JPH0480560A - Refrigerant heating type air conditioner and starting method therefor - Google Patents

Refrigerant heating type air conditioner and starting method therefor

Info

Publication number
JPH0480560A
JPH0480560A JP19332790A JP19332790A JPH0480560A JP H0480560 A JPH0480560 A JP H0480560A JP 19332790 A JP19332790 A JP 19332790A JP 19332790 A JP19332790 A JP 19332790A JP H0480560 A JPH0480560 A JP H0480560A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
valve
compressor
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19332790A
Other languages
Japanese (ja)
Other versions
JP2682729B2 (en
Inventor
Yukio Watanabe
渡辺 幸男
Kiyoshi Sawai
清 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19332790A priority Critical patent/JP2682729B2/en
Publication of JPH0480560A publication Critical patent/JPH0480560A/en
Application granted granted Critical
Publication of JP2682729B2 publication Critical patent/JP2682729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve rise characteristics and to reduce an electric input by a method wherein a third check valve in a reverse direction to a first check valve and a pressure reducing mechanism connected in series to the third check valve are connected in parallel to the first check valve. CONSTITUTION:When a compressor 1 is driven, a refrigerant circulates a circuit running back to the compressor 1 through a third solenoid valve 13, a four-way valve 2, an indoor heat exchanger 3, a first check valve 8, an outdoor heat exchanger 5, a first solenoid valve 11, a refrigerant pump 7, a refrigerant heater 6, and a second solenoid valve 12. When this cycle is stabilized, the refrigerant pump 7 is started, the second solenoid valve 12 on the suction side of the compressor 1 is closed, and a refrigrant in the compressor is delivered. Thereafter, the third solenoid valve 13 on the delivery side of the compressor 1 is closed and simultaneously the compressor 1 is also stopped. In which case, a refrigerant is circulated, in order, the refrigerant pump 7, a refrigerant heater 6, a second check valve 9, the four-way valve 2, the indoor heat exchanger 3, the first check valve 8, the outdoor heat exchanger 5, and the first solenoid valve 11. This constitution and method eliminates a need for refrigerant recovery operation and realizes a low electric input refrigerant heating circuit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、室外熱交換側に燃焼バーナを有する冷媒加熱
器を備えた冷媒加熱式空気調和機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a refrigerant heating type air conditioner equipped with a refrigerant heater having a combustion burner on the outdoor heat exchange side.

従来の技術 従来より提案されている冷媒加熱式空気調和機(たとえ
ば特公昭59−33817号公報)は第5図に示すよう
な構成を有している。第5図において、81Fi圧縮機
、82は四方弁、83は室内熱交換器、84Fi減圧機
構、85は室外熱交換器で、これらが環状に連結されて
冷凍サイクルが構成されている。86は第1の電磁弁8
7を介して冷凍サイクIVVc並設された冷媒加熱器で
、この冷媒加熱器86は冷媒を加熱するバーナー等の加
熱源86aを備えている。88は減圧機構84t−制御
する第2の電磁弁である。89は圧縮機81の吐出管と
吸入管との連通を制御する第3の電磁弁である。
2. Description of the Related Art A refrigerant-heating air conditioner that has been proposed in the past (for example, Japanese Patent Publication No. 59-33817) has a configuration as shown in FIG. In FIG. 5, an 81Fi compressor, 82 a four-way valve, 83 an indoor heat exchanger, an 84Fi pressure reducing mechanism, and 85 an outdoor heat exchanger are connected in a ring to form a refrigeration cycle. 86 is the first solenoid valve 8
A refrigerant heater 86 is arranged in parallel with the refrigeration cycle IVVc via a refrigerant heater 7, and this refrigerant heater 86 is equipped with a heat source 86a such as a burner for heating the refrigerant. 88 is a second solenoid valve that controls the pressure reducing mechanism 84t. 89 is a third solenoid valve that controls communication between the discharge pipe and suction pipe of the compressor 81.

発明が解決しようとする課題 しかしながら、従来よシ提案されている冷媒加熱式空気
調和機には以下のような問題があった。
Problems to be Solved by the Invention However, conventionally proposed refrigerant heating air conditioners have the following problems.

すなわち、第5図の構成では冷媒加熱運転を行う場合、
冷媒は圧縮機81、四方弁82、室内熱交換器83、第
1の電磁弁87を通り、冷媒加熱器86へ流入して圧縮
機81へ戻るサイクルと、圧縮機81から第3の電磁弁
89を通電圧縮機81へ戻るサイクルの2つのサイクル
を構成する。このとき、第2の電磁弁88は閉じられて
いるため、冷媒は室外熱交換器85を通らない。つまシ
、冷媒加熱器86を用いた冷媒加熱運転時は、第1の電
磁弁87を開、第2の電磁弁88を閉、第3の電磁弁8
9を開とし、室外熱交換器85に冷媒が流入しないよう
な冷凍サイクルを形成する。ここで、冷媒加熱器86を
用いた冷媒加熱運転を始動する場合、冷媒加熱運転の起
動と同時に第1の電磁弁87を開、第2の電磁弁88を
閉、第3の電磁弁89を開とすると、室外熱交換器85
やその近傍の配管中に溜っている冷媒はそのまま閉じ込
められてしまい、その結果、冷媒加熱運転を行っている
冷凍サイクル中の冷媒量が不足し、所定の冷媒加熱運転
を得ることができないばかシか暖房能力の低下や一部の
冷媒の急激な温度上昇を生じさせる。したがって冷媒加
熱運転を起動する場合は、起動と同時に電磁弁87.8
8.89を全て一定時間閉じ、室外熱交換器85やその
近傍の配管中に溜シ込んだ冷媒を冷媒加熱運転を行う冷
凍サイクル中に回収する冷媒回収運転が必要となる。こ
のため暖房立上シ時間が長いという問題があった、さら
に、冷媒加熱運転中、暖房の熱源はバーナー等の加熱源
によシ供給され、圧縮層81は冷媒を循環さぜる仕事の
みを行っている。しかしながら圧縮機81は低負荷で運
転しても電気入力が高いという問題があった。
That is, in the configuration shown in FIG. 5, when performing refrigerant heating operation,
The refrigerant passes through the compressor 81, the four-way valve 82, the indoor heat exchanger 83, and the first solenoid valve 87, flows into the refrigerant heater 86, returns to the compressor 81, and from the compressor 81 to the third solenoid valve. 89 is returned to the energized compressor 81, which constitutes two cycles. At this time, since the second solenoid valve 88 is closed, the refrigerant does not pass through the outdoor heat exchanger 85. During refrigerant heating operation using the refrigerant heater 86, the first solenoid valve 87 is opened, the second solenoid valve 88 is closed, and the third solenoid valve 8 is closed.
9 is opened to form a refrigeration cycle in which no refrigerant flows into the outdoor heat exchanger 85. Here, when starting the refrigerant heating operation using the refrigerant heater 86, at the same time as the start of the refrigerant heating operation, the first solenoid valve 87 is opened, the second solenoid valve 88 is closed, and the third solenoid valve 89 is opened. When open, the outdoor heat exchanger 85
The refrigerant accumulated in the refrigeration cycle or in the piping in the vicinity is trapped, and as a result, the amount of refrigerant in the refrigeration cycle that is performing refrigerant heating operation is insufficient, and the refrigerant heating operation cannot be achieved as expected. This may cause a decrease in heating capacity or a sudden rise in temperature of some refrigerants. Therefore, when starting the refrigerant heating operation, the solenoid valve 87.
It is necessary to perform a refrigerant recovery operation in which all 8.89 are closed for a certain period of time and the refrigerant accumulated in the outdoor heat exchanger 85 and the piping in its vicinity is recovered into the refrigeration cycle that performs the refrigerant heating operation. For this reason, there was a problem in that heating start-up time was long.Furthermore, during refrigerant heating operation, the heat source for heating is supplied by a heating source such as a burner, and the compression layer 81 only performs the work of circulating the refrigerant. Is going. However, the compressor 81 has a problem in that the electrical input is high even when the compressor 81 is operated at a low load.

