JPH0487686A - Method for controlling amount of ozone injected into etching solution - Google Patents

Method for controlling amount of ozone injected into etching solution

Info

Publication number
JPH0487686A
JPH0487686A JP20198290A JP20198290A JPH0487686A JP H0487686 A JPH0487686 A JP H0487686A JP 20198290 A JP20198290 A JP 20198290A JP 20198290 A JP20198290 A JP 20198290A JP H0487686 A JPH0487686 A JP H0487686A
Authority
JP
Japan
Prior art keywords
etching solution
ozone
etching
oxidation
reduction potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20198290A
Other languages
Japanese (ja)
Inventor
Koji Shimizu
康次 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20198290A priority Critical patent/JPH0487686A/en
Publication of JPH0487686A publication Critical patent/JPH0487686A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously and properly control the amt. of ozone injected into an etching soln, at the time of regeneration by continuously measuring the oxidation-reduction potential of the etching soln. contg. ferric salt as a principal component. CONSTITUTION:A deteriorated etching soln. in an etching vessel 1 is continuously introduced into a sampling vessel 12 by a pump 11 and the oxidation- reduction potential of the etching soln. is continuously measured with an ORP electrode 13. The oxidation-reduction potential is about 560mV in the case of about >=5g/l concn. of ferrous ions (Fe<2+>) and about 1,100mV in the case of about <=5g/l concn. When the oxidation-reduction potential measured with the electrode 13 rises suddenly, an ozonizer 8 is switched off. When the oxidation--reduction potential lowers, the ozonizer 8 is switched on.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄系材料からなる電子部品などのエツチング加
ニジこ用いられ、第二鉄塩を主成分とするエツチング液
を再生するオゾンの注入量を制御する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used for etching electronic components made of iron-based materials, and involves injection of ozone to regenerate an etching solution mainly composed of ferric salts. Concerning how to control the amount.

〔従来の技術〕[Conventional technology]

例えばステンレス鯛などの鉄系合金からなる電子部品、
IC用リードフレーム、蒸着用マスクなどの成形加工は
、これらをあらかじめフォトレジストコーティング→露
光台現像という工程によって処理し、レジストを除去し
た部分に対して、塩化第二鉄(FeC1s)、硝酸第二
鉄(Fe(NOx)コ)などの第二鉄塩を主成分とする
エツチング液を用いてエツチングすることにより行われ
ている。
For example, electronic parts made of iron-based alloys such as stainless steel,
In the molding process of IC lead frames, vapor deposition masks, etc., these are processed in advance through a process of photoresist coating → exposure stage development, and the areas from which the resist has been removed are treated with ferric chloride (FeC1s) and nitric acid Etching is carried out using an etching solution containing a ferric salt such as iron (Fe(NOx)) as a main component.

第二鉄塩エツチング液は、第二鉄の塩酸塩、硫酸塩、硝
酸塩のうちのいずれか一つ、またはこれらの混合物を主
成分とし、第二鉄塩の陰イオンと共通な陰イオンを有す
る酸をpHtll整のために添加した水溶液であり、例
えば塩酸塩では塩酸が添加される。この第二鉄塩エンチ
ング液で被エツチング部材を処理したとき、次式の反応
によりエツチングが行われる。
The ferric salt etching solution has as its main component any one of ferric hydrochloride, sulfate, and nitrate, or a mixture thereof, and has an anion common to that of the ferric salt. It is an aqueous solution to which an acid is added to adjust the pH. For example, in the case of hydrochloride, hydrochloric acid is added. When a member to be etched is treated with this ferric salt etching solution, etching is carried out by the following reaction.

