JPH0481028A - Optical communication system - Google Patents

Optical communication system

Info

Publication number
JPH0481028A
JPH0481028A JP2192175A JP19217590A JPH0481028A JP H0481028 A JPH0481028 A JP H0481028A JP 2192175 A JP2192175 A JP 2192175A JP 19217590 A JP19217590 A JP 19217590A JP H0481028 A JPH0481028 A JP H0481028A
Authority
JP
Japan
Prior art keywords
optical
transmission line
station
slave station
slave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2192175A
Other languages
Japanese (ja)
Other versions
JPH088534B2 (en
Inventor
Tomokazu Tanaka
田中 朝和
Yoshinori Ozaki
尾崎 嘉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP2192175A priority Critical patent/JPH088534B2/en
Publication of JPH0481028A publication Critical patent/JPH0481028A/en
Publication of JPH088534B2 publication Critical patent/JPH088534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To enlarge the scale of a system by providing a second optical multiplexer/ demultiplexer, which outputs the most of an optical signal from a slave station to a transmission line, and a wide band wavelength coupler to connect all the slave stations excepting for the first and N-th slave stations with the transmission line. CONSTITUTION:A first optical multiplexer/demultiplexer 7 is used for connecting a first slave station 5A1 closest from a host station 1A to a transmission line 2, and this first optical multiplexer/demultiplexer 7 connects the transmission line 2 and the first slave station 5A1 so as to output the most of opticals signals from the host station 1A and the first slave station 5A1 to the transmission line 2. A second optical multiplexer/demultiplexer 8 is used for connecting an N-th slave station 5An farthest from the host station 1A to the transmission line 2, the light emitting wavelength of the N-th slave station 5An is made same as that of the host station 1A, and the said second optical multiplexer/demultiplexer 8 connects the transmission line 2 and the N-th slave station 5An so as to supply the most of the optical signal from the host station 1A to the N-th slave station 5An and to supply optical signals from all the slave stations excepting for the N-th slave station 5An to the host station 1A. Thus, the system scale can be enlarged and any power can not be supplied to the transmission line.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、マルチドロップ型の光通信システムに係わ
り、特に規模の拡大を図った光通信システムに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a multi-drop type optical communication system, and particularly to an optical communication system with an expanded scale.

「従来の技術」 従来より、マルチドロップ型の光通信システムにおいて
は、親局と各子局との間で同一波長の光信号による通信
が行なわれている。また、各子局と伝送路(光ファイバ
)とを接続するための光カップラとしては、同じ分岐比
(例えば、10:I)のものか使用されている。
"Prior Art" Conventionally, in a multi-drop optical communication system, communication is performed between a master station and each slave station using optical signals of the same wavelength. Further, as optical couplers for connecting each slave station and a transmission line (optical fiber), those having the same branching ratio (for example, 10:I) are used.

第5図は上述しに従来の光通信システムを示す概略構成
図であり、この図に示すように、親局lに伝送路2の両
端か引込まれており、その一端か電気/光(Elo)変
換器3に接続され、他端か光/1[気(0/E)変換器
4に接続されている。子局5 、、5、−−5、−、 
、5□各々は、光カップラ6.6を介して伝送路2に接
続されており、これら子局5、.5.・5□−、,5、
各々にもE10変換器3.0/E変換器4が設けられて
いる。なお、図中の矢印は光信号の流れる方向を示す。
FIG. 5 is a schematic configuration diagram showing the conventional optical communication system mentioned above. As shown in this figure, both ends of the transmission line 2 are led into the master station L, and one end is connected to the electrical/optical (Elo ) is connected to converter 3, and the other end is connected to optical/1 [air (0/E) converter 4. Slave station 5,,5,--5,-,
, 5□ are each connected to the transmission line 2 via an optical coupler 6.6, and these slave stations 5, . 5.・5□-,,5,
Each is also provided with an E10 converter 3.0/E converter 4. Note that the arrow in the figure indicates the direction in which the optical signal flows.

