. As shown in FIG. 4, measurement reference points Q1, Q2, Q3 in the obtained camera coordinate system are measured reference points P1 ′, P1 of the work 4 at the time of robot teaching by a master model calculated in advance.
2 ', P3' camera coordinate system positions Q1 ', Q2', Q
The conversion vector to correspond to 3'is obtained from the equation (2) by the successive approximation method.

【数2】 以上の方法により,部品5についても,その測定基準点
R1,R2,R3について位置ずれ量の変換ベクトルを
求め,前記ワーク4の変換ベクトルと部品5の変換ベク
トルとの2つの変換ベクトルを合成する。次に,予め算
出されているカメラ座標系とロボット座標系との変換マ
トリックスにより,上記において算出された変換ベクト
ルを,ロボット座標系のベクトル量に座標変換して,位
置ずれ量をロボット制御盤2にフィードバックすること
により,ロボット制御盤2はロボット1の制御データを
補正してワーク4の位置ずれに対応する取付け位置に部
品5をハンドリング移動させることができる。上記の位
置ずれ検出の方法を用いたロボット制御への手順は,図
5のフローチャートに示される。
[Equation 2] By the above-mentioned method, also with respect to the component 5, the conversion vector of the positional deviation amount is obtained with respect to the measurement reference points R1, R2, R3, and the two conversion vectors of the conversion vector of the work 4 and the conversion vector of the component 5 are combined. .. Next, the conversion vector calculated above is coordinate-converted into a vector amount of the robot coordinate system by a conversion matrix of the camera coordinate system and the robot coordinate system calculated in advance, and the positional deviation amount is calculated by the robot control panel 2 The robot control panel 2 can correct the control data of the robot 1 and perform the handling movement of the component 5 to the attachment position corresponding to the positional deviation of the work 4 by feeding back the control data to the robot 1. The procedure for robot control using the above-described method of detecting the positional deviation is shown in the flowchart of FIG.

【0008】搬送コンベア3によって組立位置に搬送さ
れたワーク4は,所定位置(正規位置に対応)に位置決
めされるが,位置誤差を含んでいる(S1)。そこで,
S2において,ワーク4が位置決めされる所定位置の上
方に配置されたカメラ6によりワーク4を撮像して,画
像を視覚認識装置7に入力し,ワーク4に設定された測
定基準点のカメラ座標における位置を認識し,座標値を
算出する。次いで,S3において,視覚認識装置7に予
め格納されているワーク4の正規位置におけるカメラ座
標値と,算出された測定ワーク4のカメラ座標値とを比
較して,正規位置との位置ずれ量を算出する。次いで,
ロボット制御盤2によって制御されるロボット1は,部
品5をハンドリングしてワーク4への組立位置付近の予
め定めた位置(正規位置に対応)にまで部品5を移動さ
せて一旦停止する(S4)。S5において,カメラ6は
部品5を撮像して視覚認識装置7に入力し,視覚認識装
置7は予め設定された部品5の測定基準点のカメラ座標
値を算出し,S6において,予め格納された正規位置の
カメラ座標値との位置ずれを算出する。S3において算
出されたワーク4の正規位置からの位置ずれ量と,S6
において算出された部品5の正規位置からの位置ずれ量
とを,S7において合成し,カメラ座標系からロボット
座標系に変換する。ワーク4に対する部品5の位置ずれ
量が加算されたロボット制御値は,S8においてロボッ
ト制御盤7に入力され,ロボット制御盤7はロボット1
を制御して,部品5をワーク4に対する位置ずれ量だけ
移動させ,ワーク4の正しい取付け位置にセットす。以
上の手順により,部品5はワーク4の正規位置に取付け
られる(S9)。尚,ワーク4及び部品5に設定する測
定基準点は,本実施例においては3点としたが,4点以
上設定することも可能で,測定基準点を多くするほどに
精度は向上する。
The work 4 transported to the assembly position by the transport conveyor 3 is positioned at a predetermined position (corresponding to the regular position), but includes a position error (S1). Therefore,
In S2, the work 4 is imaged by the camera 6 arranged above the predetermined position where the work 4 is positioned, the image is input to the visual recognition device 7, and at the camera coordinates of the measurement reference point set in the work 4. Recognize the position and calculate the coordinate value. Next, in S3, the camera coordinate value at the normal position of the work 4 stored in advance in the visual recognition device 7 is compared with the calculated camera coordinate value of the measurement work 4, and the amount of positional deviation from the normal position is calculated. calculate. Then,
The robot 1 controlled by the robot control panel 2 handles the component 5 and moves the component 5 to a predetermined position (corresponding to the regular position) near the assembly position of the work 4 and temporarily stops it (S4). .. In S5, the camera 6 images the component 5 and inputs it to the visual recognition device 7, and the visual recognition device 7 calculates the camera coordinate value of the preset measurement reference point of the component 5, which is stored in advance in S6. The positional shift from the camera coordinate value of the regular position is calculated. The amount of displacement of the work 4 from the normal position calculated in S3 and S6
The positional deviation amount from the normal position of the component 5 calculated in step S7 is combined in step S7 and converted from the camera coordinate system to the robot coordinate system. The robot control value to which the amount of positional deviation of the component 5 with respect to the work 4 is added is input to the robot control panel 7 in S8, and the robot control panel 7 sets the robot 1
Is controlled to move the component 5 by the amount of positional deviation with respect to the work 4, and set the work 4 at the correct mounting position. By the above procedure, the component 5 is attached to the regular position of the work 4 (S9). Although the measurement reference points set on the workpiece 4 and the component 5 are three in the present embodiment, it is possible to set four or more points, and the accuracy improves as the number of measurement reference points increases.