また暖房起動時、冷媒ポンプを使用したとき、冷媒ポン
プ周辺に多量の冷媒ガスが存在するような場合、冷媒ポ
ンプの排除容積は小さいので、冷媒ポンプ単独で冷媒を
すみやかに循環させ始めることが難しいという問題があ
った。また、始動時に冷媒ポンプがいつも冷媒ガスを吸
い込むと、摺動部が摩耗してしまうという問題も生じて
いた。
In addition, when the refrigerant pump is used when heating is started, if there is a large amount of refrigerant gas around the refrigerant pump, the displacement volume of the refrigerant pump is small, so it is difficult to start circulating the refrigerant quickly with the refrigerant pump alone. There was a problem. Additionally, if the refrigerant pump always sucks in refrigerant gas during startup, there is a problem in that the sliding parts will wear out.

本発明は上記問題に鑑み、よシ良好な立上シ特性を有し
、電気入力を低減できる冷媒加熱式空気調和機を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a refrigerant-heated air conditioner that has good start-up characteristics and can reduce electrical input.

課題を解決するための手段 上記課題を解決するために、本発明の冷媒加熱式空気調
和機は、少なくとも圧縮機、四方弁、室外熱交換器、減
圧機構、室内熱交換器、冷媒ポンプ、冷媒加熱器を備え
、前記冷媒ポンプと前記冷媒加熱器と前記四方弁と前記
室内熱交換器と前記室外熱交換器を順次環状に配管接続
し、前記室内熱交換器と前記室外熱交換器をつなぐ配管
の一部に前記室内熱交換器から前記室外熱交換器への方
向にのみ冷媒の流通を可能にする第1の逆止弁を設け、
前記室外熱交換器と前記冷媒ポンプの間に第1の電磁弁
を設け、前記冷媒加熱器と前記四方弁をつなぐ配管の一
部に前記冷媒加熱器から前記四方弁への方向にのみ冷媒
の流通を可能にする第2の逆止弁を設け、前記第2の逆
止弁の入口側と出口側をそれぞれ第2、第3の電磁弁を
介して前記圧縮機の吸入側と吐出側に接続し、さらに前
記圧縮機の吸入側を第4の電磁弁および前記四方弁を順
次経由し、前記室外熱交換器と前記第1の電磁弁とを結
ぶ配管に接続して冷房用回路を構成し。
Means for Solving the Problems In order to solve the above problems, the refrigerant-heated air conditioner of the present invention includes at least a compressor, a four-way valve, an outdoor heat exchanger, a pressure reduction mechanism, an indoor heat exchanger, a refrigerant pump, and a refrigerant. A heater is provided, and the refrigerant pump, the refrigerant heater, the four-way valve, the indoor heat exchanger, and the outdoor heat exchanger are sequentially connected in a ring shape, and the indoor heat exchanger and the outdoor heat exchanger are connected. A first check valve that allows refrigerant to flow only in the direction from the indoor heat exchanger to the outdoor heat exchanger is provided in a part of the piping,
A first electromagnetic valve is provided between the outdoor heat exchanger and the refrigerant pump, and a part of the piping connecting the refrigerant heater and the four-way valve is provided with a first electromagnetic valve that controls refrigerant only in the direction from the refrigerant heater to the four-way valve. A second check valve that enables flow is provided, and the inlet side and outlet side of the second check valve are connected to the suction side and discharge side of the compressor via second and third electromagnetic valves, respectively. and further connect the suction side of the compressor to piping connecting the outdoor heat exchanger and the first solenoid valve via the fourth solenoid valve and the four-way valve in order to form a cooling circuit. death.

前記第1の逆止弁と逆向きの第3の逆止弁およびこの第
3の逆止弁と直列に接続した減圧機構を前記第1の逆止
弁に並列に接続したものである。
A third check valve facing in the opposite direction to the first check valve and a pressure reducing mechanism connected in series with the third check valve are connected in parallel to the first check valve.

さらに、本発明は、上記構成において、第1の逆止弁と
室外熱交換器を結ぶ配管の途中に気液分離器を設け、前
記気液分離器のガス側出口と室外熱交換器、第1の電磁
弁を順次接続し、さらに前記気液分離器の液側出口を第
5の電磁弁を途中に備えた配管で前記室外熱交換器と前
記第1の電磁弁とを結ぶ配管に接続したものである。
Furthermore, in the above configuration, the present invention provides a gas-liquid separator in the middle of the piping connecting the first check valve and the outdoor heat exchanger, and connects the gas-side outlet of the gas-liquid separator to the outdoor heat exchanger. 1 solenoid valves are connected in sequence, and the liquid side outlet of the gas-liquid separator is further connected to a pipe connecting the outdoor heat exchanger and the first solenoid valve with a pipe provided with a fifth solenoid valve in the middle. This is what I did.

さらに、本発明は上記それぞれの構成において、冷媒ポ
ンプと並列に室外熱交換器から冷媒加熱器への方向にの
み冷媒の流通を可能にする第4の逆止弁を設けたもので
ある。
Furthermore, in each of the above configurations, the present invention is provided with a fourth check valve in parallel with the refrigerant pump that allows the refrigerant to flow only in the direction from the outdoor heat exchanger to the refrigerant heater.