「発明が解決しようとする課題」 ところで、上述した従来の光通信/ステムにおいては、
光信号が伝送路を流れる方向において、親局1と、この
親局1から最も遠い位置にある子局との間に存在する光
損失、すなわち、■親局lから子局へ流れる方向にあっ
ては、親局lと子局5.、、との間の光損失 ■子局から親局1へ流れる方向にあっては、子局51と
親局lとの間の光損失 か、いずれの場合であっても、親81と各子局5D t
 ”’ ”’ 、 5 *−、、5−のE10変換回路
3およびOE変換回路4の性能である光のダイナミック
レンジ以下になるようにしな;+トばならない。この1
め、伝送路2の距離および子局数に制限かあっに。
"Problem to be solved by the invention" By the way, in the conventional optical communication/system mentioned above,
Optical loss that exists between the master station 1 and the slave station located farthest from the master station 1 in the direction in which the optical signal flows along the transmission path, that is, the optical loss that exists in the direction from the master station l to the slave station. The master station 1 and the slave station 5. , , In the direction from the slave station to the master station 1, the optical loss is between the slave station 51 and the master station I, or in either case, Slave station 5D t
The optical dynamic range must be below the performance of the E10 conversion circuit 3 and the OE conversion circuit 4 of ``''``'', 5 *-, , 5-. This one
Is there a limit on the distance of transmission line 2 and the number of slave stations?

ここで、上述した光損失の内訳をみてみろと、親局lと
子局5.との間では、((n−1)x(先カップラ6の
通過損失)−’(2n−1)X(光カップラ6と伝送路
2の接続損失)士光カップラ6の分岐損失士伝送路2の
損失)となる。これらを定量的に見ると、光カップラ6
の通過損失か0.5dB、光カップラ6と伝送路2との
接続損失か0.2dB、光カップラ6の分岐損失が1O
dB、伝送路2の損失が0.5dB/km(λ−] 3
μm)となる。この場合、子局5..5.・・5ゎ−、
、5□の数および伝送路2の距離の増大により、光カッ
プラ6の通過損失および伝送路2の損失か増加するか、
光カップラ6の分岐損失はそれらとは無関係にl0dB
と大きな値である。
Let's take a look at the breakdown of the optical loss mentioned above: master station 1 and slave station 5. Between ((n-1) x (transmission loss of destination coupler 6) - '(2n-1) 2 losses). Looking at these quantitatively, the optical coupler 6
Passage loss is 0.5 dB, connection loss between optical coupler 6 and transmission line 2 is 0.2 dB, and branching loss of optical coupler 6 is 1O.
dB, transmission line 2 loss is 0.5 dB/km (λ-] 3
μm). In this case, slave station 5. .. 5.・・5ゎ−、
, 5□ and the distance of the transmission line 2, the passing loss of the optical coupler 6 and the loss of the transmission line 2 increase,
The branching loss of optical coupler 6 is 10 dB regardless of these factors.
This is a large value.

このように、従来の光通信システムにおいては、光信号
か流れる方向で、親局lと最も遠い位置にある子局との
間における光損失を、E10変換回路3およびO/E変
換回路4のダイナミックレンジ以下にする必要があるの
で、伝送路2の長距離化および子局数の増加などシステ
ム規模に制限があった。
In this way, in the conventional optical communication system, the optical loss between the master station l and the farthest slave station in the direction in which the optical signal flows is reduced by the E10 conversion circuit 3 and the O/E conversion circuit 4. Since it is necessary to keep the dynamic range below, there are limitations to the system scale, such as increasing the length of the transmission line 2 and increasing the number of slave stations.

ところで、伝送路の途中に中継器を挿入し、光信号を再
生増幅することでシステムの規模を拡大することができ
るが、この場合マルチドロップ型の光通信システムの大
きな特徴である伝送路の無電源化が損なわれるという問
題が生しる。
By the way, it is possible to expand the scale of the system by inserting a repeater in the middle of the transmission path and regenerating and amplifying the optical signal, but in this case, the main feature of multi-drop optical communication systems is that there is no transmission path. A problem arises in that power supply is impaired.

