JPH0470352B2 - - Google Patents

Info

Publication number
JPH0470352B2
JPH0470352B2 JP61502694A JP50269486A JPH0470352B2 JP H0470352 B2 JPH0470352 B2 JP H0470352B2 JP 61502694 A JP61502694 A JP 61502694A JP 50269486 A JP50269486 A JP 50269486A JP H0470352 B2 JPH0470352 B2 JP H0470352B2
Authority
JP
Japan
Prior art keywords
temperature
column
stripper
ibp
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61502694A
Other languages
Japanese (ja)
Other versions
JPS62501572A (en
Inventor
Kyaroru Jei Risukyanpu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Systems USA Inc
Original Assignee
Foxboro Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxboro Co filed Critical Foxboro Co
Publication of JPS62501572A publication Critical patent/JPS62501572A/en
Publication of JPH0470352B2 publication Critical patent/JPH0470352B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/12Controlling or regulating

Description

請求の範囲 1 導入ライン、ストリツピング用蒸気導入ライ
ン、複数のトレー及びオーバーヘツド蒸気除去ラ
インを有し、蒸留プロセスが実施される第一蒸留
塔の塔底にある製品除去ラインにおける目的の液
状生成物の組成を制御する方法であつて、該塔の
塔底における液体から蒸発した成分の分圧を測定
し;該塔の塔底における液体温度を監視し;該分
圧と温度を用いて該塔の塔底における液体の初留
点(IBP)を得;該IBPを目的の組成と対比し;
そして目的組成に近づけるように該蒸留プロセス
を調整することを特徴とする制御法。
Claim 1: A desired liquid product in a product removal line at the bottom of the first distillation column in which the distillation process is carried out, having an introduction line, a stripping vapor introduction line, a plurality of trays and an overhead vapor removal line. A method for controlling the composition of a column, the method comprising: measuring the partial pressure of a component vaporized from a liquid at the bottom of the column; monitoring the temperature of the liquid at the bottom of the column; using the partial pressure and temperature to control the composition of the column. Obtain the initial boiling point (IBP) of the liquid at the bottom of the column; compare the IBP with the desired composition;
and a control method characterized by adjusting the distillation process so as to approach a target composition.

2 該第一蒸留塔が第二蒸留塔からの引出し液
(draw)を受け入れる導入ラインを有するストリ
ツパー塔であり、該第二蒸留塔がマルチドロー塔
であり、蒸発した成分を該オーバーヘツド蒸気除
去ラインで該マルチドロー塔に戻す、請求の範囲
第1項に記載の方法。
2. The first distillation column is a stripper column having an inlet line for receiving a draw from the second distillation column, and the second distillation column is a multi-draw column, and the evaporated components are removed from the overhead vapor. 2. The method of claim 1, wherein the method is returned to the multi-draw column in a line.

3 該IBPが平衡フラツシユ蒸発(EFV)カーブ
のIBPである、請求の範囲第1項に記載の方法。
3. The method of claim 1, wherein the IBP is an equilibrium flash evaporation (EFV) curve IBP.

4 該EFVのIBPが大気圧におけるIBPである、
請求の範囲第3項に記載の方法。
4. The IBP of the EFV is the IBP at atmospheric pressure,
The method according to claim 3.

5 該調整が該各種ラインにおける流れを調整す
ることから成る、請求の範囲第1項に記載の方
法。
5. The method of claim 1, wherein said adjustment comprises adjusting the flow in said various lines.

6 該マルチドロー塔からの引き出し液を受け入
れる導入ラインを有する複数のストリツパー塔を
更に有し、そして該追加ストリツパー塔において
も同様の測定工程、監視工程、IBPを得る工程、
対比工程及び調整工程を更に実施することから、
成る請求の範囲第2項に記載の方法。
6. further comprising a plurality of stripper columns having inlet lines for receiving the draw liquid from the multi-draw column, and a step of obtaining similar measuring steps, monitoring steps, and IBPs in the additional stripper columns;
By further carrying out the comparison process and adjustment process,
A method according to claim 2, comprising:

7 該調整が該各種ラインにおける流れを調整す
ることから成る、請求の範囲第6項に記載の方
法。
7. The method of claim 6, wherein the adjustment comprises adjusting the flow in the various lines.