2Fe” 十Fe’  −+ 3Fe”シタ力って、使
用を繰り返すとエツチング液中の第二鉄塩が第一鉄塩に
変化するため、酸化力がなくなりエツチング速度が低下
して、エツチング液としての性能が劣化し、遂には使用
することができなくなる。そこで、この第一鉄塩を酸化
再生して第二鉄塩の濃度を上げるとともに比重調整を行
ない、鉄濃度を一定にする必要が生ずる0例えば塩化第
〜鉄(FeC1t>を再生するには、過酸化水素や塩素
ガスによる酸化再生法や電解酸化法が知られているが、
これらはいずれも複雑で高価な設備を要するので適当で
ない。
2Fe"10Fe' -+ 3Fe" When used repeatedly, the ferric salt in the etching solution changes to ferrous salt, so the oxidizing power is lost and the etching speed decreases, making it difficult to use as an etching solution. Its performance deteriorates and it becomes unusable. Therefore, it is necessary to oxidize and regenerate this ferrous salt to increase the concentration of ferric salt and to adjust the specific gravity to keep the iron concentration constant.For example, to regenerate ferric chloride (FeC1t), Oxidative regeneration methods using hydrogen peroxide and chlorine gas and electrolytic oxidation methods are known, but
All of these require complicated and expensive equipment and are therefore not suitable.

これに対しオゾンの持つ強力な酸化力を利用して、この
劣化したエンチング液中の第一鉄塩を第二鉄塩に酸化再
生する方法が提案され、特開昭62230991号公報
、特開昭62−230992号公報に記載されている。
In response, a method has been proposed that utilizes the strong oxidizing power of ozone to oxidize and regenerate the ferrous salt in the deteriorated etching solution into ferric salt, and is published in Japanese Patent Application Laid-open No. 62230991 and Japanese Patent Application Laid-Open No. It is described in 62-230992.

オゾンによるエツチング液の再生は、次代の反応により
行われる。
Regeneration of the etching solution by ozone is carried out by the following reaction.

2FeC1t +Os + 2HCI→2FeC1s 
+ HtO十〇gこの方法は再生効率に優れ、簡単な設
備で容5に実施することができるという利点がある。
2FeC1t +Os + 2HCI→2FeC1s
+ 100 g of HtO This method has the advantage that it has excellent regeneration efficiency and can be carried out in a volume of 5 with simple equipment.

第4図はオゾンを用いて劣化エツチング液の再生可能な
エツチング装置の概要を示す模式図である。第4図にお
いて、エツチング部分のみ露出し表面がレジストで覆わ
れた被エツチング部材は、エツチング槽lの上方でロー
ラーコンへア上を移動する。ここでは被エツチング部材
の移動方向を点線の矢印で示し、ガスまたは液の流れる
方向を実線の矢印で示す、エツチング槽1内に入ってい
る塩化第二鉄エツチング液をポンプ2によって吸い上げ
、スプレーノズル3を通して走行中の被エツチング部材
に噴霧することにより連続的にエツチングが行われる。
FIG. 4 is a schematic diagram showing an outline of an etching apparatus capable of regenerating a deteriorated etching solution using ozone. In FIG. 4, the member to be etched, whose surface is covered with resist and only the etched portion is exposed, moves on a roller conveyor above the etching bath l. Here, the direction of movement of the member to be etched is shown by a dotted line arrow, and the direction of gas or liquid flow is shown by a solid line arrow.The ferric chloride etching solution contained in the etching tank 1 is sucked up by the pump 2, and then sent to the spray nozzle. Etching is carried out continuously by spraying the member to be etched while it is traveling through the etching tube 3.

劣化したエツチング液は、ポンプ4により反応塔5に送
られ、泡の発生防止のために反応塔5内の上部に設置し
たスプレーノズル6から噴霧される。一方、コンプレッ
サ7により圧縮された空気がオゾン発生機8に送られて
オゾン化された後、このオゾン化空気は反応塔5内の下
部に設置した散気管9から劣化エンチング液中に散気さ
れる。未反応のオゾンは排オゾン分解塔10を通すこと
により無害な酸素となって大気中に放出される。一定時
間反応塔5内で滞留して再生されたエツチング液は、エ
ンチング槽lに戻され、以上の過程を繰り返すことによ
ってエツチング槽1内の劣化エツチング液は、徐々に再
生されてゆくのである。
The deteriorated etching solution is sent to the reaction tower 5 by a pump 4, and is sprayed from a spray nozzle 6 installed in the upper part of the reaction tower 5 to prevent the generation of bubbles. On the other hand, after the air compressed by the compressor 7 is sent to the ozone generator 8 and ozonized, this ozonized air is diffused into the deteriorated enching liquid through the aeration pipe 9 installed at the lower part of the reaction tower 5. Ru. Unreacted ozone passes through the exhaust ozone decomposition tower 10 and is converted into harmless oxygen and released into the atmosphere. The etching solution that has been regenerated after staying in the reaction tower 5 for a certain period of time is returned to the etching tank 1, and by repeating the above process, the degraded etching solution in the etching tank 1 is gradually regenerated.