この発明は上述した事情に鑑みてなされたもので、上述
した問題点を解決してシステム規模の拡大を図ることが
できる光通信システムを提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide an optical communication system that can solve the above-mentioned problems and expand the system scale.

「課題を解決するための手段」 この発明は、1台の親局と、この親局から出力される光
信号を最も近くで受信する順に伝送路に接続される複数
台の子局とを具備する光通信システムにおいて、前記親
局から出力される光信号を最も遠くで受信し、該親局か
らの光信号と同一の波長の光信号を出力する第Nの子局
と、前記親局からの光信号を最も近くて受信し、前記第
トの子局を除く残りの子局各々から出力される光信号と
同一の波長の光信号を出力する第1の子局と、前記第1
の子局と伝送路とを接続し、前記親局かろの光信号の大
部分と前記第1の子局からの光信号の大部分を伝送路に
出力する第1の光合分波器と、前記第Nの子局と前記伝
送路とを接続し、前記親局からの光信号の大部分を前記
第Nの子局に供給し、かっ、前記第Nの子局を除く全て
の子局からの光信号の大部分を前記伝送路に出力する第
2の光合分波器と、前記第1、第Nの子局を除く全ての
子局各々と前記伝送路とを接続し、前記二つの異なる波
長の光信号各々に対して同等の特性を有する広帯域波長
カップラとを具備することを特徴とする。
"Means for Solving the Problems" The present invention includes one master station and a plurality of slave stations connected to a transmission line in the order of receiving the optical signal output from the master station closest to each other. an Nth slave station that receives an optical signal output from the master station at the farthest distance and outputs an optical signal having the same wavelength as the optical signal from the master station; a first slave station that receives the optical signal closest to the first slave station and outputs an optical signal having the same wavelength as the optical signal output from each of the remaining slave stations except for the first slave station;
a first optical multiplexer/demultiplexer that connects a slave station and a transmission line and outputs most of the optical signal from the master station and most of the optical signal from the first slave station to the transmission line; The Nth slave station is connected to the transmission line, most of the optical signal from the master station is supplied to the Nth slave station, and all the slave stations except the Nth slave station are connected to each other. a second optical multiplexer/demultiplexer that outputs most of the optical signals from the second optical signal to the transmission line; and a second optical multiplexer/demultiplexer that outputs most of the optical signals from the first and second slave stations to the transmission line; The present invention is characterized by comprising a broadband wavelength coupler having equivalent characteristics for each of optical signals of two different wavelengths.

「作用 」 上記構成によれば、親局からの光信号が第1の光合分波
器によって大きく減衰することなく伝送路すなわち他の
子局に供給される。まfこ、第1の子局からの光信号も
第1の光合分波器によって大きく減衰することなく伝送
路に出力される。
"Operation" According to the above configuration, the optical signal from the master station is supplied to the transmission line, that is, other slave stations, without being greatly attenuated by the first optical multiplexer/demultiplexer. Furthermore, the optical signal from the first slave station is also output to the transmission line without being greatly attenuated by the first optical multiplexer/demultiplexer.

一方、第Nの子局を除く全ての子局からの光信号が第2
の光合分波器によって大きく減衰することなく親局に供
給される。また、第Nの子局からの光信号も第2の光合
分波器によって大きく減衰することなく親局に供給され
る。
On the other hand, the optical signals from all the slave stations except the Nth slave station are
The optical multiplexer/demultiplexer supplies the signal to the master station without significant attenuation. Further, the optical signal from the Nth slave station is also supplied to the master station without being significantly attenuated by the second optical multiplexer/demultiplexer.

したかって、従来の光カップラよりも分岐損失か小さい
第1、第2の光合分波器を用いるので、伝送路の増大お
よび子局数の増加を図ることかできる。
Therefore, since the first and second optical multiplexers and demultiplexers having smaller branching losses than conventional optical couplers are used, it is possible to increase the number of transmission paths and the number of slave stations.