【0009】[0009]

【発明の効果】以上の説明の通り本発明によれば,組立
位置の上方には配置された1台のカメラと視覚認識装置
とによりワーク及び部品の位置ずれを検出することがで
き,その検出値によりロボットの制御が較正され,部品
をワークの取付け位置に正確に移動させることができ,
精度良く組立が実行される。従って,3次元測定装置を
複数台設置したり,精密な位置決め装置を設置する等の
高価な設備は不要となり,簡単な装置で精度の良い位置
ずれ較正が実施できる効果を奏する。
As described above, according to the present invention, it is possible to detect the positional deviation between the work and the parts by the one camera and the visual recognition device arranged above the assembling position. The value calibrates the control of the robot, and the part can be moved accurately to the mounting position of the workpiece.
Assembly is performed with high accuracy. Therefore, expensive equipment such as installing a plurality of three-dimensional measuring devices or installing a precise positioning device is not required, and an effect that accurate positional displacement calibration can be performed with a simple device is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例位置ずれ較正装置の概略構成図。FIG. 1 is a schematic configuration diagram of a positional deviation calibration device according to an embodiment.

【図2】ワーク及び部品の位置ずれ例を示す平面図。FIG. 2 is a plan view showing an example of positional displacement between a work and a part.

【図3】位置ずれ検出方法を示す原理図。FIG. 3 is a principle diagram showing a displacement detection method.

【図4】カメラ座標における検出位置と正規位置とのず
れを示す説明図。
FIG. 4 is an explanatory diagram showing a shift between a detected position and a regular position in camera coordinates.

【図5】位置ずれ較正の手順を示すフローチャート。FIG. 5 is a flowchart showing a procedure of positional displacement calibration.

【符号の説明】[Explanation of symbols]

1…ロボット 2…ロボット制御盤 3…搬送コンベア 4…ワーク 5…部品 6…カメラ 7…視覚認識装置 P1,P2,P3…ワークの測定基準点 Q1,Q2,Q3…ワークの測定基準点のカメラ座標位
置 R1,R2,R3…部品の測定基準点
1 ... Robot 2 ... Robot control panel 3 ... Conveyor 4 ... Work 5 ... Parts 6 ... Camera 7 ... Visual recognition device P1, P2, P3 ... Work measurement reference point Q1, Q2, Q3 ... Work measurement reference point camera Coordinate position R1, R2, R3 ... Measurement reference point of parts

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組立位置に搬入されたワークに部品を取り
付けるロボットと,前記組立位置の上方に配され,ワー
ク及び部品を撮像するカメラと,該カメラの画像上にお
けるワーク及び部品の撮像位置と既知の正規位置との位
置ずれを検出する視覚認識装置と,該視覚認識装置から
入力されるワークと部品との間の位置ずれ量により前記
ロボットの制御位置を補正するロボット制御装置とを具
備してなる位置ずれ較正装置において,上記視覚認識装
置が前記ワーク及び部品に予め設定された複数の基準点
のカメラ座標上での位置と,既知のカメラ座標上の正規
位置とのワーク及び部品の位置ずれ量ベクトルを求め,
ワークの位置ずれ量ベクトルと部品の位置ずれ量ベクト
ルとを合成して,予め求められているカメラの座標系と
ロボットの座標系との座標変換マトリックスを演算し,
前記ロボット制御装置にワークと部品との間の位置ずれ
量を検出するものであることを特徴とする位置ずれ較正
装置。
1. A robot for mounting parts on a work carried into an assembly position, a camera arranged above the assembly position for picking up images of the work and parts, and a position for picking up the work and parts on the image of the camera. A visual recognition device that detects a positional deviation from a known regular position, and a robot control device that corrects the control position of the robot based on the positional deviation amount between the work and the component input from the visual recognition device. In the positional deviation calibrating device, the visual recognizing device has positions of the plurality of reference points preset on the workpiece and the component on the camera coordinates and normal positions on the known camera coordinates, and the positions of the workpiece and the component. Find the displacement vector,
By synthesizing the positional deviation vector of the work and the positional deviation vector of the parts, the coordinate transformation matrix between the coordinate system of the camera and the coordinate system of the robot, which are obtained in advance, is calculated,
A positional deviation calibrating apparatus, wherein the robot controller detects an amount of positional deviation between a work and a component.
JP26913991A 1991-10-17 1991-10-17 Mispositioning calibrating device Pending JPH05108126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26913991A JPH05108126A (en) 1991-10-17 1991-10-17 Mispositioning calibrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26913991A JPH05108126A (en) 1991-10-17 1991-10-17 Mispositioning calibrating device