ところで、上記のエツチング過程において、第一鉄イオ
ンの濃度が約5g#!以下になると、未反応のオゾンが
反応塔5から排出されると同時に、それ以上酸化反応が
進まなくなる。そこでオゾンの注入量を決定するために
、エツチング液中の第一鉄イオン(Fe2″)の濃度を
測定しているが、第一鉄イオンの濃度は1.10−フェ
ナントロリン溶液と第一鉄イオンが反応して生成する赤
色を吸光光度法で測定しており、以下の手順で行なわれ
る。
By the way, in the above etching process, the concentration of ferrous ions was about 5g#! When the temperature is below, unreacted ozone is discharged from the reaction tower 5, and the oxidation reaction no longer progresses. Therefore, in order to determine the amount of ozone to be injected, the concentration of ferrous ions (Fe2'') in the etching solution is measured. The red color produced by the reaction is measured by spectrophotometry using the following procedure.

試料の適量を100mのメスフラスコに採取する。Take an appropriate amount of sample into a 100 m volumetric flask.

↓ 1.10−フェナントロリン溶液(0,IN/VX)を
5m添加する。      ↓ 酢酸アンモニウム溶液(50m/νχ)を10m添加す
る。
↓ 1. Add 5 m of 10-phenanthroline solution (0, IN/VX). ↓ Add 10m of ammonium acetate solution (50m/νχ).

↓ 水を加えて1001とする。↓ Add water to make 1001.

↓ 20分間放置する。↓ Leave for 20 minutes.

↓ この一部を10mmの吸収セルに移し、波長510ns
付近でその吸光度を測定し、あらかじめ作成した検量線
から濃度を求める。
↓ Transfer a part of this to a 10mm absorption cell and set the wavelength to 510ns.
Measure the absorbance in the vicinity and determine the concentration from a calibration curve prepared in advance.

かくして得られた結果に基づきオゾン発生11Bの電源
をon−offすることによりオゾン注入量の制御を行
なっている。
Based on the results thus obtained, the ozone injection amount is controlled by turning on and off the power to the ozone generator 11B.

〔発明が解決しようとするIII) しかしながら、以上の装置におけるオゾン注入量の制御
には次のような問題がある。即ち、オゾン注入量はエツ
チング液中の第一鉄イオン (Fe’″)濃度を測定し
前述の反応式から決定しているため、オゾンが過剰注入
となりやすい、オゾンが過剰に注入されると、エツチン
グ液中の第一鉄イオンとオゾンとの反応性が低下し未反
応のオゾンが大気中に放出され、不経済であると同時に
オゾンは有害であるから、環境上の問題も発生すること
になる。逆にオゾン注入量が少な過ぎると、劣化エツチ
ング液の再生が十分に行なわれず、エツチング時間が必
要以上にかかり過ぎるか、または所望のエツチングが不
可能となるなどの問題が生ずる。
[Third Problem to be Solved by the Invention] However, there are the following problems in controlling the amount of ozone injection in the above-mentioned apparatus. In other words, since the amount of ozone to be injected is determined by measuring the ferrous ion (Fe''') concentration in the etching solution and using the reaction equation described above, it is easy to inject too much ozone. The reactivity of ferrous ions in the etching solution with ozone decreases, and unreacted ozone is released into the atmosphere, which is not only uneconomical but also causes environmental problems because ozone is harmful. On the other hand, if the amount of ozone injected is too small, the degraded etching solution will not be regenerated sufficiently, resulting in problems such as the etching time taking longer than necessary or the desired etching being impossible.