「実施例」 以下、図面を参照してこの発明の実施例について説明す
る。
"Embodiments" Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例であるマルチドロップ型の
光通信システムを示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a multi-drop type optical communication system which is an embodiment of the present invention.

この実施例では以下に示す点で従来の光通信システム(
第5図)と異なる。
This example uses a conventional optical communication system (
Figure 5).

■親局1.Aと子局D A n各々から出力される光信
号の波長かλ=155μmに設定されている。
■Master station 1. The wavelength of the optical signal output from each of A and slave station D An is set to λ=155 μm.

その他の子局5A、、5Ai−5A、−各々から出力さ
れる光信号の波長かλ−13μmに設定されている。
The wavelength of the optical signal output from each of the other slave stations 5A, 5Ai-5A, - is set to λ-13 μm.

■子局5 A lと伝送路2との接続に光合分波器7が
使用され、子局5Aイと伝送路2との接続に光合分波器
8が使用される。以下、光合分波器78各々の詳細につ
いて説明する。
(2) An optical multiplexer/demultiplexer 7 is used to connect the slave station 5A1 to the transmission line 2, and an optical multiplexer/demultiplexer 8 is used to connect the slave station 5A1 to the transmission line 2. The details of each optical multiplexer/demultiplexer 78 will be described below.

第2図は光合分波器7を示す図である。この光合分波器
7は、波長分離度10dB(分岐損失05dB)の光カ
ップラとして作用するものてあり、端子aに波長λ−1
55μmの光信号が供給されると、その90%が端子す
から出力され、残りの10%が端子dから出力される。
FIG. 2 is a diagram showing the optical multiplexer/demultiplexer 7. This optical multiplexer/demultiplexer 7 acts as an optical coupler with a wavelength separation degree of 10 dB (branching loss 05 dB), and has a terminal a connected to a wavelength λ-1.
When a 55 μm optical signal is supplied, 90% of it is output from terminal d, and the remaining 10% is output from terminal d.

また、端子Cに波長λ=1.3μゴの光信号が供給され
ると、その90%が端子すから出力され、残りの10%
が端子dから出力される。一方、端子aに波長λ−1,
3μmの光信号が供給されると、その90%が端子dか
ら出力され、残りの10%が端子すから出力される。
Also, when an optical signal with wavelength λ=1.3μ is supplied to terminal C, 90% of it is output from terminal C, and the remaining 10%
is output from terminal d. On the other hand, the wavelength λ-1,
When a 3 μm optical signal is supplied, 90% of it is output from terminal d, and the remaining 10% is output from terminal S.

第3図は光合分波器8を示す図である。この光合分波器
8は、波長分離度か20dB以上(分岐損失0.Q5d
B以下)の光カップラとして作用するものであり、端子
aに波長λ=155μmの光信号が供給されると、その
99%か端子dから出力され、残りの1%か端子すから
出力される。また、端子Cに波長λ=1.3μmの光信
号が供給されると、その99%か端子dから出力され、
残りの1%か端子すから出力される。一方、端子aに波
長λ−1,3μ園の光信号が供給されると、その99%
か端子すから出力され、残りの1%が端子dから出力さ
れる。また、端子Cに波長λ−1゜55μ識の光信号が
供給されると、その99%が端子すから出力され、残り
の1%が端子dから出力される。
FIG. 3 is a diagram showing the optical multiplexer/demultiplexer 8. This optical multiplexer/demultiplexer 8 has a wavelength separation degree of 20 dB or more (branching loss 0.Q5d
When an optical signal with a wavelength λ = 155 μm is supplied to terminal a, 99% of it is output from terminal d, and the remaining 1% is output from terminal S. . Furthermore, when an optical signal with wavelength λ=1.3 μm is supplied to terminal C, 99% of it is output from terminal d,
The remaining 1% is output from the terminal. On the other hand, when an optical signal with a wavelength of λ-1, 3μ is supplied to terminal a, 99% of the
The remaining 1% is output from terminal d. Further, when an optical signal having a wavelength of λ-1°55μ is supplied to terminal C, 99% of it is output from terminal 1, and the remaining 1% is output from terminal d.