さらに、本発明の起動方法は、上記それぞれの冷媒加熱
式空気調和機において、冷媒加熱運転起動時に先ず圧縮
機を用いて起動し、冷凍サイクルが安定した時点で冷媒
ポンプを起動し、両者を並行して運転する過程を経た後
、圧縮機の吸入側の第2の電磁弁を閉じ、圧縮機内部の
冷媒を排出させた後に、吐出側の第3の電磁弁を閉じ、
圧縮機を停止して冷媒ポンプ単独の運転に切シ換えるも
のである。
Furthermore, in the startup method of the present invention, in each of the refrigerant-heating air conditioners described above, the compressor is first used to start the refrigerant heating operation, and when the refrigeration cycle is stabilized, the refrigerant pump is started, and both are operated in parallel. After passing through the process of operating the compressor, the second solenoid valve on the suction side of the compressor is closed, and after the refrigerant inside the compressor is discharged, the third solenoid valve on the discharge side is closed.
This stops the compressor and switches to operating the refrigerant pump alone.

作用 本発明は上記の構成によシ、冷媒加熱運転中も室外熱交
換器をサブクーラーとして常時利用し、熱搬送運転起動
時の冷媒回収運転を不要として暖房立上シ特性を改善で
きる。また、気液分離器を使用することによシ、液冷媒
の冷媒ポンプへの回収を良好に維持できて、少ない冷媒
容量で十分にまかなえるとともに、液冷媒が全部室外熱
交換器を流れることによる圧力損もなくすことができ、
また、冷媒ポンプに逆止弁を介装することによシ、始動
時に冷媒ポンプがいつも冷媒ガスを吸い込み。
According to the above-described structure, the present invention can constantly utilize the outdoor heat exchanger as a subcooler even during the refrigerant heating operation, thereby eliminating the need for the refrigerant recovery operation at the start of the heat transfer operation and improving heating start-up characteristics. In addition, by using a gas-liquid separator, it is possible to maintain good recovery of liquid refrigerant to the refrigerant pump, which allows sufficient refrigerant capacity to be supplied with a small amount of refrigerant. Pressure loss can also be eliminated,
In addition, by installing a check valve in the refrigerant pump, the refrigerant pump always draws in refrigerant gas when starting.

摺動部が摩耗してしまうという問題も解消できる。The problem of the sliding parts being worn out can also be solved.

また、冷媒の搬送を起動時のみ圧縮機で行い安定した起
動を計シ、安定後は低電気入力の冷媒ポンプにより運転
を行うので、安価で快適な暖房性能が得られる。
In addition, the compressor transports the refrigerant only at startup to ensure stable startup, and after stabilization, the refrigerant pump with low electrical input operates, providing inexpensive and comfortable heating performance.

実施例 以下、本発明の一実施例を図面を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例を示す冷媒加熱式空気調
和機の冷媒回路図である。第1図において、lは圧縮機
、2は四方弁、3は室内熱交換器、4は減圧機構、5#
i室外熱交換器、6Fi冷媒加熱器、7は冷媒ポンプ、
8.9.10Fiそれぞれ第1、第2、第3の逆止弁、
11.12.13.14はそれぞれ第1、第2、第3.
第4の電磁弁であシ、冷媒ポンプ7と冷媒加熱器6と四
方弁2と室内熱交換器3と室外熱交換器5を順次環状に
配管接続し、さらに、室内熱交換器3と室外熱交換器5
をつなぐ配管の一部に室内熱交換器3から室外熱交換器
5への方向にのみ冷媒の流通を可能にする第1の逆止弁
8を設け、さらに、室外熱交換器5と冷媒ポンプ7の間
に第1の電磁弁11を設け、さらに、冷媒加熱器6と四
方弁2をつなぐ配管の一部に冷媒加熱器6から四方弁2
への方向にのみ冷媒の流通を可能にする第2の逆止弁9
を設け、さらに、第2の逆止弁9の入口側と出口側をそ
れぞれ第2.第3の電磁弁12.131−介して圧縮機
1の吸入側と吐出側に接続し、さらに圧縮機1の吸入側
を第4の電磁弁14および四方弁2を順次経由し、室外
熱交換器5と第1の電磁弁11とを結ぶ配管に接続して
冷房用回路を構成し、第1の逆止弁Bと逆向きの第3の
逆止弁10およびこの第3の逆止弁と直列に接続した減
圧機構4を第1の逆止弁8に並列に接続した構成となっ
ている。
FIG. 1 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a first embodiment of the present invention. In Fig. 1, l is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a pressure reducing mechanism, and 5#
i outdoor heat exchanger, 6Fi refrigerant heater, 7 is refrigerant pump,
8.9.10Fi first, second and third check valves, respectively;
11, 12, 13, 14 are the first, second, third .
The fourth solenoid valve connects the refrigerant pump 7, the refrigerant heater 6, the four-way valve 2, the indoor heat exchanger 3, and the outdoor heat exchanger 5 in a circular manner, and further connects the indoor heat exchanger 3 and the outdoor heat exchanger heat exchanger 5
A first check valve 8 that allows refrigerant to flow only in the direction from the indoor heat exchanger 3 to the outdoor heat exchanger 5 is provided in a part of the piping that connects the outdoor heat exchanger 5 and the refrigerant pump. A first solenoid valve 11 is provided between the refrigerant heater 6 and the four-way valve 2 in a part of the piping connecting the refrigerant heater 6 and the four-way valve 2.
A second check valve 9 that allows refrigerant to flow only in the direction of
Further, the inlet side and the outlet side of the second check valve 9 are respectively provided with a second check valve 9. The suction side and the discharge side of the compressor 1 are connected through the third solenoid valve 12 and 131, and the suction side of the compressor 1 is connected to the fourth solenoid valve 14 and the four-way valve 2 in order for outdoor heat exchange. A third check valve 10 is connected to a pipe connecting the device 5 and the first solenoid valve 11 to form a cooling circuit, and is oriented in the opposite direction to the first check valve B. The pressure reducing mechanism 4 connected in series with the first check valve 8 is connected in parallel with the first check valve 8.

次にこの構成による冷媒加熱式空気調和機の動作につい
て説明する。冷媒加熱暖房開始時、第1の電磁弁11は
開、第2の電磁弁12は開、第3の電磁弁13は開、第
4の電磁弁14は閉、となっている。
Next, the operation of the refrigerant heating type air conditioner with this configuration will be explained. At the start of refrigerant heating, the first solenoid valve 11 is open, the second solenoid valve 12 is open, the third solenoid valve 13 is open, and the fourth solenoid valve 14 is closed.