さらに第一鉄イオン濃度の測定は、1.lO−フ工ナン
ドロリン溶液と第一鉄イオンが反応して生成する赤色を
吸光光度法で測定しているので、連続測定を行なうこと
ができず、したがってエツチング液の再生も連続的に行
なうことが難しく、オゾン注入量の制御は第一鉄イオン
濃度の測定結果を人手によってオゾン発生1i8の電源
をon−off して行なうなど、極めて効率の悪い面
が多い。
Furthermore, the measurement of ferrous ion concentration is as follows: 1. Since the red color produced by the reaction between the lO-fluorinated nandroline solution and ferrous ions is measured using spectrophotometry, continuous measurements cannot be performed, and therefore the etching solution cannot be continuously regenerated. It is difficult to control the amount of ozone injection, and there are many aspects that are extremely inefficient, such as manually turning on and off the power of the ozone generator 1i8 to measure the ferrous ion concentration.

本発明は、上述の点に鑑みてなされたものであり、その
目的は第二鉄塩を主成分とするエツチング液再生のため
の注入オゾンを、連続的に適正な量に制御することが可
能な手段を提供することにある。
The present invention has been made in view of the above points, and its purpose is to continuously control the amount of ozone injected for regenerating an etching solution containing ferric salt as a main component to an appropriate amount. The aim is to provide a means of

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために本発明の方法は、劣化エツ
チング液をサンプリング槽に採取した後、このサンプリ
ング槽に設置した電極により酸化還元電位を連続測定し
、その測定結果に基づき前記オゾンの注入量を決定する
ものである。
In order to solve the above problems, the method of the present invention collects the degraded etching solution in a sampling tank, then continuously measures the redox potential with an electrode installed in the sampling tank, and then injects the ozone based on the measurement results. It determines the amount.

[作用] 上記のように本発明はORP電極で酸化還元電位を連続
測定し、適正なオゾン注入量を決定するように制御する
方式であるから、正確なエツチングとエツチング液再生
の自動化が可能であり、歩留まりと効率を向上させると
同時に、エツチング液の再生時には、未反応のオゾンが
殆ど大気中に放出されることがない。
[Function] As described above, the present invention continuously measures the oxidation-reduction potential with the ORP electrode and controls the ozone injection amount to determine the appropriate amount, so it is possible to perform accurate etching and automate etching solution regeneration. This improves yield and efficiency, and at the same time, when the etching solution is regenerated, almost no unreacted ozone is released into the atmosphere.

〔実施例〕〔Example〕

第1図は本発明が適用されるエツチング装置の概要を示
す模式図であり、第4図と共通部分を同一符号で表わし
である。第1図において劣化工。
FIG. 1 is a schematic diagram showing an outline of an etching apparatus to which the present invention is applied, and parts common to those in FIG. 4 are represented by the same reference numerals. In Figure 1, there is a deteriorated work.

チンダ液にオゾンを供給してこれを再生する過程は、第
4図の場合と同しであるからその説明は省略するが、第
1図が第4図と異なる所は、オゾンの注入量を適正な量
に、自動的に制御することが可能な装置を有することで
ある。!l]ち、第1図ではエツチング槽1内の劣化エ
ツチング液をサンプリングするポンプ11と、サンプリ
ングした劣化エツチング液を収容するサンプリング槽1
2、およびサンプリング槽12内に設置したO RP 
(Oxidation−Reduction Pote
ntial)電極13を備えている。このオゾン注入量
制御装置により、エツチング槽1内の劣化エツチング液
は、常時ポンプ11でサンプリングされてサンプリング
槽12番こ導かれ、サンプリング槽12内で0RPi[
13によって常時劣化エツチング液の酸化還元電位が測
定される。
The process of supplying ozone to the tinda liquid to regenerate it is the same as in the case of Fig. 4, so its explanation will be omitted, but the difference between Fig. 1 and Fig. 4 is that the amount of ozone injected is changed. It is important to have a device that can automatically control the amount to be appropriate. ! l] FIG. 1 shows a pump 11 that samples the degraded etching solution in the etching tank 1, and a sampling tank 1 that stores the sampled degraded etching solution.
2, and the ORP installed in the sampling tank 12.
(Oxidation-Reduction Pote
ntial) electrode 13. With this ozone injection amount control device, the deteriorated etching solution in the etching tank 1 is constantly sampled by the pump 11 and guided to the sampling tank 12, and the etching solution is heated to 0 RPi [
13, the oxidation-reduction potential of the constantly deteriorated etching solution is measured.

