JPH051047B2 - - Google Patents

Info

Publication number
JPH051047B2
JPH051047B2 JP61090146A JP9014686A JPH051047B2 JP H051047 B2 JPH051047 B2 JP H051047B2 JP 61090146 A JP61090146 A JP 61090146A JP 9014686 A JP9014686 A JP 9014686A JP H051047 B2 JPH051047 B2 JP H051047B2
Authority
JP
Japan
Prior art keywords
stack
exchange membrane
ion
membrane electrodialysis
dialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61090146A
Other languages
Japanese (ja)
Other versions
JPS62247806A (en
Inventor
Fumito Kishimoto
Eiji Asada
Koichi Toi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP61090146A priority Critical patent/JPS62247806A/en
Publication of JPS62247806A publication Critical patent/JPS62247806A/en
Publication of JPH051047B2 publication Critical patent/JPH051047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解質物質を含む水溶液(以下、原液
ともいう)を電気透析することにより性能の低下
したイオン交換膜法電気透析装置(以下、単に透
析装置ともいう)の使用を停止して、該透析装置
又は該透析装置を構成するスタツクの上下を転倒
させて再使用する電気透析方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is an ion-exchange membrane electrodialysis device (hereinafter simply referred to as an ion-exchange membrane electrodialysis device) whose performance has been reduced by electrodialyzing an aqueous solution containing an electrolyte substance (hereinafter also referred to as a stock solution). The present invention relates to an electrodialysis method in which a dialysis device (also referred to as a dialysis device) is stopped from being used and the dialysis device or a stack constituting the dialysis device is turned upside down and reused.

(従来技術およびその問題点) イオン交換膜電気透析装置は海水の濃縮または
脱塩、乳類、糖密、しよう油など食品類の脱塩、
果汁の脱塩をはじめ工業的に多く用いられてい
る。これらイオン交換膜電気透析装置としては、
一般に陽イオン交換膜と陰イオン交換膜とをガス
ケツトを介して交互に多数配列し、交互に脱塩室
および濃縮室の多室を締付枠間に形成させた基本
構造よりなるスタツクの1乃至複数個を電極間に
配して構成された締体型透析装置が用いられてい
る。しかして、このようなイオン交換膜法電気透
析装置においては、電気エネルギー節減の意味か
ら可及的に膜間隔が狭く、また供給される原液は
含有される種々の微生物、懸濁物、コロイド物質
等の汚染物質を除去するために予めサンドフイル
ターやカートリツジフイルターなどで濾過されて
いる。しかしながら、これらの濾過では原液中の
汚染物質を完全に除去することができないため、
イオン交換膜電気透析装置を構成する例えばガス
ケツト、スペーサー、イオン交換膜、配管などに
該汚染物質の付着が避けられず、ひいては透析性
能の低下をきたす。即ち、イオン交換膜電気透析
装置を用いて原液の脱塩を行なう場合、イオン交
換膜の表面にゴミ、藻などの汚染物質が付着し易
いため、膜抵抗の上昇や透析電力の増大を招き好
ましくない。また、イオン交換膜電気透析装置に
より、例えば海水や河川水等の脱塩を行い飲料水
やプロセス水を得る場合にも、原液中に含有され
る凝集剤、洗剤、フミン酸、コロイド状物質など
の汚染物質によつて、特に陰イオン交換膜におけ
る2価或いは3価等の多価イオン、例えばSo4 --
イオン、Co3 --イオンの膜透過性が悪くなる。そ
のため、脱塩水の性状が変化したり、さらに分極
現象、中性撹乱現象が生じやすくなり、Mg
(OH)2、CaCO3、CaSO4等のスケールの発生を
招き長期の運転を困難にしていた。このように、
イオン交換膜電気透析装置においては、これら汚
染物質およびスケールが蓄積するため、通常1〜
2ケ月という短い期間で運転を停止して透析装置
を解体して洗浄しなければならず、操業率の低下
を招くのみでなく、洗浄回数の増加によりイオン
交換膜の寿命も著しく短縮されるという問題を有
する。
(Prior art and its problems) Ion-exchange membrane electrodialysis equipment can be used to concentrate or desalinate seawater, desalinate foods such as milk, molasses, and soybean oil,
It is widely used industrially, including for desalting fruit juice. These ion exchange membrane electrodialyzers include:
In general, the stack has a basic structure in which a large number of cation exchange membranes and anion exchange membranes are arranged alternately through gaskets, and a plurality of demineralization chambers and concentration chambers are alternately formed between the tightening frames. A clamp-type dialysis device is used in which a plurality of dialysis devices are arranged between electrodes. In such an ion-exchange membrane electrodialysis device, the membrane spacing is as narrow as possible in order to save electrical energy, and the supplied stock solution contains various microorganisms, suspended matter, and colloidal substances. In order to remove contaminants such as However, these filtration methods cannot completely remove contaminants from the stock solution.
Adhesion of these contaminants to, for example, gaskets, spacers, ion exchange membranes, piping, etc. that constitute the ion exchange membrane electrodialysis apparatus is unavoidable, resulting in a decrease in dialysis performance. In other words, when desalting a stock solution using an ion-exchange membrane electrodialysis device, contaminants such as dust and algae tend to adhere to the surface of the ion-exchange membrane, which increases membrane resistance and dialysis power, making it undesirable. do not have. In addition, when desalinating seawater, river water, etc. to obtain drinking water or process water using an ion-exchange membrane electrodialysis device, the flocculants, detergents, humic acids, and colloidal substances contained in the raw solution are also removed. Contaminants, especially multivalent ions such as divalent or trivalent ions in the anion exchange membrane, such as So 4 --
ions, Co 3 -- Membrane permeability of ions deteriorates. As a result, the properties of desalinated water change, polarization phenomena and neutral disturbance phenomena are more likely to occur, and Mg
This led to the formation of scales such as (OH) 2 , CaCO 3 , and CaSO 4 , making long-term operation difficult. in this way,
In ion-exchange membrane electrodialysis equipment, these contaminants and scales accumulate, so it is usually
The operation must be stopped, the dialysis equipment dismantled and cleaned after a short period of two months, which not only reduces the operating rate but also significantly shortens the lifespan of the ion exchange membrane due to the increased number of cleanings. have a problem