この状態で圧縮機lを起動すると、圧縮機lよシ吐出さ
れた冷媒は第3の電磁弁13.四方弁2、室内熱交換器
3、第1の逆止弁8、室外熱交換器5、第1の電磁弁1
1.冷媒ポンプ7、冷媒加熱器6、第2の電磁弁12を
経て圧縮機1へもどる回路を循環する。このとき、冷媒
ポンプ7はその内部を冷媒が通過できる構成である。バ
ーナー等によシ冷媒加熱器6内で加熱された冷媒は室内
熱交換器3で室内空気と熱交換(暖房)し、大部分が凝
縮する。凝縮しきれなかった冷媒が室外熱交換器5で凝
縮し、冷媒加熱器6に本どってくる。起動後数分でサイ
クルが安定したら、先ず冷媒ポンプ7を起動し、冷媒ポ
ンプ7の回転数を調整し、圧縮機lとの併用運転を行い
、次に圧縮機lの停止操作を行う。つまり、圧縮機lの
吸入側にある第2の電磁弁12を閉じる。すると圧縮機
1は運転を継続しているため圧縮機内部の冷媒を吐出す
る。その後圧縮機lの吐出側にある第3の電磁弁13t
−閉じ同時に圧縮機lも停止する。すると冷媒は冷媒ポ
ンプ7から冷媒加熱器6、第2の逆止弁9、四方弁2、
室内熱交換器3.第19逆止弁8、室外熱交換器5、第
1の電磁弁111に順次循環するようになる。これによ
シ、冷媒回収運転の必要がなくなシ、また、低電気入力
の冷媒加熱暖房回路が実現される。
When the compressor l is started in this state, the refrigerant discharged from the compressor l flows through the third solenoid valve 13. Four-way valve 2, indoor heat exchanger 3, first check valve 8, outdoor heat exchanger 5, first solenoid valve 1
1. The refrigerant circulates through a circuit that returns to the compressor 1 via the refrigerant pump 7, the refrigerant heater 6, and the second solenoid valve 12. At this time, the refrigerant pump 7 is configured to allow the refrigerant to pass through the inside thereof. The refrigerant heated in the refrigerant heater 6 by a burner or the like exchanges heat with indoor air (heating) in the indoor heat exchanger 3, and most of the refrigerant is condensed. The refrigerant that has not been completely condensed is condensed in the outdoor heat exchanger 5 and returns to the refrigerant heater 6. When the cycle is stabilized several minutes after starting, first, the refrigerant pump 7 is started, the rotational speed of the refrigerant pump 7 is adjusted, and the compressor 1 is operated in combination with the compressor 1, and then the compressor 1 is stopped. That is, the second solenoid valve 12 on the suction side of the compressor 1 is closed. Then, since the compressor 1 continues to operate, the refrigerant inside the compressor is discharged. After that, the third solenoid valve 13t on the discharge side of the compressor l
- At the same time as closing, the compressor l also stops. Then, the refrigerant flows from the refrigerant pump 7 to the refrigerant heater 6, the second check valve 9, the four-way valve 2,
Indoor heat exchanger 3. The water is circulated sequentially to the nineteenth check valve 8, the outdoor heat exchanger 5, and the first electromagnetic valve 111. This eliminates the need for refrigerant recovery operation and realizes a refrigerant heating circuit with low electrical input.

冷房運転については第1の電磁弁11を閉、第2の電磁
弁12を開、第3の電磁弁13を開、第4の電磁弁14
を開にし、四方弁2を切り換えるだけで通常の回路構成
と同様であるので説明を省略する。
For cooling operation, the first solenoid valve 11 is closed, the second solenoid valve 12 is opened, the third solenoid valve 13 is opened, and the fourth solenoid valve 14 is closed.
Since the circuit configuration is the same as that of a normal circuit simply by opening the four-way valve 2 and switching the four-way valve 2, the explanation will be omitted.

第2図は本発明の第2の実施例を示す冷媒加熱式空気調
和機の冷媒回路図である。第2図において、21は圧縮
機、22ti四方弁、23は室内熱交換器、24は減圧
機構、25は室外熱交換器、26#i冷媒加熱器、27
は冷媒ポンプ、28.29.30.31はそれぞれ第1
、第2、第3、第4の逆止弁、32.33.34.35
はそれぞれ第1、第2、第3、第4の電磁弁であり。
FIG. 2 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a second embodiment of the present invention. In FIG. 2, 21 is a compressor, 22 is a four-way valve, 23 is an indoor heat exchanger, 24 is a pressure reduction mechanism, 25 is an outdoor heat exchanger, 26 is a refrigerant heater, 27
is the refrigerant pump, and 28, 29, 30, and 31 are the first
, second, third, and fourth check valves, 32.33.34.35
are the first, second, third, and fourth solenoid valves, respectively.

冷媒ポンプ27と冷媒加熱器26と四方弁22と室内熱
交換器23と室外熱交換器25を順次環状に配管接続し
、さらに、室内熱交換器23と室外熱交換器25をつな
ぐ配管の一部に室内熱交換器23から室外熱交換器25
への方向にのみ冷媒の流通を可能にする第1の逆止弁2
8を設け、さらに、室外熱交換器25と冷媒ポンプ27
0間に第1の電磁弁32を設け、さらに、冷媒加熱器2
6と四方弁22′t−つなぐ配管の一部に冷媒加熱器2
6から四方弁22への方向にのみ冷媒の流通を可能にす
る第2の逆止弁29を設け、さらに、第2の逆止弁f2
9の入口側出口側をそれぞれ第2、第3の電磁弁33.
34を介して圧縮機21の吸入側と吐出側に接続し、さ
らに圧縮機21の吸入側を第4の電磁弁35および四方
弁22を順次経由し。
The refrigerant pump 27, the refrigerant heater 26, the four-way valve 22, the indoor heat exchanger 23, and the outdoor heat exchanger 25 are sequentially connected in a ring shape, and furthermore, a piece of piping connecting the indoor heat exchanger 23 and the outdoor heat exchanger 25 is connected. From the indoor heat exchanger 23 to the outdoor heat exchanger 25
A first check valve 2 that allows refrigerant to flow only in the direction of
8, and further includes an outdoor heat exchanger 25 and a refrigerant pump 27.
A first solenoid valve 32 is provided between the refrigerant heater 2 and the refrigerant heater 2.
Refrigerant heater 2 is installed in a part of the piping connecting 6 and four-way valve 22't.
A second check valve 29 is provided that allows refrigerant to flow only in the direction from the four-way valve f2 to the four-way valve f2.
The inlet and outlet sides of 9 are respectively connected to second and third solenoid valves 33.
34 to the suction side and discharge side of the compressor 21, and the suction side of the compressor 21 is connected to the fourth electromagnetic valve 35 and the four-way valve 22 in sequence.