第一鉄イオン (Fe”)濃度が5g/f以上になると
、酸化還元電位は5601シ付近の値を示し、逆にオゾ
ンによって酸化され、第一鉄イオンが第二鉄イオン(F
e” )に変化しその濃度が一定以上になると、酸化還
元電位は1100sV付近の値となる。したがって、こ
の酸化還元電位をORP電極13を用いて連続測定する
ことにより、エツチング液中の第一鉄イオン濃度が5g
/j!以下(オゾンによる酸化が終了に近い)かどうか
を知ることができる。
When the ferrous ion (Fe”) concentration exceeds 5 g/f, the redox potential shows a value around 5601, and conversely, the ferrous ion is oxidized by ozone, and the ferrous ion (F
e”) and its concentration exceeds a certain level, the oxidation-reduction potential becomes a value around 1100 sV. Therefore, by continuously measuring this oxidation-reduction potential using the ORP electrode 13, the first Iron ion concentration is 5g
/j! You can tell whether or not the oxidation by ozone is nearing completion.

即ち、本発明によれば、ORP電極13で測定された酸
化還元電位が急激に変化するポイント(約560mV→
約1100mVに変化するポイント)を捕らえて、オゾ
ン発生81Bの電源を切り、逆に測定した酸化還元電位
が低くなったときオゾン発生機8の電源を入れるという
操作を、第1図の点線で結ぶ電気回路の信号によって自
動的に行なうことが可能となる。
That is, according to the present invention, the point at which the redox potential measured by the ORP electrode 13 suddenly changes (approximately 560 mV→
The dotted line in Figure 1 connects the operations of turning off the power to the ozone generator 81B by capturing the point at which the voltage changes to approximately 1100 mV, and turning on the power to the ozone generator 8 when the measured redox potential becomes low. This can be done automatically using signals from an electric circuit.

本発明ではこのようにオゾン注入量を適正に制御するこ
とにより、過剰のオゾンが注入されることなく、排オゾ
ン分解塔10に入る未反応オゾンの量も少なくなり、経
済性が高くなるとともに、オゾン分解材を交換する頻度
も減り保守が容品になるなどの利点もある。
In the present invention, by appropriately controlling the amount of ozone injection in this way, excessive ozone is not injected, and the amount of unreacted ozone entering the exhaust ozone decomposition tower 10 is reduced, making it more economical. It also has the advantage of reducing the frequency of replacing the ozone decomposition material and making maintenance easier.

次に劣化した塩化第二鉄エツチング液をオゾンにより再
生したときの処理時間に対する排オゾン濃度、エンチン
グ液中の第一鉄イオン濃度、#化還元電位を測定した結
果をそれぞれ第2図(a)、(b)(C)に示す、これ
は劣化したエツチング液100−を反応塔5に入れ液温
を55℃にした後、反応塔5内の下部に設置した散気管
9からオゾン濃度23mg/j!のオゾン化空気を吹き
込み、劣化エツチング液の再生を行なったものであり、
劣化したエツチング液の組成分析結果、酸化還元電位、
比重は第1表の通りである。
Next, when the deteriorated ferric chloride etching solution was regenerated with ozone, the results of measuring the exhaust ozone concentration, the ferrous ion concentration in the etching solution, and the oxidation reduction potential with respect to the treatment time are shown in Figure 2 (a). , (b) and (C), in which the deteriorated etching solution 100- is put into the reaction tower 5 and the liquid temperature is brought to 55°C, and then an ozone concentration of 23 mg / j! ozonated air is blown into the etching solution to regenerate the deteriorated etching solution.
Composition analysis results of deteriorated etching solution, oxidation-reduction potential,
The specific gravity is as shown in Table 1.