上述した光合分波器7.8は、各々第4図に示すように
伝送路2に接続される。すなわち、光合分波器7は、そ
の端子aが伝送路2を介して親局!AのE10変換回路
3Bに接続され、端子すが伝送路2を介して光カップラ
6Aに接続される。
The above-mentioned optical multiplexer/demultiplexers 7.8 are each connected to the transmission line 2 as shown in FIG. That is, the optical multiplexer/demultiplexer 7 has its terminal a connected to the master station via the transmission line 2! It is connected to the E10 conversion circuit 3B of A, and is connected to the optical coupler 6A via the terminal transmission line 2.

また、端子Cが子局5A、のE10変換回路3Aに接続
され、端子dか同子局5A、のO/E変換回路4Aに接
続される。一方、光合分波器8は、その端子aが伝送路
2に接続され、端子すが伝送路2を介して親局IAのO
/E変換回路4Bに接続される。また、端子Cが子局5
A、のE10変換回路3Bに接続され、端子dが子局5
AつのO/E変挽変格回路4B続される。
Further, the terminal C is connected to the E10 conversion circuit 3A of the slave station 5A, and the terminal d is connected to the O/E conversion circuit 4A of the slave station 5A. On the other hand, the optical multiplexer/demultiplexer 8 has its terminal a connected to the transmission path 2, and the terminal
/E conversion circuit 4B. Also, terminal C is connected to slave station 5.
A, is connected to the E10 conversion circuit 3B, and the terminal d is connected to the slave station 5.
A number of O/E conversion circuits 4B are connected.

■子局5 A v〜5A、、−1各々と伝送路2とを接
続する光カップラ6Aとして、分岐比がlO:lで、波
長λ=1.3μm、1.55μmの光信号共に同等の特
性を有する広帯域波長カップラが使用される。
■As an optical coupler 6A that connects each slave station 5A v~5A,,-1 and the transmission line 2, the branching ratio is lO:l, and the optical signals with wavelengths λ = 1.3 μm and 1.55 μm are the same. A broadband wavelength coupler with characteristics is used.

このように構成された光通信システムにおいて、親局I
Aから波長1.55μmの光信号が出力されると、その
90%が端子すから伝送路2に出力されるとともに、残
りの10%が端子dから子局5A、に供給される。ここ
で、子局5A、が受信状態になっていれば、親局IAか
ら出力された光信号の10%が供給される。また、伝送
路2に出力された光信号は受信状態になっている子局に
供給される。この場合、子局5A、が受信状態になって
いるとすると、この子局D A vには光合分波器8に
到達した光信号の99%か供給される。一方、子局5A
、から出力された波長λ−13μmの光信号は、その9
0%か端子すから伝送路2に出力される。また、子局5
A、、から出力されfこ波長λ−155μmの光信号は
、その99%か端子すから親局IAに供給される。
In the optical communication system configured in this way, the master station I
When an optical signal with a wavelength of 1.55 μm is output from A, 90% of it is output from the terminal to the transmission line 2, and the remaining 10% is supplied from the terminal d to the slave station 5A. Here, if the slave station 5A is in the receiving state, 10% of the optical signal output from the master station IA is supplied. Further, the optical signal output to the transmission line 2 is supplied to the slave station which is in the receiving state. In this case, assuming that the slave station 5A is in the receiving state, 99% of the optical signal that has reached the optical multiplexer/demultiplexer 8 is supplied to the slave station D A v. On the other hand, slave station 5A
The optical signal of wavelength λ-13 μm output from , is 9
0% is output from the terminal to the transmission line 2. In addition, slave station 5
Ninety-nine percent of the optical signals output from A, , and having a wavelength of λ-155 μm are supplied to the master station IA through the terminals.