室外熱交換器25と第1の電磁弁32とを結ぶ配管に接
続して冷房用回路を構成し、第1の逆上弁28と逆向き
の第3の逆止弁30およびこの第3の逆止弁と直列に接
続した減圧機構24を第1の逆止弁28に並列に接続し
、さらに、室外熱交換器25から冷媒加熱器26への方
向にのみ冷媒の流通を回部にする第4の逆止弁31を冷
媒ポンプ/′27に並列に設けた構成となっている。動
f¥については、冷媒ポンプ27が冷媒ガスを吸い込ま
ないこと以外は上記第1の実施例と同様であるので説明
を省略する。
A cooling circuit is configured by connecting the outdoor heat exchanger 25 and the first solenoid valve 32 to a pipe, and a third check valve 30 facing oppositely to the first reverse valve 28 and this third A pressure reducing mechanism 24 connected in series with the check valve is connected in parallel to the first check valve 28, and the refrigerant is circulated only in the direction from the outdoor heat exchanger 25 to the refrigerant heater 26. The fourth check valve 31 is provided in parallel with the refrigerant pump/'27. The dynamic f\ is the same as in the first embodiment, except that the refrigerant pump 27 does not suck in refrigerant gas, so a description thereof will be omitted.

第3図は本発明の第3の実施例を示す冷媒加熱式空気調
和機の冷媒回路図である。第3図において、41Fi圧
縮機、42は四方弁、43は室内熱交換器、44は減圧
機構、45は室外熱交換器、46は冷媒加熱器、47は
冷媒ポンプ、48は気液分離器、49.50.51はそ
れぞれ第1、第2.第3の逆止弁、53.54.55.
56.57はそれぞれ第1.第2.第3、第4.第5の
電磁弁であり、冷媒ポンプ47と冷媒加熱器46と四方
弁42と室内熱交換器43と気液分離器48と第5の電
磁弁57を順次環状に配管接続し、さらに、気液分離器
48のガス側出口を途中に室外熱交換器45を備えた配
管で第5の電磁弁57と冷媒ポンプ47をつなぐ配管に
接続し、さらに、室内熱交換器43と気液分離器48を
つなぐ配管の一部に室内熱交換器43から気液分離器4
8への方向にのみ冷媒の流通を可能にする第1の逆止弁
49を設け、さらに、室外熱交換器45と第5の電磁弁
57の交点と冷媒ポンプ470間に第1の電磁弁53を
設け、さらに、冷媒加熱器46と四方弁42をつなぐ配
管の一部に冷媒加熱器46から四方弁42への方向にの
み冷媒の流通を可能にする第2の逆止弁50を設け、さ
らに、第2の逆止弁50の入口側と出口側をそれぞれ第
2、第3の電磁弁54.55を介して圧縮機41の吸入
側と吐出側に接続し、さらに圧縮機41の吸入側を第4
の電磁弁56および四方弁42を順次経由し、室外熱交
換器45と第5の電磁弁57の交点と第1の電磁弁53
とを結ぶ配管に接続して冷房用回路を槙成し、第1の逆
止弁49と逆向きの第3の逆止弁51およびこの第3の
逆止弁と直列に接続し九減圧機構441に第1の逆止弁
49に並列に接続した構成となっている。
FIG. 3 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a third embodiment of the present invention. In Fig. 3, 41 is a Fi compressor, 42 is a four-way valve, 43 is an indoor heat exchanger, 44 is a pressure reduction mechanism, 45 is an outdoor heat exchanger, 46 is a refrigerant heater, 47 is a refrigerant pump, and 48 is a gas-liquid separator. , 49.50.51 are the first and second . Third check valve, 53.54.55.
56.57 are the 1st. Second. 3rd, 4th. It is a fifth solenoid valve, and a refrigerant pump 47, a refrigerant heater 46, a four-way valve 42, an indoor heat exchanger 43, a gas-liquid separator 48, and a fifth solenoid valve 57 are sequentially connected in an annular manner, and further, a The gas side outlet of the liquid separator 48 is connected to the pipe connecting the fifth electromagnetic valve 57 and the refrigerant pump 47 through a pipe having an outdoor heat exchanger 45 in the middle, and is further connected to the indoor heat exchanger 43 and the gas-liquid separator. A part of the piping that connects the indoor heat exchanger 43 to the gas-liquid separator 4
A first check valve 49 that allows refrigerant to flow only in the direction toward 8 is provided, and a first solenoid valve 49 is provided between the intersection of the outdoor heat exchanger 45 and the fifth solenoid valve 57 and the refrigerant pump 470. A second check valve 50 is provided in a part of the piping connecting the refrigerant heater 46 and the four-way valve 42 to allow the refrigerant to flow only in the direction from the refrigerant heater 46 to the four-way valve 42. Furthermore, the inlet side and the outlet side of the second check valve 50 are connected to the suction side and the discharge side of the compressor 41 via second and third electromagnetic valves 54 and 55, respectively. 4th on suction side
The intersection of the outdoor heat exchanger 45 and the fifth solenoid valve 57 and the first solenoid valve 53 sequentially pass through the solenoid valve 56 and the four-way valve 42.
A third check valve 51 facing oppositely to the first check valve 49 and a third check valve 51 connected in series with the third check valve form a pressure reducing mechanism. 441 is connected in parallel to the first check valve 49.