第 表 この結果、第2図(a)に示すように、排オゾン濃度は
オゾン注入から31分までは0であり、その排オゾンが
出始めることがわかる。そのときの第一鉄濃度は第2図
(ロ)の如<5g/f以下となり、酸化還元電位は第2
図(C)のように560mV付近から急激に1100m
V付近まで上昇する。したがって、エツチング液中の酸
化還元電位をORP電極で監視し、この電位が急激に上
昇した時点でオゾン注入を停止することにより、大気中
に排オゾンを放出することな(、しかも第一鉄濃度も5
g/j!以下に保つことができる。
Table 1 As a result, as shown in FIG. 2(a), the concentration of exhausted ozone is 0 until 31 minutes after ozone injection, and it can be seen that the exhausted ozone starts to be emitted. At that time, the ferrous iron concentration becomes <5 g/f or less as shown in Figure 2 (b), and the oxidation-reduction potential becomes
As shown in figure (C), the voltage suddenly increases from around 560mV to 1100m.
It rises to around V. Therefore, by monitoring the oxidation-reduction potential in the etching solution with an ORP electrode and stopping ozone injection when this potential rises rapidly, waste ozone can be prevented from being released into the atmosphere (and the ferrous iron concentration Mo5
g/j! Can be kept below.

同様にして第1表に示したのと同じ劣化エツチング液を
用い、劣化したエツチング液100mを反応塔5に入れ
液温を60°Cにした後、反応塔5内の下部に設置した
散気管9からオゾン濃度25mg/j!のオゾン化空気
を吹き込み、劣化エツチング液の再生を行ない、得られ
た結果を第3図(a)〜(C)に示す、この場合も殆ど
第2図(a)〜(C)の結果と同じであり、第3図(a
)に示すように、排オゾン濃度はオゾン注入から34分
までは0であり、その後排オゾンが出始め、そのときの
第一鉄濃度は第3図(b)の如<5g#!以下となり、
酸化還元電位は第3図(C)のように560■シ付近か
ら急激に1100−ν付近まで上昇する。したがって、
エツチング液中の酸化還元電位をORP電極で監視し、
この電位が急激に上昇した時点でオゾン注入を停止する
ことにより、大気中に排オゾンを放出することなく、し
かも第一鉄濃度も5871以下にすることができ、上述
と全く同しことが言える。
Similarly, using the same deteriorated etching liquid as shown in Table 1, 100 m of the deteriorated etching liquid was put into the reaction tower 5 and the liquid temperature was brought to 60°C. Ozone concentration from 9 to 25mg/j! The deteriorated etching solution was regenerated by blowing ozonized air into it, and the results obtained are shown in Figures 3 (a) to (C). In this case, most of the results were similar to those in Figures 2 (a) to (C). The same is true in Figure 3 (a
), the exhaust ozone concentration is 0 until 34 minutes after ozone injection, after which exhaust ozone starts to come out, and the ferrous iron concentration at that time is <5g#! as shown in Figure 3(b). The following becomes
As shown in FIG. 3(C), the oxidation-reduction potential rapidly increases from around 560μ to around 1100−ν. therefore,
The oxidation-reduction potential in the etching solution is monitored with an ORP electrode,
By stopping ozone injection when this potential rapidly increases, it is possible to reduce the ferrous iron concentration to 5871 or less without releasing waste ozone into the atmosphere, which is exactly the same as above. .

〔発明の効果〕〔Effect of the invention〕

鉄系材料からなる電子部品などのエツチング加工には第
二鉄塩エツチング液が用いられ、エツチングの繰り返し
により劣化したエツチング液を再生するために、オゾン
を注入するのが有効であり、従来は再生の終了を第一鉄
イオン濃度を測定することにより行なっていたが、この
方法は自動化が困難であって効率が悪く、場合によって
はオゾン注入量が過剰または不足になるなど、安定なエ
ツチング過程が得られていなかった。この問題を解決・
するためになされた本発明は、実施例で述べた如く以下
の利点を有する。
Ferric salt etching solution is used for etching electronic components made of iron-based materials. In order to regenerate the etching solution that has deteriorated due to repeated etching, it is effective to inject ozone. The etching process was completed by measuring the ferrous ion concentration, but this method is difficult to automate and is inefficient. I wasn't getting it. Solve this problem
The present invention has the following advantages as described in the embodiments.