以上のように子局5 A +と伝送路2との接続に光合
分波器7を使用し、子局5Anと伝送路2との接続に光
合分波器8を使用したので、従来、子局D A + 、
 5 A nに使用していた光カップラと比へて分岐損
失が小さくて済む(従来の光カップラの10dBに対し
て、光合分波器7は0.5dB、光合分波器8は0.0
5dBである)。したがって、分岐損失が小さい分、伝
送距離の増大および子局数の増加を図ることができるの
で、システム規模の拡大が図れる。この場合、従来の構
成でシステム規模の拡大を図る場合には、光伝送路2の
途中に中継器を挿入し、光信号を再生増幅する必要性が
生じるが、これはマルチドロップ型の光通信システムに
とって大きな特徴である伝送路の無電源化か損なわれ、
多大なデメリットとなる。j−かし、これに対して本実
は、従来技術では中継機を必要とするシステム規模であ
ってし、同中継機を必要としない。し1こかって、伝送
路の無電源化か図れ、マルチドロップ型の光通信システ
ムの特徴を大きく引出すことができる。
As described above, since the optical multiplexer/demultiplexer 7 is used to connect the slave station 5A+ and the transmission line 2, and the optical multiplexer/demultiplexer 8 is used to connect the slave station 5An and the transmission line 2, conventional Station D A +,
Compared to the optical coupler used for 5 A n, the branching loss is smaller (compared to 10 dB of the conventional optical coupler, the optical multiplexer/demultiplexer 7 has a loss of 0.5 dB, and the optical multiplexer/demultiplexer 8 has a loss of 0.0 dB).
5dB). Therefore, since the branching loss is small, the transmission distance and the number of slave stations can be increased, and the system scale can be expanded. In this case, when attempting to expand the system scale with the conventional configuration, it becomes necessary to insert a repeater in the middle of the optical transmission line 2 and regenerate and amplify the optical signal, but this is not possible with multi-drop optical communication. The transmission line, which is a major feature of the system, is unpowered or damaged.
This is a huge disadvantage. However, in reality, in the conventional technology, the scale of the system is such that a repeater is required, and the same repeater is not required. Therefore, the transmission path can be made without power supply, and the characteristics of the multi-drop optical communication system can be brought out to a large extent.

なお、上記実施例において、光合分波器7として波長分
離度が1OdBのものを用いたか、光合分波器8と同様
に波長分離度が20dB以上のものを用いても良い。
In the above embodiment, the optical multiplexer/demultiplexer 7 has a wavelength separation of 10 dB, or, similarly to the optical multiplexer/demultiplexer 8, an optical multiplexer/demultiplexer 7 with a wavelength separation of 20 dB or more may be used.

まに、上記実施例においては、子局5A+、5Arのみ
に光合分波器7.8を用いたか、残りの子局にも光合分
波器を用いても良い。
However, in the above embodiment, the optical multiplexer/demultiplexer 7.8 is used only in the slave stations 5A+ and 5Ar, or the optical multiplexer/demultiplexer 7.8 may be used in the remaining slave stations as well.