(問題点を解決するための手段) 本発明者等は、上記の如きイオン交換膜電気透
析装置における透析性能の低下の原因について先
ず、詳細に種々検討した。その結果、イオン交換
膜電気透析装置の使用による性能低下は、主に原
液を供給する脱塩室の下部に設けられた配流溝に
汚染物質が堆積することに基因すること、また該
汚染物質による性能低下は一定時間を経過した時
点で急激に増加することの知見を得た。さらに、
かかる知見に基づき検討を進めた結果、使用より
性能が低下したイオン交換膜電気透析装置の運転
を一旦停止して、該イオン交換膜電気透析装置を
構成するスタツクの上下を転倒させた後、再運転
することにより透析性能が容易に回復する効果を
見出して、本発明を提供するに至つた。即ち、本
発明はイオン交換膜法電気透析に際し、使用によ
り性能が低下してイオン交換膜電気透析装置の使
用を停止して、該透析装置又は該透析装置を構成
するスタツクの上下を転倒させて再使用すること
を特徴とする電気透析方法である。本発明に用い
るイオン交換膜電気透析装置は、前記した如く一
般に締付枠間に陽イオン交換膜と陰イオン交換膜
とがそれぞれガスケツトを介して交互に多数配列
され、脱塩室および濃縮室が交互に形成された基
本構造よりなるスタツクの1個以上を電極間に設
置して構成され、脱塩室および濃縮室には各液を
供給、排出するための連通孔および配流溝が設け
られている。したがつて、本発明におけるイオン
交換膜電気透析装置の性能回復法は、一般に上記
した如きイオン交換膜電気透析装置を全体を、又
は該透析装置を構成するスタツクの1個以上を上
下に転倒することによつて簡便に実施される。ま
た、かかる本発明におけるイオン交換膜電気透析
装置の性能回復法を良好かつ容易に実施するため
には、使用するイオン交換膜電気透析装置又は該
透析装置を構成するスタツクが上下に転倒した場
合、転倒の前と後において同一の構造および機構
を有することが好ましい。そのため、本発明のイ
オン交換膜電気透析装置としては、一般に該透析
装置(特にスタツク)を構成するイオン交換膜、
ガスケツトおよびスタツクの締付枠の形状が、透
析面の中心点に対してそれぞれ上下対称であるこ
とが好適である。
(Means for Solving the Problems) The present inventors first conducted various detailed studies on the causes of the decline in dialysis performance in the above-mentioned ion exchange membrane electrodialysis apparatus. As a result, it was found that the performance degradation due to the use of ion exchange membrane electrodialysis equipment is mainly due to the accumulation of contaminants in the distribution channel provided at the bottom of the desalination chamber that supplies the raw solution, and that We obtained the knowledge that the performance deterioration increases rapidly after a certain period of time. moreover,
As a result of further investigation based on this knowledge, we temporarily stopped the operation of the ion-exchange membrane electrodialysis equipment whose performance had deteriorated compared to its use, and after turning over the top and bottom of the stack that makes up the ion-exchange membrane electrodialysis equipment, restarted the operation. The inventors have discovered that the dialysis performance can be easily recovered by operating the device, and have come to provide the present invention. That is, in the case of ion-exchange membrane electrodialysis, the present invention discontinues the use of the ion-exchange membrane electrodialysis device due to a decrease in performance due to use, and turns the dialysis device or the stack constituting the dialysis device upside down. This is an electrodialysis method characterized by reuse. As described above, the ion exchange membrane electrodialysis apparatus used in the present invention generally has a large number of cation exchange membranes and anion exchange membranes alternately arranged between the clamping frames through gaskets, and has a demineralization chamber and a concentration chamber. It is constructed by installing one or more stacks consisting of alternately formed basic structures between electrodes, and the demineralization chamber and concentration chamber are provided with communication holes and distribution grooves for supplying and discharging each liquid. There is. Therefore, the method for restoring the performance of an ion-exchange membrane electrodialysis apparatus according to the present invention generally involves vertically inverting the entire ion-exchange membrane electrodialysis apparatus or one or more of the stacks constituting the dialysis apparatus. This makes it easy to implement. In addition, in order to successfully and easily implement the method for restoring the performance of an ion-exchange membrane electrodialysis device according to the present invention, it is necessary to It is preferable to have the same structure and mechanism before and after the fall. Therefore, the ion exchange membrane electrodialysis apparatus of the present invention generally includes an ion exchange membrane constituting the dialysis apparatus (particularly a stack),
It is preferable that the shapes of the gasket and the clamping frame of the stack are vertically symmetrical with respect to the center point of the dialysis surface.