本発明の方法では第二鉄塩エツチング液の再生の終了を
ORP電極によって酸化還元電位を連続測定し、その結
果をオゾン発注機にフィードパ。
In the method of the present invention, the oxidation-reduction potential is continuously measured using an ORP electrode at the end of regeneration of the ferric salt etching solution, and the results are fed to an ozone ordering machine.

りして、自動的に適正なオゾン注入量を決定し供給する
ことができ、未反応オゾンの大気中への放出も殆どなく
、効率的、経済的に優れ環境汚染のない安定なエツチン
グ過程が実現される。
The appropriate amount of ozone to be injected can be automatically determined and supplied, and almost no unreacted ozone is released into the atmosphere, resulting in an efficient, economical and stable etching process that does not pollute the environment. Realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用されるエツチング装置の概要を示
す模式図、第2図、第3図は夫々処理条件の興なる下記
の関係を示す線図であって、第2図(a)、第3図(a
lは劣化した塩化第二鉄エツチング液をオゾンにより再
生したときの処理時間と排オゾン濃度との関係を示す線
図、第2図■〕、第3図(b)は同しく処理時間とエツ
チング液中の第一鉄イオン濃度との関係を示す線図、第
2図(C)、第3図(C)は同しく処理時間と酸化還元
電位との関係を示す線図、第4図は従来のエツチング装
置の概要を示す模式図である。 l:エンチング槽、2,4,11:ポンプ36:スプレ
ーノズル、5:反応塔、7:コンプレノサ、8ニオシン
発生機、9:散気管、1o:排オゾン分解塔、12:サ
ンプリング槽、13:0RPii極。 L理町朋(miル) 連a杵間(崩+h) 処理よU副(mi几) 第3図 処理時間彌+n) 2DPIQM(WL+n) 苅垢時即(rtu1ル) 第2図
FIG. 1 is a schematic diagram showing an outline of an etching apparatus to which the present invention is applied, and FIGS. 2 and 3 are diagrams showing the following relationships depending on processing conditions, respectively. , Figure 3 (a
1 is a diagram showing the relationship between processing time and exhaust ozone concentration when a deteriorated ferric chloride etching solution is regenerated with ozone; Figures 2 (C) and 3 (C) are diagrams showing the relationship between the ferrous ion concentration in the liquid, and Figure 4 is a diagram showing the relationship between treatment time and redox potential. 1 is a schematic diagram showing an outline of a conventional etching apparatus. 1: Enching tank, 2, 4, 11: Pump 36: Spray nozzle, 5: Reaction tower, 7: Comprenosa, 8 Niosin generator, 9: Diffuser pipe, 1o: Exhaust ozone decomposition tower, 12: Sampling tank, 13: 0RPii pole. L Rimachi Tomo (mil) Ren a kinema (kuru + h) Processing yo U sub (mi 几) Fig. 3 Processing time + n) 2DPIQM (WL + n) Immediately at the time of karashiku (rtu1 le) Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1)第二鉄の塩酸塩、硫酸塩、硝酸塩のうち少なくとも
1種を主成分とし第二鉄塩と共通な陰イオンを有する酸
を添加した水溶液からなるエッチング液を用いて鉄系部
材をエッチング加工することにより劣化した前記エッチ
ング液に、オゾンを注入して前記劣化エッチング液を再
生するに当たり、前記劣化エッチング液をサンプリング
槽に採取した後、このサンプリング槽に設置した電極に
より酸化還元電位を連続測定し、その測定結果に基づき
前記オゾンの注入量を決定することを特徴とするエッチ
ング液へのオゾン注入量制御方法。
1) Etching iron-based members using an etching solution consisting of an aqueous solution containing at least one of ferric hydrochloride, sulfate, and nitrate as a main component and added with an acid having the same anion as the ferric salt. When injecting ozone into the etching solution that has deteriorated due to processing to regenerate the deteriorated etching solution, the deteriorated etching solution is collected in a sampling tank, and then the oxidation-reduction potential is continuously increased by an electrode installed in the sampling tank. A method for controlling the amount of ozone injected into an etching solution, the method comprising: measuring the amount of ozone injected into an etching solution, and determining the amount of ozone injected based on the measurement result.
JP20198290A 1990-07-30 1990-07-30 Method for controlling amount of ozone injected into etching solution Pending JPH0487686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20198290A JPH0487686A (en) 1990-07-30 1990-07-30 Method for controlling amount of ozone injected into etching solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20198290A JPH0487686A (en) 1990-07-30 1990-07-30 Method for controlling amount of ozone injected into etching solution