「発明の効果」 以上説明したように、この発明による光通信システムに
よれば、親局から最も近い位置にある第1の子局と伝送
路との接続に第1の光合分波器を使用し、そして、この
第1の光合分波器の伝送路と第1の子局との接続を、親
局および第1の子局各々からの光信号の大部分か伝送路
へ出力されるように行い、また、親局から最も遠い位置
にある第Nの子局と伝送路との接続に第2の光合分波器
を使用するとともに、第Nの子局の発光波長を親局と同
一にし、そして、当該第2の光合分波器の伝送路と第N
の子局との接続を、親局からの光信号の大部分が第Nの
子局へ供給され、かつ、第Nの子局を除く全ての子局か
らの光信号か親局へ供給されるようにしたので、従来、
第1、第Nの子局に使用していた光カップラと比べて分
岐損失が小さくなる。したがって、分岐損失か小さい分
、伝送距離の増大および子局数の増加を図ることかでき
るので、システム規模の拡大が図れるという効果が得ら
れる。また、従来の技術では、中継機を必要とするシス
テム規模であっても、本実では同中継機を必要としない
ので、伝送路の無電源化が図れ、マルチドロップ型の光
通信システムの特徴を大きく引出すことができる。
"Effects of the Invention" As explained above, according to the optical communication system according to the present invention, the first optical multiplexer/demultiplexer is used to connect the transmission path to the first slave station located closest to the master station. Then, the connection between the transmission line of the first optical multiplexer and demultiplexer and the first slave station is established such that most of the optical signals from each of the master station and the first slave station are output to the transmission line. In addition, a second optical multiplexer/demultiplexer is used to connect the Nth slave station located farthest from the master station to the transmission line, and the emission wavelength of the Nth slave station is set to be the same as that of the master station. and the transmission line of the second optical multiplexer/demultiplexer and the Nth optical multiplexer/demultiplexer.
connection with the slave stations, most of the optical signals from the master station are supplied to the Nth slave station, and only the optical signals from all the slave stations except the Nth slave station are supplied to the master station. Conventionally,
Branching loss is reduced compared to the optical coupler used in the first and Nth slave stations. Therefore, since the branching loss is small, it is possible to increase the transmission distance and the number of slave stations, resulting in the effect that the system scale can be expanded. In addition, even if the system scale requires a repeater with conventional technology, the repeater is not required in actual practice, so the transmission path can be powered-free, which is a feature of the multi-drop optical communication system. can be extracted to a large extent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例であるマルチドロップ型の
光通信システムを示す概略構成図、第2図および第3図
は同実施例に適用され光合分波器を示す図、第4図は同
光合分波器各々の伝送路への接続状態を示す図、第5図
は従来のマルチトロツブ型の光通信システムを示す概略
構成図である。 A・・・親局、2・−・伝送路(光ファイバー)、A、
3B−電気/光変換回路、 A、4B・・・・光/電気変換回路、 A、〜5Aつ・・・子局 A1は第1の子局、5A、は第Nの子局)、A・・・・
広帯域波長カップラ、 ・・・・・・光合分波器(第1の光合分波器)、・・・
・・・光合分波器(第2の光合分波器)。
Fig. 1 is a schematic configuration diagram showing a multi-drop type optical communication system which is an embodiment of the present invention, Figs. 2 and 3 are diagrams showing an optical multiplexer/demultiplexer applied to the same embodiment, and Fig. 4. 5 is a diagram showing the connection state of each optical multiplexer/demultiplexer to a transmission line, and FIG. 5 is a schematic configuration diagram showing a conventional multitrotub type optical communication system. A... Master station, 2... Transmission line (optical fiber), A,
3B-electrical/optical conversion circuit, A, 4B...optical/electrical conversion circuit, A, ~5A...slave station A1 is the first slave station, 5A is the Nth slave station), A・・・・・・
Broadband wavelength coupler,... Optical multiplexer/demultiplexer (first optical multiplexer/demultiplexer),...
...Optical multiplexer/demultiplexer (second optical multiplexer/demultiplexer).

Claims (1)