本発明において、使用により性能の低下したイ
オン交換膜電気透析装置を一旦停止し、該透析装
置又はスタツクの上下を転倒させた後、再運転す
ることにより所期の目的が達成される作用効果に
ついては、明確ではないが次のように考える。即
ち、イオン交換膜電気透析装置において供給され
る原液は、ガス抜けなどをよくするために一般に
脱塩室の下方より導入され上方より取り出される
ため、前述の如く脱塩室の下部における配流溝に
は、スペーサー部(通電部に相当)や上部の配流
溝に比べて特に汚染物質が堆積し易い。このよう
にイオン交換膜電気透析装置に供給される原液に
含有される汚染物質は、脱塩室の下部における配
流溝に多く堆積するが、上部の配流溝においては
減少し堆積も少ない。したがつて、本発明により
イオン交換膜電気透析装置又はスタツクを上下に
転倒した場合には今まで上部に存在した配流溝が
下部に位置するため、該部下の配流溝において汚
染物質の堆積が少ない状態で運転を再開すること
ができる。同時に、イオン交換膜電気透析装置又
はスタツクの上下を転倒することにより下部から
上部に位置した配流溝に堆積した汚染物質は、再
運転中の長期間にわたる原液の流通により、一種
の逆洗作用を受けることになり次第に除去され
る。このような相乗作用によつて、本発明の使用
により性能が低下したイオン交換膜電気透析装置
における性能回復の効果が発揮される。
In the present invention, the intended purpose is achieved by temporarily stopping an ion exchange membrane electrodialysis device whose performance has deteriorated due to use, turning the dialysis device or stack upside down, and restarting the operation. Although it is not clear, I think of it as follows. In other words, the stock solution supplied in the ion exchange membrane electrodialysis device is generally introduced from the bottom of the demineralization chamber and taken out from the top in order to improve gas release, so as mentioned above, the stock solution is fed into the distribution groove at the bottom of the demineralization chamber. Contaminants are particularly likely to accumulate in the spacer part (corresponding to the current-carrying part) and the upper distribution groove. As described above, a large amount of contaminants contained in the stock solution supplied to the ion-exchange membrane electrodialysis apparatus accumulates in the distribution grooves at the bottom of the desalination chamber, but decreases and is less deposited in the distribution grooves at the top. Therefore, according to the present invention, when the ion-exchange membrane electrodialysis apparatus or stack is turned upside down, the distribution grooves that were previously located at the top are located at the bottom, so there is less accumulation of contaminants in the distribution grooves below. You can resume driving in this condition. At the same time, contaminants deposited in the distribution channels located from the bottom to the top due to the ion-exchange membrane electrodialysis equipment or stack being overturned will undergo a type of backwashing effect due to the long-term circulation of the stock solution during restart. It will be removed as soon as it is received. Due to such a synergistic effect, the use of the present invention exhibits the effect of restoring the performance of an ion exchange membrane electrodialysis device whose performance has deteriorated.