Publications (1)

Publication Number Publication Date
JPH0487686A true JPH0487686A (en) 1992-03-19

Family

ID=16449978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20198290A Pending JPH0487686A (en) 1990-07-30 1990-07-30 Method for controlling amount of ozone injected into etching solution

Country Status (1)

Country Link
JP (1) JPH0487686A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586288A (en) * 1981-06-29 1983-01-13 デ グッサ・アクチェンゲゼルシヤフト Treatment of waste water with hydrogen peroxide
JPS58174228A (en) * 1982-04-01 1983-10-13 Miura Eng Internatl Kk Counter current contacting method of gas and liquid
JPS62230991A (en) * 1986-03-31 1987-10-09 Sumitomo Precision Prod Co Ltd Method for regenerating acidic etching solution
JPS62230992A (en) * 1986-03-31 1987-10-09 Sumitomo Precision Prod Co Ltd Method for regenerating acidic etching solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586288A (en) * 1981-06-29 1983-01-13 デ グッサ・アクチェンゲゼルシヤフト Treatment of waste water with hydrogen peroxide
JPS58174228A (en) * 1982-04-01 1983-10-13 Miura Eng Internatl Kk Counter current contacting method of gas and liquid
JPS62230991A (en) * 1986-03-31 1987-10-09 Sumitomo Precision Prod Co Ltd Method for regenerating acidic etching solution
JPS62230992A (en) * 1986-03-31 1987-10-09 Sumitomo Precision Prod Co Ltd Method for regenerating acidic etching solution

Similar Documents

Publication Publication Date Title
US4268397A (en) Method of treating waste water
KR100469774B1 (en) Treatment method and apparatus of chemical decontamination solution
US5154774A (en) Process for acid pickling of stainless steel products
JPH0420996B2 (en)
JPH0487686A (en) Method for controlling amount of ozone injected into etching solution
FI100365B (en) redox
US5332446A (en) Method for continuous pickling of steel materials on a treatment line
JP2649625B2 (en) Electrolyte for electrolytic polishing of chromium-containing alloy steel
JPS5913889B2 (en) cleaning equipment
MXPA01005464A (en) Device and method to control steel pickling processes.
JPH08302487A (en) Liquid etchant regenerating device
JP4431203B2 (en) Ferric chloride etchant management system
JPH08254597A (en) Method for treating waste liquid containing ammoniac nitrogen and organic substance
KR100564055B1 (en) Apparatus for Hybrid Mediated Oxidation of Destroying Organic Wastes by Electrochemical and Ozone Oxidation
KR100471977B1 (en) Chemical oxygen demand control method of the scrubbing water
KR102120679B1 (en) Mediated electrochemical removal method of sulfur hexafluoride, and its system
JP2001129355A (en) Method of controlling concentration of absorption solution in thiosulfate denitration method
JPS55152180A (en) Method for regeneration of copper chloride etching solution
US6475373B1 (en) Method of controlling NOx gas emission by hydrogen peroxide
JP3855601B2 (en) Continuous pickling method for titanium materials
JP2000000580A (en) Method and apparatus for treating cyanogen-containing solution
JPH05149909A (en) Method and apparatus for measuring concentration of iron ion in iron etching liquid
KR100292792B1 (en) Metal Surface Acid Washing Method
JPH07331461A (en) Method for regenerating liquid etchant
KR830002447B1 (en) Treatment method of drainage