Publications (1)

Publication Number Publication Date
JPH05108126A true JPH05108126A (en) 1993-04-30

Family

ID=17468235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26913991A Pending JPH05108126A (en) 1991-10-17 1991-10-17 Mispositioning calibrating device

Country Status (1)

Country Link
JP (1) JPH05108126A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350620A (en) * 2005-06-15 2006-12-28 Fuji Electric Holdings Co Ltd Method for action instruction of assembling mechanism in automatic assembling system
JP2008168406A (en) * 2007-01-12 2008-07-24 Honda Motor Co Ltd Work mounting system and work mounting method
WO2012127845A1 (en) 2011-03-24 2012-09-27 Canon Kabushiki Kaisha Robot control apparatus, robot control method, program, and recording medium
EP2591888A1 (en) 2011-11-08 2013-05-15 Dainippon Screen Mfg. Co., Ltd. Assembling apparatus and method, and assembling operation program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350620A (en) * 2005-06-15 2006-12-28 Fuji Electric Holdings Co Ltd Method for action instruction of assembling mechanism in automatic assembling system
JP4513663B2 (en) * 2005-06-15 2010-07-28 富士電機ホールディングス株式会社 Operation teaching method of assembly mechanism in automatic assembly system
JP2008168406A (en) * 2007-01-12 2008-07-24 Honda Motor Co Ltd Work mounting system and work mounting method
WO2012127845A1 (en) 2011-03-24 2012-09-27 Canon Kabushiki Kaisha Robot control apparatus, robot control method, program, and recording medium
US8977395B2 (en) 2011-03-24 2015-03-10 Canon Kabushiki Kaisha Robot control apparatus, robot control method, program, and recording medium
EP2591888A1 (en) 2011-11-08 2013-05-15 Dainippon Screen Mfg. Co., Ltd. Assembling apparatus and method, and assembling operation program

Similar Documents

Publication Publication Date Title
EP1607194B1 (en) Robot system comprising a plurality of robots provided with means for calibrating their relative position
US20050107920A1 (en) Teaching position correcting device
US7899577B2 (en) Measuring system and calibration method
EP0493612B1 (en) Method of calibrating visual sensor
US20160279800A1 (en) Robot, robot control device, and robotic system
US20140156072A1 (en) Apparatus and method for measuring tool center point position of robot
WO2004007150A1 (en) Carriage robot system and its controlling method
US11230011B2 (en) Robot system calibration
JP5370774B2 (en) Tray transfer apparatus and method
US11511435B2 (en) Robot-conveyor calibration method, robot system and control system
WO2014037993A1 (en) Work device
JP5618770B2 (en) Robot calibration apparatus and calibration method
JP7080068B2 (en) How to restore the location information of the robot
JP6912529B2 (en) How to correct the visual guidance robot arm
CN110303505B (en) Position information recovery method for robot
JPH05108126A (en) Mispositioning calibrating device
US11433551B2 (en) Measurement system and method for positioning accuracy of a robotic arm
JPH0626770B2 (en) Workpiece fitting method
CN113894793B (en) Method for acquiring relative pose relationship between part and vision sensor
US20220105641A1 (en) Belt Conveyor Calibration Method, Robot Control Method, and Robot System
JP2001092523A (en) Method of teaching robot for carrier
KR102384648B1 (en) System and Method for calibration of robot using a touch
EP4385684A1 (en) Robot inspection system
JPH06206186A (en) Calibration of handling precision of horizontal articulated type robot equipped with visual sensor
JP5381147B2 (en) Work transfer system