本発明において、イオン交換膜電気透析装置又
はそれを構成する、スタツクの上下を転倒させる
時期は、原液を脱塩室へ供給する際の圧力上昇、
透析に要する電圧の上昇、そのほか性能低下に対
するデーターの解析に基づいて決定すればよい
が、一般に急激な性能低下をきたす前が好まし
い。また、イオン交換膜電気透析装置が複数個の
スタツクから構成される場合には、該スタツクの
1個以上を適宜選択して転倒させてもよく、さら
に該スタツクを転倒する回数は性能回復の度合か
ら1回に限らず、必要に応じて2回以上を実施す
ることも可能である。
In the present invention, the timing for turning over the ion-exchange membrane electrodialysis device or the stack constituting it is determined by the pressure increase when supplying the stock solution to the desalination chamber.
It may be determined based on analysis of data regarding increases in voltage required for dialysis and other performance deterioration, but it is generally preferable to do so before a sudden performance deterioration occurs. Furthermore, when the ion exchange membrane electrodialysis apparatus is composed of a plurality of stacks, one or more of the stacks may be appropriately selected and overturned, and the number of times the stack is overturned depends on the degree of performance recovery. It is not limited to one time, but can be performed two or more times as necessary.

イオン交換膜電気透析装置のスタツクを上下に
転倒させる方法は、例えば運転を停止して該透析
装置内の溶液を抜いた後該液の給排配管を取はず
し、さらに電極間(通常はプレス装置)の締め付
けを解除して、人的あるいは機械的手段により必
要なスタツクを転倒させる。次いで、スタツクの
転倒後、所定の液給排配管を接続してイオン交換
膜電気透析装置を構成することにより、通常の方
法で運転が再開される。
The method of inverting the stack of ion exchange membrane electrodialysis equipment is, for example, by stopping the operation, draining the solution in the dialysis equipment, removing the supply/drainage piping for the fluid, and then removing the pipes between the electrodes (usually a press machine). ) and overturn the necessary stack by human or mechanical means. Next, after the stack is overturned, the ion exchange membrane electrodialysis apparatus is constructed by connecting predetermined liquid supply and drainage piping, and operation is resumed in the normal manner.

本発明に用いられる好適なイオン交換膜電気透
析装置としては、例えば、第1図−1が正面図、
第1図−2が平面図、第1図−3が側面図である
スタツクを第2図のように配して構成され、図中
のCは濃縮液また、Dは脱塩液を示す。即ち、上
記のイオン交換膜電気透析装置は締付枠1,1′
間に陽イオン交換膜2と陰イオン交換膜3とが第
3図−1および第3図−2に示すようにガスケツ
ト4,4′を介して交互に多数配列され、これら
の両イオン交換膜2,3とガスケツト4,4′と
によつて交互に脱塩室と濃縮室(図示せず)とを
形成させた基本構造よりなるスタツク5を、第2
図のように陰極室6と陽極室7との間に配し、締
付盤8,8′を締め付けて構成され、また第3図
のように各々のスタツク5を構成するガスケツト
4,4′の透析面に担当する切欠部9、給配液の
連通孔10の位置および締付枠1,1′の形状が
いずれも透析面の中心点(第3図の一点斜線の交
点)に対して上下対称である。なお、上記のイオ
ン交換膜電気透析装置には、原液(脱塩液)の給
排液配管11,12、濃縮液の給排液配管13,
14および電解液の給排液配管15,16が付設
されている。ガスケツト4,4′には網状物のス
ペーサー17、配流板21,22が配置されてい
る。このような構造のイオン交換膜電気透析装置
によれば、スタツク5の上下が透析面の中心点に
対して対称であるため、該スタツク5の上下を転
倒させても、脱塩液および濃縮液の給排液孔10
の位置および締付枠1,1′の形状が同一である
ため、同一のイオン交換膜電気透析装置が構成さ
れ、スタツク5の転倒に伴う配管の脱着作業など
作業性が極めて簡便である。
For example, FIG. 1-1 is a front view of a suitable ion-exchange membrane electrodialysis device used in the present invention;
It is constructed by arranging a stack as shown in FIG. 2, with FIG. 1-2 being a plan view and FIG. 1-3 being a side view, in which C represents a concentrated liquid and D represents a desalted liquid. That is, the above ion exchange membrane electrodialysis device has clamping frames 1 and 1'.
Between them, a large number of cation exchange membranes 2 and anion exchange membranes 3 are arranged alternately through gaskets 4, 4' as shown in Figure 3-1 and Figure 3-2, and both of these ion exchange membranes 2 and 3 and gaskets 4 and 4' alternately form a demineralization chamber and a concentration chamber (not shown).
Gaskets 4, 4' are disposed between the cathode chamber 6 and anode chamber 7 as shown in the figure, and are constructed by tightening clamping plates 8, 8', and as shown in FIG. The position of the notch 9 in charge of the dialysis surface, the position of the fluid supply and distribution communication hole 10, and the shape of the clamping frames 1 and 1' are all relative to the center point of the dialysis surface (the intersection of dotted diagonal lines in Fig. 3). It is vertically symmetrical. The above-mentioned ion exchange membrane electrodialysis apparatus includes supply and drainage pipes 11 and 12 for the stock solution (desalted solution), supply and drainage pipes 13 for the concentrated solution,
14 and electrolyte supply/drainage pipes 15 and 16 are attached. A mesh spacer 17 and flow distribution plates 21, 22 are arranged in the gaskets 4, 4'. According to the ion exchange membrane electrodialysis apparatus having such a structure, the top and bottom of the stack 5 are symmetrical with respect to the center point of the dialysis surface. Liquid supply and drainage hole 10
Since the position of the stack 5 and the shape of the clamping frames 1 and 1' are the same, the same ion exchange membrane electrodialysis apparatus is constructed, and workability such as attaching and detaching the pipes when the stack 5 is overturned is extremely simple.