8 該マルチドロー塔が原油を受け入れる、請求
の範囲第2項に記載の方法。
8. The method of claim 2, wherein the multi-draw tower receives crude oil.

発明の分野 本発明は液体混合物からの蒸留留分の取り出
し、更に詳しくは石油原油塔におけるカツトポイ
ントの制御に関する。
FIELD OF THE INVENTION This invention relates to the removal of distillate fractions from liquid mixtures, and more particularly to the control of cut points in petroleum crude towers.

発明の背景 サイド引出し液(side draw)の温度をカツト
ポイント(cut points)と、多数の塔パラメータ
ーを同時に監視することによつて相関させること
は既に知られている〔例えば、マクグロー−ヒル
社(McGraw−Hill)刊、ネルソン(Nelson)
著、“ペトロリウム・リフアイナリー・エンジニ
アリング(Petroleum Refinery Engineering)”、
第4版、第473頁以降(1958年)〕。
BACKGROUND OF THE INVENTION It is already known to correlate the temperature of a side draw with cut points by simultaneously monitoring a number of column parameters (e.g. McGraw-Hill, Inc.). McGraw-Hill), Nelson.
Author, “Petroleum Refinery Engineering”
4th edition, pp. 473 et seq. (1958)].

発明の概要 本発明者は引き抜くべき任意の重質留分と軽質
物質との間のカツトポイントが単にその重質留分
用ストリツパーの塔底トレー廻りのパラメーター
に基づいて制御できることを発見した。
SUMMARY OF THE INVENTION The inventor has discovered that the cut point between any heavy fraction and light material to be withdrawn can be controlled simply based on parameters around the bottom tray of the heavy fraction stripper.

特に、本発明者はその留分点が塔底トレー内の
液体の特性を用いることによつて制御できること
を発見した。
In particular, the inventor has discovered that the distillation point can be controlled by using the properties of the liquid in the bottom tray.

好ましい態様において、その特性は液体の分圧
である。
In a preferred embodiment, the characteristic is the partial pressure of the liquid.

更に好ましい態様において、その特性は液体の
平衡フラツシユ蒸発カーブ(equilibrium flash
vaporization curve)の大気圧における初留点
(“IBP/EFV”)である。
In a further preferred embodiment, the property is based on the equilibrium flash evaporation curve of the liquid.
vaporization curve) at atmospheric pressure (IBP/EFV).

“カツトポイント”とは真沸点(“TBP”)カ
ーブ(すなわち、還流の大きい塔(heavily
refluxed tower)において、除去される混合物、
例えば原油の百分率対その除去を達成する、所定
の分離度に達する到達温度のバツチプロセスカー
ブ)上のその初留点温度(〓)を意味する。
The “cut point” is the true boiling point (“TBP”) curve (i.e., the
refluxed tower), the mixture being removed;
For example, it means its initial boiling point temperature (〓) on a batch process curve of the percentage of crude oil versus the temperature reached at which a predetermined degree of separation is achieved, achieving its removal.

好ましい態様 次に、図面及び本発明の好ましい態様の説明を
することにする。
Preferred Embodiments Next, drawings and descriptions of preferred embodiments of the invention will be provided.

図面 第1図はこの方法の実施に関連する概略図であ
る。
Drawings FIG. 1 is a schematic diagram relating to the implementation of the method.

第2図はカツトポイントを与える一対の交差カ
ーブである。
FIG. 2 shows a pair of intersecting curves that provide cut points.