次にこの構成による冷媒加熱式空気調和機の動作につい
て説明する。冷媒加熱暖房開始時、第1の電磁弁53は
開、第20電磁弁54は開、第3の電磁弁55は開、第
4の電磁弁56は閉、第5の電磁弁57は開となってい
る。この状態で圧縮機41を起動すると、圧縮機41よ
シ吐出された冷媒は第3の電磁弁55、四方弁42、室
内熱交換器43、第1の逆止弁49、気液分離器48、
第5の電磁弁57および室外熱交換器45、第1(2)
[磁弁53、冷媒ポンプ47、冷媒加熱器46、第2の
電磁弁54.を経て圧縮機41へもどる回路を循環する
。このとき冷媒ポンプ47はその内部を冷媒が通過でき
る構成である。バーナー等によシ冷媒加熱器46内で加
熱された冷媒は室内熱交換器43で室内空気と熱交換(
暖房)し、大部分が#縮する。気体と液体が混合した状
態の冷媒が気液分離器48に入り、その内部で気体液体
が分離され、気体の冷媒は気液分離器48上部のガス管
から、また液体の冷媒は気液分離器48下部の液管から
出る。ガス冷媒は室外熱交換器45において凝縮し、気
液分離器48の液管から第5の電磁弁57をへて来た液
冷媒と合流し、冷媒ポンプ47を経白して冷媒加熱器4
6にもどってくる、起動後数分でサイクルが安定したら
、先ず冷媒ポンプ47を起動し、冷媒ポンプ47の回転
数を調整し、圧縮機41との併用運転を行い、次に圧縮
機41の停止操作を行う。
Next, the operation of the refrigerant heating type air conditioner with this configuration will be explained. At the start of refrigerant heating, the first solenoid valve 53 is open, the 20th solenoid valve 54 is open, the third solenoid valve 55 is open, the fourth solenoid valve 56 is closed, and the fifth solenoid valve 57 is open. It has become. When the compressor 41 is started in this state, the refrigerant discharged from the compressor 41 is transferred to the third solenoid valve 55, the four-way valve 42, the indoor heat exchanger 43, the first check valve 49, and the gas-liquid separator 48. ,
Fifth solenoid valve 57 and outdoor heat exchanger 45, first (2)
[Magnetic valve 53, refrigerant pump 47, refrigerant heater 46, second solenoid valve 54. The air circulates through the circuit that returns to the compressor 41 via the. At this time, the refrigerant pump 47 is configured so that the refrigerant can pass therethrough. The refrigerant heated in the refrigerant heater 46 by a burner or the like exchanges heat with indoor air in the indoor heat exchanger 43 (
(heating) and mostly shrinks. The refrigerant in a mixed state of gas and liquid enters the gas-liquid separator 48, and the gas and liquid are separated inside the gas-liquid separator 48. It comes out from the liquid pipe at the bottom of the container 48. The gas refrigerant is condensed in the outdoor heat exchanger 45, merges with the liquid refrigerant that has passed through the fifth electromagnetic valve 57 from the liquid pipe of the gas-liquid separator 48, passes through the refrigerant pump 47, and is supplied to the refrigerant heater 4.
6. When the cycle stabilizes a few minutes after startup, first start the refrigerant pump 47, adjust the rotation speed of the refrigerant pump 47, perform combined operation with the compressor 41, and then start the refrigerant pump 47. Perform the stop operation.

つまり、圧縮′1M41の吸入側にある第2の電磁弁5
4を閉じる。すると圧縮機41は運転を継続しているた
め圧縮機内部の冷媒を吐出する。その後圧縮機41の吐
出側にある第3の電磁弁55を閉じ同時に圧縮機41も
停止する。すると冷媒は冷媒ポンプ47から冷媒加熱器
46、第2の逆止弁50.四方弁42.室内熱交換器4
3、第1の逆止弁49、気液分離器48、室外熱交換器
45および第5の電磁弁57、第1の電磁弁53よシな
る回路を循環するようになる。これによシ、冷媒回収運
転の必要がなくなシ、また低電気入力の冷媒加熱暖房回
路が実現される。また、気液分離器48により、液冷媒
の冷媒ポンプ47への回収を良好に維持でき、少ない冷
媒容量で十分にまかなえるとともに、液冷媒が全部室外
熱交換器45を流れることによる圧力損も解消できる。
In other words, the second solenoid valve 5 on the suction side of compression '1M41
Close 4. Then, since the compressor 41 continues to operate, the refrigerant inside the compressor is discharged. Thereafter, the third solenoid valve 55 on the discharge side of the compressor 41 is closed, and the compressor 41 is also stopped at the same time. Then, the refrigerant flows from the refrigerant pump 47 to the refrigerant heater 46 and the second check valve 50 . Four-way valve 42. Indoor heat exchanger 4
3, the first check valve 49, the gas-liquid separator 48, the outdoor heat exchanger 45, the fifth solenoid valve 57, and the first solenoid valve 53. This eliminates the need for refrigerant recovery operation and realizes a refrigerant heating circuit with low electrical input. In addition, the gas-liquid separator 48 can maintain good recovery of the liquid refrigerant to the refrigerant pump 47, which is sufficient with a small refrigerant capacity, and also eliminates pressure loss caused by all the liquid refrigerant flowing through the outdoor heat exchanger 45. can.

冷房運転については第1の電磁弁53を閉、第2の電磁
弁54を開、第3の電磁弁55を開、第4の電磁弁56
を開、第5の電磁弁57を閉にし、四方弁42を切り換
えるだけで通常の回路構成と同様であるので説明を省略
する。
For cooling operation, the first solenoid valve 53 is closed, the second solenoid valve 54 is opened, the third solenoid valve 55 is opened, and the fourth solenoid valve 56 is closed.
is opened, the fifth solenoid valve 57 is closed, and the four-way valve 42 is switched, which is the same as a normal circuit configuration, so the explanation will be omitted.