本発明のイオン交換膜電気透析装置を構成する
スタツク5の別な態様としては、第4図(第4図
−1は正面図、第4図−2は平面図、第4図−3
は第4図−1のA−A′視図である)に示す構造
も有効である。即ち、第4図に示すスタツク5
は、アーム18が締付枠1,1′の中心部より上
部に接続された以外は第1図と同じ構造であり、
該アーム18はスタツク5を転倒する際に常に第
4図の位置になる如く着脱自在に設置することが
好ましい。したがつて、このような第4図におけ
るスタツク5によれば、アーム18に設けられた
孔19,19′の間に棒状物を通して該スタツク
5を吊り下げることにより、容易に上下に転倒す
ることが出来る。かかるスタツク5を転倒させる
際の手順は、両端の締付枠1,1′のアーム18
に設けられた孔19と19′間に棒(図示せず)
を通した状態でスタツク5を機械的手段により吊
り下げ転倒するが、この際にアーム18の位置が
締付枠1の中央部または中央より下部に位置する
と重心位置が下方になり、不安定になるため吊り
下げ作業が困難になるが、上記した位置にアーム
18が接続されていればこのような問題は防止さ
れ作業がより容易になる。アーム18を着脱自在
な構造に設置する方法としては、ボルトなどを用
いる公知の技術が特に制限なく用いられる。
Another aspect of the stack 5 constituting the ion exchange membrane electrodialysis apparatus of the present invention is shown in FIG. 4 (FIG. 4-1 is a front view, FIG. 4-2 is a plan view, and FIG. 4-3 is a
The structure shown in FIG. 4-1 (A-A' view) is also effective. That is, stack 5 shown in FIG.
has the same structure as in Fig. 1 except that the arm 18 is connected above the center of the clamping frame 1, 1',
It is preferable that the arm 18 is removably installed so that it is always in the position shown in FIG. 4 when the stack 5 is overturned. Therefore, according to the stack 5 shown in FIG. 4, by suspending the stack 5 by passing a rod-shaped object between the holes 19 and 19' provided in the arm 18, it is possible to easily tip the stack 5 up and down. I can do it. The procedure for overturning the stack 5 is as follows:
A rod (not shown) between holes 19 and 19' provided in
The stack 5 is suspended by mechanical means and falls over, but if the arm 18 is located at the center of the clamping frame 1 or below the center, the center of gravity will be downward, making it unstable. This makes the hanging work difficult, but if the arm 18 is connected to the above-mentioned position, this problem can be prevented and the work becomes easier. As a method for installing the arm 18 in a detachable structure, a known technique using bolts or the like can be used without any particular limitation.

本発明のイオン交換膜電気透析装置を構成する
ガスケツト4,4′、陽極室7、陰極室6、陽イ
オン交換膜2、陰イオン交換膜3等の材質および
構造等は何ら制限されず公知のものが使用でき
る。例えば、ガスケツト4,4′の材質は、使用
条件において、化学的、物理的に安定で且つ弾性
を有する物質であればよく、例えば天然ゴム、各
種合成ゴム、塩化ビニル樹脂、エチレン−酢酸ビ
ニル共重合樹脂等のビニル系樹脂、その他熱可塑
性樹脂等が良好に使用される。
The materials and structures of the gaskets 4, 4', the anode chamber 7, the cathode chamber 6, the cation exchange membrane 2, the anion exchange membrane 3, etc. that constitute the ion exchange membrane electrodialysis apparatus of the present invention are not limited in any way and may be any of the known materials. Things can be used. For example, the material of the gaskets 4, 4' may be any material that is chemically and physically stable and elastic under the usage conditions, such as natural rubber, various synthetic rubbers, vinyl chloride resin, ethylene-vinyl acetate, etc. Vinyl resins such as polymer resins and other thermoplastic resins are preferably used.

また、ガスケツト4,4′の切欠部9および配
流溝(潮道部)にスペーサー17や配流板21,
22を設けることは、希釈室および濃縮室内の液
を均一にすることができ好ましい。
In addition, spacers 17, flow distribution plates 21,
22 is preferable because it allows the liquid in the dilution chamber and the concentration chamber to be uniform.