【特許請求の範囲】 1台の親局と、この親局から出力される光信号を最も近
くで受信する順に伝送路に接続される複数台の子局とを
具備する光通信システムにおいて、前記親局から出力さ
れる光信号を最も遠くで受信し、該親局からの光信号と
同一の波長の光信号を出力する第Nの子局と、 前記親局からの光信号を最も近くで受信し、前記第Nの
子局を除く残りの子局各々から出力される光信号と同一
の波長の光信号を出力する第1の子局と、 前記第1の子局と伝送路とを接続し、前記親局からの光
信号の大部分と前記第1の子局からの光信号の大部分を
伝送路に出力する第1の光合分波器と、 前記第Nの子局と前記伝送路とを接続し、前記親局から
の光信号の大部分を前記第Nの子局に供給し、かつ、前
記第Nの子局を除く全ての子局からの光信号の大部分を
前記伝送路に出力する第2の光合分波器と、 前記第1、第Nの子局を除く全ての子局各々と前記伝送
路とを接続し、前記二つの異なる波長の光信号各々に対
して同等の特性を有する広帯域波長カップラと を具備することを特徴とする光通信システム。
[Scope of Claims] An optical communication system comprising one master station and a plurality of slave stations connected to a transmission path in the order of receiving the optical signal output from the master station closest to the slave station. an Nth slave station that receives the optical signal output from the master station at the farthest distance and outputs an optical signal having the same wavelength as the optical signal from the master station; a first slave station that receives the optical signal and outputs an optical signal having the same wavelength as the optical signal output from each of the remaining slave stations except the Nth slave station; and a transmission path between the first slave station and the transmission line. a first optical multiplexer/demultiplexer that connects and outputs most of the optical signal from the master station and most of the optical signal from the first slave station to a transmission line; the Nth slave station and the a transmission line, supplies most of the optical signals from the master station to the Nth slave station, and supplies most of the optical signals from all the slave stations except the Nth slave station. a second optical multiplexer/demultiplexer that outputs to the transmission line; and a second optical multiplexer/demultiplexer that connects each of the slave stations except the first and Nth slave stations to the transmission line, and connects each of the optical signals of the two different wavelengths to the transmission line. What is claimed is: 1. An optical communication system comprising: a broadband wavelength coupler having characteristics equivalent to that of a broadband wavelength coupler;
JP2192175A 1990-07-20 1990-07-20 Optical communication system Expired - Lifetime JPH088534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2192175A JPH088534B2 (en) 1990-07-20 1990-07-20 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2192175A JPH088534B2 (en) 1990-07-20 1990-07-20 Optical communication system

Publications (2)

Publication Number Publication Date
JPH0481028A true JPH0481028A (en) 1992-03-13
JPH088534B2 JPH088534B2 (en) 1996-01-29

Family

ID=16286929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192175A Expired - Lifetime JPH088534B2 (en) 1990-07-20 1990-07-20 Optical communication system

Country Status (1)

Country Link
JP (1) JPH088534B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226718A (en) * 1994-02-15 1995-08-22 Nec Corp Optical signal transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226718A (en) * 1994-02-15 1995-08-22 Nec Corp Optical signal transmission system

Also Published As

Publication number Publication date
JPH088534B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US4457581A (en) Passive fiber optic data bus configurations
US6173094B1 (en) Optical-transmission system having a split-gain amplifier and a signal-modifying device
US20220171128A1 (en) Optical Splitter Chip, Optical Splitter Component, Optical Splitter Apparatus, and Optical Fiber Box
US5615290A (en) Branch device for optical multiplex system
JPH06292038A (en) Video image distributer in passenger moving
JP2002280968A (en) Optical amplification relay system
US4527286A (en) Repeater for fiber optic bus distribution system
US7095927B2 (en) Optical distributor and optical distributing system
CA2349602A1 (en) Optical coupler and method of manufacturing the same
WO1999049601A1 (en) Wdm transmission repeater, wdm transmission system and wdm transmission method
CN101145854A (en) A device for optical amplification for single fiber bidirectional WDM system
US20090304332A1 (en) Optical Splitter
US6381049B1 (en) Multi-port optical multiplexer element
JPH0481028A (en) Optical communication system
US6934474B2 (en) Bidirectional add/drop multiplexer
US20040151428A1 (en) Amplified optical splitter
ITMI981078A1 (en) WAVE LENGTH DIVISION MULTIPLATION OPTICAL COMMUNICATION SYSTEM FOR THE TRANSMISSION OF OPTICAL SIGNALS WITH LEVELS
US6704517B1 (en) Bi-directional dispersion compensator
JP3557025B2 (en) Direction switching optical amplifier and bus-type single-core optical communication system using the amplifier
JPH0117616B2 (en)
JPH06268600A (en) Duplex optical repeater
JPH1022919A (en) Optical branching device
RU2264692C1 (en) Fiber-optic network
Peck Fiber optic communication, a new way
JP2002057412A (en) Optical amplifier circuit