第4図は本発明の第4の実施例を示す冷媒加熱式空気調
和機の冷媒回路図である。第4図において、61は圧縮
機、62は四方弁、63は室内熱交換器、64は減圧機
構、65は室外熱交換器、66は冷媒加熱器、67は冷
媒ポンプ、68は気液分離器、 69.70゜71.7
2はそれぞれ第1.第2、第3、第4の逆止弁、73.
74.75.76.77はそれぞれ第1、第2.第3、
第4、第5の電磁弁であり、冷媒ポンプ67と冷媒加熱
器66と四方弁62と室内熱交換器63と気液分離器6
8と第5の電磁弁77を順次環状に配管接続し、さらに
、気液分離器68のガス側出口を途中に室外熱交換器6
5を備えた配管で第5の電磁弁77ど冷媒ポンプ67を
つなぐ配管に接続し、さらに、室内熱交換器63と気液
分離器68をつなぐ配管の一部に室内熱交換器63から
気液分離器68への方向にのみ冷媒の流通を可能にする
第1の逆止弁69を設け、さらに、室外熱交換器65と
第5の電磁弁77の交点と冷媒ポンプ67の間に第1の
電磁弁73を設け、さらに、冷媒加熱器66と四方弁6
2をつなぐ配管の一部に冷媒加熱器66から四方弁62
への方向にのみ冷媒の流通を可能にする第2の逆止弁7
0を設け、さらに、第2の逆止弁70の入口側と出口側
をそれぞれ第2、第3の電磁弁74.75を介して圧縮
機61の吸入側と吐出側に接続し、さらに圧縮機61の
吸入側を第4の電磁弁76および四方弁62を順次経由
し。
FIG. 4 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a fourth embodiment of the present invention. In Fig. 4, 61 is a compressor, 62 is a four-way valve, 63 is an indoor heat exchanger, 64 is a pressure reduction mechanism, 65 is an outdoor heat exchanger, 66 is a refrigerant heater, 67 is a refrigerant pump, and 68 is a gas-liquid separator. Vessel, 69.70°71.7
2 is the first. second, third, and fourth check valves, 73.
74, 75, 76, 77 are the first and second . Third,
They are fourth and fifth solenoid valves, including a refrigerant pump 67, a refrigerant heater 66, a four-way valve 62, an indoor heat exchanger 63, and a gas-liquid separator 6.
8 and the fifth electromagnetic valve 77 are sequentially connected in an annular manner, and furthermore, an outdoor heat exchanger 6 is connected to the gas side outlet of the gas-liquid separator 68.
5 is connected to the fifth electromagnetic valve 77 and the pipe that connects the refrigerant pump 67, and further, air is connected to a part of the pipe that connects the indoor heat exchanger 63 and the gas-liquid separator 68 from the indoor heat exchanger 63. A first check valve 69 is provided that allows the refrigerant to flow only in the direction toward the liquid separator 68, and a first check valve 69 is provided between the intersection of the outdoor heat exchanger 65 and the fifth solenoid valve 77 and the refrigerant pump 67. 1 solenoid valve 73 is provided, and furthermore, a refrigerant heater 66 and a four-way valve 6 are provided.
A four-way valve 62 is installed from the refrigerant heater 66 to a part of the piping connecting the two.
A second check valve 7 that allows refrigerant to flow only in the direction of
Further, the inlet side and outlet side of the second check valve 70 are connected to the suction side and discharge side of the compressor 61 via second and third electromagnetic valves 74 and 75, respectively, and further the compression The suction side of the machine 61 is sequentially passed through the fourth solenoid valve 76 and the four-way valve 62.

室外熱交換器65と第5の電磁弁77の交点と第1の電
磁弁73とを結ぶ配管に接続して冷房用回路を構成し、
第1の逆止弁69と逆向きの第30逆止弁71およびこ
の第3の逆止弁と直列に接続した減圧機構64を第1の
逆止弁71′69に並列に接続し、さらに、第1の電磁
弁73から冷媒加熱器66の方向へのみ冷媒を流通させ
る第4の逆止弁72を冷媒ポンプ67と並列に設けた構
成となっている。動rF:については上記第3の実施例
と同様であるので説明を省略する。
Connecting to piping connecting the intersection of the outdoor heat exchanger 65 and the fifth solenoid valve 77 and the first solenoid valve 73 to form a cooling circuit,
A 30th check valve 71 opposite to the first check valve 69 and a pressure reducing mechanism 64 connected in series with this third check valve are connected in parallel to the first check valve 71'69, and further , a fourth check valve 72 that allows the refrigerant to flow only in the direction from the first electromagnetic valve 73 toward the refrigerant heater 66 is provided in parallel with the refrigerant pump 67. Since the dynamic rF: is the same as that in the third embodiment, the explanation will be omitted.

発明の効果 以上のように1本発明によれば、熱搬送運転起動時の冷
媒回収運転を不要とし暖房立上シ特性を改善し、また、
冷媒の搬送を起動時のみ圧縮機で行い安定し九起動を計
シ、安定後は低電気入力の冷媒ポンプによシ安価で快適
な暖房性能を提供できるものである。
Effects of the Invention As described above, according to the present invention, the refrigerant recovery operation at the time of starting the heat transfer operation is not required, the heating start-up characteristics are improved, and
The compressor transports the refrigerant only at the time of start-up, and the system is stabilized for nine startups.After stabilization, a refrigerant pump with low electrical input is used to provide inexpensive and comfortable heating performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図はそれぞれ本発明の第
1、第2.第3、第4の実施例を示す冷媒加熱式空気調
和機の冷媒回路図、第5図は従来例を示す冷媒加熱式空
気調和機の冷媒回路図である、 1.21.41.6l−EEall、2.22.42.
62−[1!H方弁、3.23.43.63・・・室内
熱交換器、 4.24.44.64・・・減圧機構、5
,25.45.65・・・室外熱交換器、 6.26.
46.66・・・冷媒加熱器、7.27.47.67・
・・冷媒ポンプ、48.68・・・気液分離器。 代理人    森   本   義   弘第 図 第 図 第 図 I 式痰ネ雌厖、 $、、t4%石村 第4図
1, 2, 3, and 4 are the first and second embodiments of the present invention, respectively. A refrigerant circuit diagram of a refrigerant heating type air conditioner showing the third and fourth embodiments, and FIG. 5 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a conventional example. EEall, 2.22.42.
62-[1! H-way valve, 3.23.43.63... Indoor heat exchanger, 4.24.44.64... Pressure reduction mechanism, 5
, 25.45.65...Outdoor heat exchanger, 6.26.
46.66... Refrigerant heater, 7.27.47.67.
... Refrigerant pump, 48.68 ... Gas-liquid separator. Agent Yoshihiro Morimoto Figure Figure I Formula phlegm female, $, t4% Ishimura Figure 4

Claims (1)

【特許請求の範囲】 1、少なくとも圧縮機、四方弁、室外熱交換器、減圧機
構、室内熱交換器、冷媒ポンプ、冷媒加熱器を備え、前
記冷媒ポンプと前記冷媒加熱器と前記四方弁と前記室内
熱交換器と前記室外熱交換器を順次環状に配管接続し、
前記室内熱交換器と前記室外熱交換器をつなぐ配管の一
部に前記室内熱交換器から前記室外熱交換器への方向に
のみ冷媒の流通を可能にする第1の逆止弁を設け、前記
室外熱交換器と前記冷媒ポンプの間に第1の電磁弁を設
け、前記冷媒加熱器と前記四方弁をつなぐ配管の一部に
前記冷媒加熱器から前記四方弁への方向にのみ冷媒の流
通を可能にする第2の逆止弁を設け、前記第2の逆止弁
の入口側と出口側をそれぞれ第2、第3の電磁弁を介し
て前記圧縮機の吸入側と吐出側に接続し、さらに前記圧
縮機の吸入側を第4の電磁弁および前記四方弁を順次経
由し、前記室外熱交換器と前記第1の電磁弁とを結ぶ配
管に接続して冷房用回路を構成し、前記第1の逆止弁と
逆向きの第3の逆止弁およびこの第3の逆止弁と直列に
接続した減圧機構を前記第1の逆止弁に並列に接続した
冷媒加熱式空気調和機。 2、第1の逆止弁と室外熱交換器を結ぶ配管の途中に気
液分離器を設け、前記気液分離器のガス側出口と室外熱
交換器、第1の電磁弁を順次接続し、さらに前記気液分
離器の液側出口を第5の電磁弁を途中に備えた配管で前
記室外熱交換器と前記第1の電磁弁とを結ぶ配管に接続
した請求項1記載の冷媒加熱式空気調和機。 3、冷媒ポンプと並列に室外熱交換器から冷媒加熱器へ
の方向にのみ冷媒の流通を可能にする第4の逆止弁を設
けた請求項1または2記載の冷媒加熱式空気調和機。 4、請求項1乃至3のうちのいずれか1つに記載の冷媒
加熱式空気調和機において、その冷媒加熱運転起動時に
先ず圧縮機を用いて起動し、冷凍サイクルが安定した時
点で冷媒ポンプを起動し、両者を並行して運転する過程
を経た後、圧縮機の吸入側の第2の電磁弁を閉じ、圧縮
機内部の冷媒を排出させた後に、吐出側の第3の電磁弁
を閉じ、圧縮機を停止して冷媒ポンプ単独の運転に切り
換える冷媒加熱式空気調和機の起動方法。
[Claims] 1. At least a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing mechanism, an indoor heat exchanger, a refrigerant pump, and a refrigerant heater, the refrigerant pump, the refrigerant heater, and the four-way valve The indoor heat exchanger and the outdoor heat exchanger are sequentially connected with piping in a ring shape,
A first check valve that allows refrigerant to flow only in the direction from the indoor heat exchanger to the outdoor heat exchanger is provided in a part of the piping connecting the indoor heat exchanger and the outdoor heat exchanger, A first electromagnetic valve is provided between the outdoor heat exchanger and the refrigerant pump, and a part of the piping connecting the refrigerant heater and the four-way valve is provided with a first electromagnetic valve that controls refrigerant only in the direction from the refrigerant heater to the four-way valve. A second check valve that enables flow is provided, and the inlet side and outlet side of the second check valve are connected to the suction side and discharge side of the compressor via second and third electromagnetic valves, respectively. and further connect the suction side of the compressor to piping connecting the outdoor heat exchanger and the first solenoid valve via the fourth solenoid valve and the four-way valve in order to form a cooling circuit. and a refrigerant heating type in which a third check valve facing oppositely to the first check valve and a pressure reducing mechanism connected in series with the third check valve are connected in parallel to the first check valve. Air conditioner. 2. A gas-liquid separator is provided in the middle of the piping connecting the first check valve and the outdoor heat exchanger, and the gas-side outlet of the gas-liquid separator, the outdoor heat exchanger, and the first solenoid valve are sequentially connected. Refrigerant heating according to claim 1, further comprising: a liquid side outlet of the gas-liquid separator connected to a pipe connecting the outdoor heat exchanger and the first solenoid valve through a pipe having a fifth solenoid valve in the middle. type air conditioner. 3. The refrigerant-heating air conditioner according to claim 1 or 2, further comprising a fourth check valve that allows the refrigerant to flow only in the direction from the outdoor heat exchanger to the refrigerant heater in parallel with the refrigerant pump. 4. In the refrigerant heating type air conditioner according to any one of claims 1 to 3, when the refrigerant heating operation is started, the compressor is first used, and the refrigerant pump is turned on when the refrigeration cycle is stabilized. After starting up and running both in parallel, the second solenoid valve on the suction side of the compressor is closed, and after the refrigerant inside the compressor is discharged, the third solenoid valve on the discharge side is closed. , A method for starting a refrigerant-heated air conditioner that stops the compressor and switches to operating the refrigerant pump alone.
JP19332790A 1990-07-20 1990-07-20 Refrigerant heating type air conditioner and starting method thereof Expired - Lifetime JP2682729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19332790A JP2682729B2 (en) 1990-07-20 1990-07-20 Refrigerant heating type air conditioner and starting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19332790A JP2682729B2 (en) 1990-07-20 1990-07-20 Refrigerant heating type air conditioner and starting method thereof

Publications (2)

Publication Number Publication Date
JPH0480560A true JPH0480560A (en) 1992-03-13
JP2682729B2 JP2682729B2 (en) 1997-11-26

Family

ID=16306057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19332790A Expired - Lifetime JP2682729B2 (en) 1990-07-20 1990-07-20 Refrigerant heating type air conditioner and starting method thereof

Country Status (1)

Country Link
JP (1) JP2682729B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533112B1 (en) * 2008-08-25 2015-07-02 엘지전자 주식회사 Heat pump system and method for controlling the same
CN106642773A (en) * 2016-12-12 2017-05-10 珠海格力电器股份有限公司 Air conditioning system and the controlling method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533112B1 (en) * 2008-08-25 2015-07-02 엘지전자 주식회사 Heat pump system and method for controlling the same
CN106642773A (en) * 2016-12-12 2017-05-10 珠海格力电器股份有限公司 Air conditioning system and the controlling method thereof

Also Published As

Publication number Publication date
JP2682729B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
US7272948B2 (en) Heat pump with reheat and economizer functions
KR100621881B1 (en) Air conditioner
JP4031560B2 (en) Air conditioner
JPH0480560A (en) Refrigerant heating type air conditioner and starting method therefor
JP2000283594A (en) Gas heat pump air conditioner
JPH0894205A (en) Air conditioner
JP3594570B2 (en) Two-stage compression type compressor and refrigeration system using the same
JP2924954B2 (en) Heat pump system for both cooling and heating
JP2682730B2 (en) Refrigerant heating type air conditioner and control method thereof
JP3480217B2 (en) Air conditioner
JP2001227799A (en) Multi-chamber type air conditioner
JP4585422B2 (en) Gas heat pump type air conditioner
JPH1163708A (en) Air conditioner
JP4052400B2 (en) Air conditioner
JP3291424B2 (en) Air conditioner
JP2888688B2 (en) Refrigerant heating air conditioner and control method thereof
JPS6346350B2 (en)
JPS632859Y2 (en)
JPS6244277Y2 (en)
JP2005061740A (en) Air conditioner
JPH06174313A (en) Air conditioner
JPH03230060A (en) Heat pump type air conditioner
JPS62776A (en) Heat pump type air conditioner
JPH08105667A (en) Air conditioner
JPH03195865A (en) Heating and cooling device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 13

EXPY Cancellation because of completion of term