その他、本発明に適用される電解質溶液(原
液)としては、従来より電気透析法に使用される
溶液が特に制限なく用いられるが、特に海水が好
適である。また、電気透析の条件も従来より実施
されている条件がそのまま適用される。特に好適
な条件を示せば、電流密度0.5〜6A/dm2、液温
5〜40℃などである。
In addition, as the electrolyte solution (undiluted solution) applied to the present invention, solutions conventionally used in electrodialysis methods can be used without particular limitation, but seawater is particularly suitable. Moreover, the conditions for electrodialysis that have been conventionally applied are applied as they are. Particularly suitable conditions include a current density of 0.5 to 6 A/dm 2 and a liquid temperature of 5 to 40°C.

(効果) 以上に説明した如く、本発明の性能回復法によ
れば、イオン交換膜電気透析装置における数百枚
乃至数千枚というイオン交換膜、それに付随する
ガスケツト等の部品を従来法のように人手により
解体、洗浄、再組み立てなど莫大な労力、および
これに要する休業時間を従来法の約1/5に縮め、
また解体、手洗浄および組み立て時におけるイオ
ン交換膜の破損を少なくしたものである。したが
つて、本発明はイオン交換膜電気透析装置を多数
用いる分野において効果が大きく、海水から食塩
を得る産業などにとつては特に有効である。
(Effects) As explained above, according to the performance recovery method of the present invention, hundreds to thousands of ion exchange membranes and associated gaskets and other parts in an ion exchange membrane electrodialysis device can be replaced with the conventional method. The huge amount of labor involved in manually disassembling, cleaning, and reassembling, as well as the downtime required for this, has been reduced to approximately 1/5 of the conventional method.
Furthermore, damage to the ion exchange membrane during disassembly, hand washing, and assembly is reduced. Therefore, the present invention is highly effective in fields where a large number of ion exchange membrane electrodialyzers are used, and is particularly effective in industries that obtain salt from seawater.

(実施例) 以下、本発明を実施例に基づき詳細に説明する
が、本発明は以下の実施例に特に限定されるもの
ではない。
(Examples) Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not particularly limited to the following Examples.

実施例 1 有効通電面積25dm2のフイルタープレス型イオ
ン交換膜電気透析装置を用いて、海水の脱塩実験
をおこなつた。海水は、急速砂濾過器で濾過した
後、液温を30℃±1℃に調節した海水を用いた。
イオン交換膜は徳山曹達製ネオセプタCM−1お
よびAFNをそれぞれ組込んだ。ガスケツトは脱
塩室、濃縮室用とも板厚0.75mmの合成ゴムシート
でスペーサー、配流板は、プラスチツク製の斜交
網を用いた。これらいずれも透析面の中心点に対
して上下対称である形状のイオン交換膜、ガスケ
ツト等を用いて脱塩室125室、濃縮室126室のスタ
ツクを2ケ(No.1とNo.2スタツク)を組立てた。
これらスタツクを陰・陽電極室とともにプレス盤
間にセツトして締付て電気透析(脱塩)装置を構
成した。
Example 1 A seawater desalination experiment was conducted using a filter press type ion exchange membrane electrodialysis device with an effective current carrying area of 25 dm 2 . Seawater was filtered with a rapid sand filter and then adjusted to a temperature of 30°C ± 1°C.
The ion exchange membranes were Neocepta CM-1 and AFN manufactured by Tokuyama Soda, respectively. The gaskets for both the desalination chamber and concentration chamber were made of synthetic rubber sheets with a thickness of 0.75 mm, and the spacers were made of synthetic rubber sheets, and the distribution plates were made of diagonal plastic mesh. In both of these cases, two stacks (No. 1 and No. 2 stacks) of 125 demineralization chambers and 126 concentration chambers are constructed using ion exchange membranes, gaskets, etc. that are vertically symmetrical with respect to the center point of the dialysis surface. ) was assembled.
These stacks, together with negative and positive electrode chambers, were set between press plates and tightened to form an electrodialysis (desalination) apparatus.