工程 普通の配置を取る原油塔は第1図に示される通
りである。第1図において、塔10は第二蒸留塔
であつて、約50段の棚板を含む。塔10にはライ
ン12を通して加熱された原油が連続供給され
た。塔10はマルチドロー塔(multidraw
column)であつて、それよりその高さ方向に順
に引出しライン14(常圧軽油〔atmospheric
gas oil〕用)、16(ジイーゼル油用)、18
(灯油用)及び20(重質ナフサ用)が出ていた。
これらの引出しラインはそれぞれ第一蒸留塔たる
ストリツパー22,24,26及び28のそれぞ
れのトツププレートの上部に通じていた(各スト
リツパーは約6段の棚板を有し、そして頂部に蒸
発した成分をマルチドロー塔に戻すオーバーヘツ
ド蒸気除去ラインを有する)。尚、第1図におい
てQBPAはボトムポンプ回りにおける熱の流れを、
QTPAはトツプポンプ回りにおける熱の流れを、そ
してQOVHDはオーバーヘツドコンデンサーへの熱
の流れをそれぞれ意味し、またCONDはオーバ
ーヘツドコンデンサーから取り出されたスチーム
の凝縮液を意味する。
Process The conventional crude oil tower arrangement is shown in Figure 1. In FIG. 1, column 10 is a second distillation column and includes approximately 50 shelves. Column 10 was continuously fed with heated crude oil through line 12. Tower 10 is a multidraw tower.
column), and the draw-out line 14 (atmospheric light oil) in order in the height direction.
gas oil), 16 (for diesel oil), 18
(for kerosene) and 20 (for heavy naphtha).
These withdrawal lines each led to the top plate of each of the first distillation columns, strippers 22, 24, 26, and 28 (each stripper had approximately six shelves, and the evaporated components were (with an overhead vapor removal line returning the water to the multi-draw column). In addition, in Figure 1, Q BPA represents the heat flow around the bottom pump.
Q TPA refers to the heat flow around the top pump, Q OVHD refers to the heat flow to the overhead condenser, and COND refers to the steam condensate drawn from the overhead condenser.

製造しようとする目的の組成範囲が常圧軽油と
ジイーゼル油との間のカツトポイントとして
704°、ジイーゼル油と灯油との間のカツトポイン
トとして492°及び灯油と重質ナフサとの間のカツ
トポイントとして322°を必要とすることが前以つ
て決定された。本発明を、これら3つの前以つて
決定された各カツトポイント(本明細書では温度
は全てカ氏で示す)において維持し、制御するた
めに用いた。
The target composition range to be manufactured is the cut point between atmospheric gas oil and diesel oil.
It was previously determined to require 704°, 492° as the cut point between diesel oil and kerosene, and 322° as the cut point between kerosene and heavy naphtha. The present invention was used to maintain and control at each of these three predetermined cut points (all temperatures herein indicated in degrees Fahrenheit).

ジイーゼル油と灯油との間のカツトポイントに
関し、本発明を特に詳しく説明する。
The invention will be described in particular detail with respect to the cut point between diesel oil and kerosene.

初めに、引出しライン16が出ている引出しト
レー内の温度をほゞその温度が所望とされるカツ
トポイント約515°と結び付けられると思われるよ
うになるまで監視した。
Initially, the temperature within the drawer tray from which the drawer line 16 exited was monitored until approximately the temperature appeared to be associated with the desired cut point of approximately 515°.

次に、本発明の制御法を用いて正確なカツトポ
イントを調整した。
Next, the precise cut point was adjusted using the control method of the present invention.

次の測定値を1分毎に取つた: (1) ストリツパー24へのスチームの流量(ポン
ド/時間)、 (2) ストリツパー24の塔底から出るジイーゼル
油の流量(バレル/日)、 (3) ジイーゼル油引出しライン16内の温度、 (4) ストリツパー24の塔底から流出するジイー
ゼル油の温度、 (5) ストリツパー24内の圧力(引出しライン1
6が出る引出しトレーにおける圧力として取り
扱い、そして塔10の塔底圧と塔頂圧間に外挿
することによつて決定した)、 (6) ストリツパー24に入るスチームの温度、及
び (7) ストリツパー24に入るスチームの圧力。
The following measurements were taken every minute: (1) Steam flow rate into stripper 24 (lbs/hour), (2) Diesel oil flow rate exiting the bottom of stripper 24 (barrels/day), (3 ) Temperature in the diesel oil drawing line 16, (4) Temperature of the diesel oil flowing out from the bottom of the stripper 24, (5) Pressure in the stripper 24 (drawing line 1
(6) the temperature of the steam entering the stripper 24; and (7) the temperature of the steam entering the stripper 24. Steam pressure entering 24.

これら7個の測定値を、実験データーから得た
比熱を与える定数と共に用いて、ストリツパー2
4の塔底棚板上部の蒸気中のジイーゼル油(“液
体”)の分圧を得る。次に、この分圧を用いてジ
イーゼル油の大気圧IBP/EFVを決定する。この
決定を行う際に、最新の実験データー(通常毎日
取る)から色々な気化割合についてEFV値を
APIテクニカル・データー・ブツク(AIP
Technical Data Book)(1963年、8月)の第
3B3.1に示されるようにしてプロツトすることに
よつて画成される2相領域三角形の頂点を更新す
る定数を用いるのが望ましい。この三角形におい
て、各割合の混合物についての圧力対温度のグラ
フは直線である。(ストリツパー24の塔底トレ
ー上のジイーゼル油の分圧と温度は初留点……す
なわち、100%液体の“IBP”……線と他方の頂
点上の1点を定義する。大気圧IBP/EFVは容易
に求めることができる。) ジイーゼル油と灯油の両者について1日に1回
実験して温度対気化割合のASTMカーブを得た。
Using these seven measurements, along with constants giving the specific heat obtained from experimental data, the stripper 2
Obtain the partial pressure of the diesel oil (“liquid”) in the vapor above the bottom shelf of step 4. Next, use this partial pressure to determine the atmospheric pressure IBP/EFV of diesel oil. In making this determination, we obtain EFV values for various vaporization rates from the most recent experimental data (usually taken daily).
API Technical Data Book (AIP
Technical Data Book) (August 1963)
It is preferable to use constants that update the vertices of the two-phase region triangle defined by plotting as shown in 3B3.1. In this triangle, the pressure versus temperature graph for each proportion of the mixture is a straight line. (The partial pressure and temperature of the diesel oil on the bottom tray of stripper 24 define the initial boiling point...i.e., 100% liquid "IBP"... line and a point on the other vertex.Atmospheric pressure IBP/ EFV is easily determined.) ASTM curves of temperature versus vaporization rate were obtained for both diesel oil and kerosene by conducting experiments once a day.

通常の転化率を用いてそれぞれについて真沸点
カーブを確立した。これらをそれらの相対容量
(バレル/日)を反映する幅にわたつてプロツト
し、そして灯油に関してカーブを引いた。すべて
は第2図に示される通りである。カーブの交点が
カツトポイントの温度である。
A true boiling point curve was established for each using normal conversions. These were plotted over a range reflecting their relative capacity (barrels/day) and a curve was drawn for kerosene. Everything is as shown in FIG. The intersection of the curves is the cut point temperature.

この温度とIBP/EFV温度との差は、IBP/
EFV温度と共に用いてランニング(分毎)カツ
トポイントを得ることができる補正因子を与え
る。
The difference between this temperature and the IBP/EFV temperature is
Provides a correction factor that can be used in conjunction with EFV temperature to obtain a running (minute by minute) cut point.

測定したカツトポイントが正確に所望とされる
ものでない場合、引出ライン16及び18中の流
量を等しいが反対の量で適当に変える。
If the measured cut point is not exactly as desired, the flow rates in withdrawal lines 16 and 18 are varied appropriately by equal but opposite amounts.

同じ方法で常圧軽油とジイーゼル油との間のカ
ツトポイントも上記制御におけるストリツパー2
4と同じようにして制御の焦点としてストリツパ
ー22を用いて制御した。同じようにして灯油と
重質ナフサとの間のカツトポイントも制御の焦点
としてストリツパー26を用いて制御した。重質
ナフサと軽質ナフサとの間のカツトポイントは従
来法で制御した。ただし、本発明の方法も勿論用
いることができる。
In the same way, the cut point between normal pressure light oil and diesel oil is also set to stripper 2 in the above control.
Control was performed in the same manner as in 4 using the stripper 22 as the control focus. The cut point between kerosene and heavy naphtha was similarly controlled using stripper 26 as the control focus. The cut point between heavy naphtha and light naphtha was controlled by the conventional method. However, the method of the present invention can of course also be used.

JP50269486A 1985-05-03 1986-04-21 Control of distillation cut point Granted JPS62501572A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73027785A 1985-05-03 1985-05-03
US730277 1985-05-03

Publications (2)

Publication Number Publication Date
JPS62501572A JPS62501572A (en) 1987-06-25
JPH0470352B2 true JPH0470352B2 (en) 1992-11-10

Family

ID=24934671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50269486A Granted JPS62501572A (en) 1985-05-03 1986-04-21 Control of distillation cut point

Country Status (6)

Country Link
EP (1) EP0221146B1 (en)
JP (1) JPS62501572A (en)
AU (1) AU591495B2 (en)
CA (1) CA1298233C (en)
DE (1) DE3680636D1 (en)
WO (1) WO1986006739A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919366B2 (en) 1998-05-22 2005-07-19 Avanir Pharmaceuticals Benzimidazole derivatives as modulators of IgE
DK1368028T3 (en) 2001-03-12 2007-12-27 Avanir Pharmaceuticals Benzimidazole Compounds for IgE Modulation and Inhibition of Cellular Profiling
US7625847B2 (en) 2002-08-05 2009-12-01 Nippon Oil Corporation Lubricating oil compositions
US7563752B2 (en) 2002-08-05 2009-07-21 Nippon Oil Corporation Lubricating oil compositions
WO2004020557A1 (en) 2002-08-27 2004-03-11 Nippon Oil Corporation Lubricating composition
TWI276631B (en) 2002-09-12 2007-03-21 Avanir Pharmaceuticals Phenyl-aza-benzimidazole compounds for modulating IgE and inhibiting cellular proliferation
AU2003270426A1 (en) 2002-09-12 2004-04-30 Avanir Pharmaceuticals PHENYL-INDOLE COMPOUNDS FOR MODULATING IgE AND INHIBITING CELLULAR PROLIFERATION
JP4578115B2 (en) 2004-02-04 2010-11-10 Jx日鉱日石エネルギー株式会社 Lubricating oil composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320158A (en) * 1964-11-06 1967-05-16 Phillips Petroleum Co Crude oil fractionation method
US3365386A (en) * 1966-04-04 1968-01-23 Phillips Petroleum Co Process and apparatus for producing variable boiling point distillates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558423A (en) * 1983-05-27 1985-12-10 Phillips Petroleum Company Utilization of an ASTM end point temperature for controlling a fractional distillation process
JPS6038001A (en) * 1983-08-09 1985-02-27 Nippon Zeon Co Ltd Controlling method of distillation tower

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320158A (en) * 1964-11-06 1967-05-16 Phillips Petroleum Co Crude oil fractionation method
US3365386A (en) * 1966-04-04 1968-01-23 Phillips Petroleum Co Process and apparatus for producing variable boiling point distillates

Also Published As

Publication number Publication date
AU5862986A (en) 1986-12-04
AU591495B2 (en) 1989-12-07
EP0221146A1 (en) 1987-05-13
DE3680636D1 (en) 1991-09-05
EP0221146B1 (en) 1991-07-31
JPS62501572A (en) 1987-06-25
EP0221146A4 (en) 1987-08-12
WO1986006739A1 (en) 1986-11-20
CA1298233C (en) 1992-03-31

Similar Documents

Publication Publication Date Title
US9546324B2 (en) Method for increasing gas oil yield and energy efficiency in crude oil distillation
US4395330A (en) Process for solvent deasphalting of residual hydrocarbon oils
US4087354A (en) Integrated heat exchange on crude oil and vacuum columns
US2158425A (en) Vacuum steam distillation of heavy oils
JPH0470352B2 (en)
Luyben Design and control comparison of alternative separation methods for n‐heptane/isobutanol
EP1487553A1 (en) A compact rectifying unit for separation of mixed fluids and rectifying process for separation of such mixed fluids
Geddes A general index of fractional distillation power for hydrocarbon mixtures
US4358346A (en) Control of alcohol distillation
US2134882A (en) Fractionating apparatus and method of fractionation
Ling et al. Remixing analysis of four‐product dividing‐wall columns
US3365386A (en) Process and apparatus for producing variable boiling point distillates
Arjmand et al. Energy saving in crude oil atmospheric distillation columns by modifying the vapor feed inlet tray
US4726894A (en) Distillation cut point control
US3321380A (en) Controlling the heat input to a distillation column in response to temperatures in the system
Manyele Analysis of the effect of feed composition and thermal conditions on distillation plant performance using a computer model
US3230158A (en) Method and apparatus for reboiling a heated system
US4501657A (en) Preheating of distillation feed
US1942858A (en) Distillation apparatus
US2302187A (en) Method of separating liquids and gases
US2059527A (en) Petroleum conversion
CN113975839B (en) Grading flash evaporation equipment and process
US2341389A (en) Treatment of hydrocarbon oils
Koggersbøl et al. Distillation column control benchmarks: four typical problems
EP3436555A1 (en) Methods for fractionation of lubricant feeds