この装置に脱塩液、濃縮液および電極液を所定
量供給し、脱塩実験を開始した。脱塩操作は、1
段バツチ室電圧方式とし、1バツチ間の平均運転
電流密度は2A/dm2とした。実験開始時のNo.1
およびNo.2スタツクの脱塩液の入口圧力は、夫々
0.63Kg/cm2、0.64Kg/cm2、濃縮液の入口圧力は夫々
0.47Kg/cm2、0.47Kg/cm2で、1バツチ間の平均スタ
ツク電圧はNo.1スタツクが61.4V、No.2スタツク
が62.0Vであつた。また、得られて生産水は、No.
1、No.2スタツクとも塩素イオン濃度が190ppm、
硫酸イオン濃度が25ppmであつた。このようにし
て70日間の脱塩実験を継続したところ、脱塩液の
入り口圧力はNo.1スタツクが1.26Kg/cm2、No.2ス
タツクが1.23Kg/cm2に、濃縮液の入口圧力は夫々
0.88Kg/cm2、0.90Kg/cm2に上昇した。また、スタツ
ク電圧は、No.1スタツクが64.3V、No.2スタツク
が64.8Vに上昇した。また、生産水の水質はNo.
1、No.2とも塩素イオン濃度が140ppm、硫酸イ
オン濃度が50ppmと変化していた。
A desalination experiment was started by supplying predetermined amounts of a desalting solution, a concentrated solution, and an electrode solution to this apparatus. Desalting operation is 1
A stage batch chamber voltage system was used, and the average operating current density for one batch was 2 A/dm 2 . No. 1 at the start of the experiment
and the inlet pressure of desalination liquid in No. 2 stack are respectively
0.63Kg/cm 2 , 0.64Kg/cm 2 , the inlet pressure of the concentrate is respectively
0.47Kg/cm 2 and 0.47Kg/cm 2 , and the average stack voltage during one batch was 61.4V for No. 1 stack and 62.0V for No. 2 stack. In addition, the produced water obtained is No.
Both 1 and No. 2 stacks have a chloride ion concentration of 190 ppm.
The sulfate ion concentration was 25 ppm. When the desalination experiment was continued for 70 days in this way, the inlet pressure of the desalinated solution was 1.26 Kg/cm 2 for the No. 1 stack, 1.23 Kg/cm 2 for the No. 2 stack, and the inlet pressure of the concentrated solution was are each
It rose to 0.88Kg/cm 2 and 0.90Kg/cm 2 . In addition, the stack voltage increased to 64.3V for No. 1 stack and 64.8V for No. 2 stack. In addition, the quality of produced water is No.
In both No. 1 and No. 2, the chloride ion concentration was 140 ppm and the sulfate ion concentration was 50 ppm.

この時点でNo.1スタツクのみ上下を転倒し、No.
2スタツクはそのままにして、さらに脱塩実験を
継続した。しかるにNo.2スタツクはこの後脱塩液
入口圧力、スタツク電圧、生産水の硫酸イオンの
増加がみられ、104日間に脱塩液入口圧力が1.69
Kg/cm2まで上昇した時点で中性撹乱現象を引きお
こし、スタツク内にスケールが発生したので運転
をストツプせざるを得なかつた。一方、No.1スタ
ツクは、その間しばらくは脱塩液および濃縮液の
入口圧力の低下現象が観察され後、増加傾向に転
じたが、104日目の時点で脱塩液の入口圧力は
1.11Kg/cm2、濃縮液は0.75Kg/cm2であつた。またス
タツク電圧は64.6V、生産水の水質は塩素イオン
濃度145ppm、硫酸イオン55ppmと70日目のデー
タと大差なかつた。このように上下転倒したスタ
ツクNo.1と通常スタツクNo.2とでは明らかに差異
がみられた。
At this point, only the No. 1 stack fell upside down, and the No.
The desalting experiment was continued with the 2 stacks left as they were. However, in No. 2 stack, the desalination liquid inlet pressure, stack voltage, and sulfate ions in the produced water increased after this, and the desalination liquid inlet pressure decreased to 1.69 in 104 days.
When the temperature rose to Kg/cm 2 , a neutral disturbance phenomenon occurred and scale was generated in the stack, so operation had to be stopped. On the other hand, for No. 1 stack, a decrease in the inlet pressure of the desalted liquid and concentrated liquid was observed for a while, and then it turned to an increasing trend, but as of the 104th day, the inlet pressure of the desalted liquid decreased.
The concentration was 1.11Kg/cm 2 , and the concentration of the concentrated liquid was 0.75Kg/cm 2 . In addition, the stack voltage was 64.6V, and the quality of the produced water was 145 ppm in chloride ion concentration and 55 ppm in sulfate ion, which was not much different from the data on the 70th day. There was a clear difference between stack No. 1, which had fallen upside down, and normal stack No. 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第4図は本発明の透析方法に好適な
スタツクの構造を示す図で、第1図−1、第4図
−1は正面図、第1図−2、第4図−2は平面
図、第1図−3、第4図−3は側面図である。第
2図はそれらのスタツクよりなる透析装置の概略
図である。また、第3図(第3図−1、第3図−
2)は上記スタツクに使用するガスケツトの構造
を示す概略図である。 図中1,1′は締付枠、2,3はイオン交換膜、
4,4′はガスケツト、5はスタツク、6,7は
電極室、8,8′は締付盤、9はガスケツトの切
欠部、10は給排液連通孔、11,12は脱塩液
の給排液配管、13,14は濃縮液の給排液配
管、15,16は電解液の給排液配管、17はス
ペーサー、18はアーム、19はアーム中の孔、
20はスタツク締付用ボルト穴(締付用ボルトは
図示していない)、21,22は上部配流板、2
2,21は下部配流板である。
Figures 1 and 4 are diagrams showing the structure of a stack suitable for the dialysis method of the present invention, with Figures 1-1 and 4-1 being front views, Figure 1-2, and Figure 4-2 is a plan view, and FIGS. 1-3 and 4-3 are side views. FIG. 2 is a schematic diagram of a dialysis machine comprising a stack of these. Also, Figure 3 (Figure 3-1, Figure 3-
2) is a schematic diagram showing the structure of a gasket used in the above stack. In the figure, 1 and 1' are tightening frames, 2 and 3 are ion exchange membranes,
4 and 4' are gaskets, 5 is a stack, 6 and 7 are electrode chambers, 8 and 8' are tightening plates, 9 is a gasket notch, 10 is a supply/drainage fluid communication hole, and 11 and 12 are desalination fluid ports. Liquid supply and drainage piping, 13 and 14 are concentrated liquid supply and drainage piping, 15 and 16 are electrolyte liquid supply and drainage piping, 17 is a spacer, 18 is an arm, 19 is a hole in the arm,
20 is a bolt hole for tightening the stack (the tightening bolt is not shown); 21 and 22 are upper flow distribution plates;
2 and 21 are lower flow distribution plates.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン交換膜法電気透析に際し、使用により
性能が低下したイオン交換膜電気透析装置の使用
を停止して、該透析装置又は該透析装置を構成す
るスタツクの上下を転倒させて再使用することを
特徴とする電気透析方法。
1. When performing ion-exchange membrane electrodialysis, it is recommended to stop using an ion-exchange membrane electrodialysis device whose performance has deteriorated due to use, and to reuse the dialysis device or the stack that makes up the dialysis device by turning it upside down. Characteristic electrodialysis method.
JP61090146A 1986-04-21 1986-04-21 Method for restoring performance of ion exchange membrane electrodialyzer and said electrodialyzer Granted JPS62247806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61090146A JPS62247806A (en) 1986-04-21 1986-04-21 Method for restoring performance of ion exchange membrane electrodialyzer and said electrodialyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61090146A JPS62247806A (en) 1986-04-21 1986-04-21 Method for restoring performance of ion exchange membrane electrodialyzer and said electrodialyzer

Publications (2)

Publication Number Publication Date
JPS62247806A JPS62247806A (en) 1987-10-28
JPH051047B2 true JPH051047B2 (en) 1993-01-07

Family

ID=13990359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61090146A Granted JPS62247806A (en) 1986-04-21 1986-04-21 Method for restoring performance of ion exchange membrane electrodialyzer and said electrodialyzer

Country Status (1)

Country Link
JP (1) JPS62247806A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247580A (en) * 1975-10-14 1977-04-15 Mitsubishi Heavy Ind Ltd Desalting method by electrodialysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247580A (en) * 1975-10-14 1977-04-15 Mitsubishi Heavy Ind Ltd Desalting method by electrodialysis

Also Published As

Publication number Publication date
JPS62247806A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
CN107055713B (en) High-hardness salt-containing water concentration method based on monovalent cation selective electrodialysis
EP0379116B1 (en) Electrodeionization apparatus and module
JP3855186B2 (en) Desalination of aqueous streams via enclosed cell electrodialysis
EP0422453B1 (en) Process for purifying water
EP1034833A2 (en) Polarity reversal and double reversal electrodeionization apparatus and method
US5376250A (en) Method of producing water having a reduced salt content
US20080067071A1 (en) Concentrate recycle loop with filtration module
MXPA01003822A (en) Method and apparatus for preventing scaling in electrodeionization units.
EP2429678A1 (en) Brine treatment scaling control system and method
AU2012346360A1 (en) Desalination system and method
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JPH051047B2 (en)
JPH10323673A (en) Deionized water-producing method
CN212151922U (en) System for utilize electrodialysis utilization strong brine
CN111392930A (en) Reverse osmosis water treatment system
CN217479251U (en) Phosphate waste water zero release processing system
CN114890512B (en) Lithium-containing wastewater treatment system and method based on electrically driven membrane
Sammon Membrane processes
CN215102732U (en) Diamond sewage treatment filtering reactor
DE102016105080A1 (en) Process for the purification of electrodialysis modules
CN105923870B (en) A kind of zero-emission Demineralized Water Production device
CN114873816A (en) Phosphate waste water zero release processing system
RU2261753C2 (en) Method of electrochemical production from salt solutions of solid slightly soluble acids, bases and calcium carbonate which settle-out at shift of solution ph
KR19990054942A (en) Recovery method of salt from Kimchi pickled wastewater
CN117244407A (en) High-recovery-rate anti-pollution membrane desalination system and application thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees