JPH0463325B2 - - Google Patents

Info

Publication number
JPH0463325B2
JPH0463325B2 JP61058431A JP5843186A JPH0463325B2 JP H0463325 B2 JPH0463325 B2 JP H0463325B2 JP 61058431 A JP61058431 A JP 61058431A JP 5843186 A JP5843186 A JP 5843186A JP H0463325 B2 JPH0463325 B2 JP H0463325B2
Authority
JP
Japan
Prior art keywords
conduit
point
conduits
detection
center point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61058431A
Other languages
Japanese (ja)
Other versions
JPS61223616A (en
Inventor
Samyueru Mizeraku Denisu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elsag International BV
Original Assignee
Elsag International BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24875101&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0463325(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Elsag International BV filed Critical Elsag International BV
Publication of JPS61223616A publication Critical patent/JPS61223616A/en
Publication of JPH0463325B2 publication Critical patent/JPH0463325B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/64Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by measuring electrical currents passing through the fluid flow; measuring electrical potential generated by the fluid flow, e.g. by electrochemical, contact or friction effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • G01F1/8495Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits with multiple measuring conduits

Description

【発明の詳細な説明】 (発明の分野及び背景) 本発明は、一般に質量流量計量技術に関し、特
には、各々が流量のおよそ半分を流す離間した2
本の管を使用する、新規且つ有用な質量流量の計
量装置及び方法に関する。これらの管は、管に往
復角回転を付与する為に固定点同志間で揺動せし
められる。
DETAILED DESCRIPTION OF THE INVENTION Field and Background of the Invention The present invention relates generally to mass flow metering technology, and more particularly, to mass flow metering techniques, in which
The present invention relates to a new and useful mass flow metering device and method using a main tube. These tubes are oscillated between fixed points to impart reciprocating angular rotation to the tubes.

質量流量を直接的に計量する為、流動する流体
の角運動の作用効果を利用する装置が知られてい
る。例えば米国特許第2865201号及び米国特許第
3355944号及び米国特許第3485098号を参照された
い。
Devices are known that utilize the effects of angular motion of a flowing fluid to directly measure mass flow. For example, U.S. Patent No. 2,865,201 and U.S. Pat.
See No. 3,355,944 and US Pat. No. 3,485,098.

米国特許第4109524号には、導管の一部の区分
が長手方向に角回転する様、該区分を往復動する
事によつて、導管を通過する質量流量を計量する
為の装置及び方法が記載されている。該区分に
は、これを往復運動させる為、また該区分に行使
される力にして、該区分を通過する質量流量によ
つて発生する見掛け上の力に基く力を測定する為
のリンク機構が連結される。斯くしてこうした態
様において質量流量の直接計量が得られる。
U.S. Pat. No. 4,109,524 describes an apparatus and method for metering mass flow through a conduit by reciprocating a section of the conduit such that the section undergoes longitudinal angular rotation. has been done. The section has a linkage for reciprocating it and for measuring the force exerted on the section which is based on the apparent force generated by the mass flow through the section. Concatenated. Direct metering of mass flow rate is thus obtained in such embodiments.

こうした力を使用しての質量流量の計量方法を
第1図を参照して説明する。第1図はX,Y,Z
の座標系でのベクトル配列を示す。
A method of measuring mass flow rate using such force will be described with reference to FIG. Figure 1 shows X, Y, Z
shows a vector array in the coordinate system of

速度ベクトルでもつて流動する質量流量m
に、或る軸を中心とする角速度をもたらす力
Fcが作用する時、力は、c=2m×とし
て観測される。
Mass flow rate m that flows with velocity vector
A force that causes an angular velocity about an axis to
When Fc acts, the force is observed as c=2m×.

第1図に番号10で示される流体搬送用の管
が、もしc−平面内で矢印12で示される時
計回り方向に回転されると、第1図に示す如き角
速度が生じる。しかし、仮に導管10を矢印1
2で示される一方向に回転せずに番号16で示す
ピボツトを中心として前後に揺動させると、角速
度の大きさと方向も又揺動し、従つて力cの
大きさと方向は比例的に揺動する。
If the fluid carrying tube, designated 10 in FIG. 1, is rotated in the c-plane in a clockwise direction as indicated by arrow 12, an angular velocity as shown in FIG. 1 will result. However, if the conduit 10 is
If it is not rotated in one direction as shown by 2, but is swung back and forth about the pivot shown as 16, the magnitude and direction of the angular velocity will also be swung, and therefore the magnitude and direction of force c will be swung proportionally. move.

管に沿つた任意の点、例えば点14での変位ベ
クトルは、小振幅に対しては軸だけに沿つて存
在するものとして表し得る。従つて、管10が、
自らのピボツト点16を中心として正弦振動的な
駆動体によつて極く小さい振幅で揺動せしめられ
る時、ピボツト点16より遠方の点14でのその
変位速度及び加速度ベクトルの大きさは、第2図
に示されるグラフによつて表される。軸に沿つ
ての点14での変位は実線20によつて示され
る。点14の速度vは2点鎖線22によつて示さ
れる。ここでの単位はインチ/秒でありこれは
dy/dtを表す。
The displacement vector at any point along the tube, such as point 14, can be represented as lying only along the axis for small amplitudes. Therefore, the tube 10 is
When it is oscillated about its own pivot point 16 with extremely small amplitude by a sinusoidally vibrating driving body, the displacement velocity and the magnitude of the acceleration vector at a point 14 far from the pivot point 16 are as follows. This is represented by the graph shown in Figure 2. The displacement at point 14 along the axis is indicated by solid line 20. The velocity v at point 14 is indicated by a dash-dot line 22. The unit here is inches/second, which is
Represents dy/dt.

加速度Aは実線26で示され、これは時間に関
する変位の二次微分係数を表す。この単位はイン
チ/秒2でありこれはd2y/dt2を表す。
Acceleration A is shown as a solid line 26, which represents the second derivative of displacement with respect to time. Its units are inches/second 2 , which represents d 2 y/dt 2 .

管内を流体が流通すると、質量流量に作用する
力c=2m×も又発生する。ニユートンの
第3法則によれば、管自体に作用し且つ加速度
A′に関連して大きさの等しい逆方向の力が発生
する。−c及び′は軸に沿つて発生する力で
ある。加速度′の大きさは破線28によつて示
される。前述した力−cの定義から、この力が
導管に加えられる駆動力に基く加速度とは位相が
90°異つて点14の速度に比例する事が理解され
よう。点14に作用する合成力は、位相が90°異
るこうした駆動力及び力−cの2つを合計した
ものとなる。一点鎖線24は、駆動力及び力−
Fcの和に比例する加速度及び′の合計値を表
わす。従つて、本来の駆動力の加速度と合成され
た加速度との間の位相差φは、質量流量に直接的
に比例する力−cの直接のめやすとなる。
As the fluid flows through the tube, a force c=2m× acting on the mass flow rate is also generated. According to Newton's third law, equal and opposite forces are generated acting on the tube itself and related to the acceleration A'. -c and ' are the forces occurring along the axis. The magnitude of acceleration' is indicated by dashed line 28. From the definition of force -c mentioned above, this force is out of phase with the acceleration based on the driving force applied to the conduit.
It will be understood that the 90° difference is proportional to the velocity of point 14. The resultant force acting on point 14 is the sum of these driving forces and force -c, which are 90° out of phase. The dashed line 24 indicates the driving force and the force -
It represents the total value of acceleration and ′ which is proportional to the sum of Fc. Therefore, the phase difference φ between the acceleration of the original driving force and the resulting acceleration is a direct measure of the force -c, which is directly proportional to the mass flow rate.

もし駆動力が正弦曲線的であれば、その変位、
速度及び加速度も同様に正弦曲線的となり、その
位相は夫々90°及び180°相違する。これによつて
位相差φは、それが駆動力に力−cを加えた合
成力に対する駆動力の変位、速度或いは加速度関
数のいずれに関して測定されるに拘らず等しいも
のとなる。
If the driving force is sinusoidal, its displacement,
Velocity and acceleration are similarly sinusoidal, and their phases differ by 90° and 180°, respectively. This ensures that the phase difference φ is the same regardless of whether it is measured in terms of displacement, velocity, or acceleration function of the driving force relative to the resultant force of the driving force plus force -c.

(発明の概要) 本発明に従えば、平行状態の一対の導管が、両
端を固定支持され横に相並んだ関係で配設され
る。導管の中央で且つそれらの間部分には、導管
を互いに繰り返し引寄せそして遠ざける横方向の
揺動を導管に加える為の駆動手段が設けられる。
こうした揺動は導管の柔軟性及び導管の両端が固
定位置に保持されている事によつて可能とされる
ものである。
SUMMARY OF THE INVENTION In accordance with the present invention, a pair of parallel conduits are fixedly supported at both ends and disposed in side-by-side relationship. At the center of the conduits and in the portions between them, drive means are provided for applying lateral oscillations to the conduits that repeatedly draw the conduits towards and away from each other.
This oscillation is made possible by the flexibility of the conduit and the fact that both ends of the conduit are held in fixed positions.

駆動手段の各側で且つ駆動手段と各側の支持体
とのおよそ中間の位置にセンサが設けられる。こ
れらセンサは、センサの位置における導管の速度
に対応する信号を発生する。質量流量を供給する
為の継手及び通路が支持体に配設される。質量流
量は一方の支持体を貫き2本の導管に概略均等に
分流され、次いで再合流され他方の支持体から送
出される。
A sensor is provided on each side of the drive means and approximately midway between the drive means and the support on each side. These sensors generate signals corresponding to the velocity of the conduit at the location of the sensor. Fittings and passageways are arranged in the support for providing mass flow. The mass flow is divided approximately equally into two conduits through one support, then recombined and delivered out the other support.

導管内を流体が流通しない場合、駆動手段の揺
動の振動数は2つのセンサによつて検出される揺
動の振動数と正確に一致し且つ同位相となる。し
かしながら、質量流量が導管を流通する場合、全
てのセンサは、駆動振動数と同一の振動数を検出
し続ける事となり、質量流量の方向に於て上流側
のセンサでの駆動振動数の位相が遅れ、一方下流
側のセンサでの駆動振動数の位相が進む。こうし
た位相の進み及び遅れは、導管を流通する質量流
量のめやすとして直接使用する事が出来る。
When no fluid flows through the conduit, the frequency of the oscillation of the drive means exactly matches and is in phase with the frequency of the oscillation detected by the two sensors. However, when mass flow flows through a conduit, all sensors continue to detect the same frequency as the drive frequency, and the phase of the drive frequency at the upstream sensor in the direction of mass flow is lag, while the phase of the drive frequency at the downstream sensor advances. These phase leads and lags can be used directly as a measure of the mass flow rate through the conduit.

(発明の目的) 従つて、本発明の目的は、流体の質量流量を計
量する為の装置にして、両端及び長手方向長さ及
び中心点を有する平行状態の一対の導管と、前記
両端を実質的に固定状態に支持する為の支持体
と、導管の両端の中間部分を長手方向を横断する
方向に揺動する為の駆動手段とによつて成立ち、
導管に流体を供給し且つ流体流れを各導管に実質
的に均等に分流する為に継手手段が支持手段に設
けられ、更に中心点から離間し且つ両端部から離
間した位置に少くとも一つの変動量検出センサが
配設されるような装置を提供する事に有る。該変
動量を検出するセンサが変位、速度或いは加速度
のいずれかを検出しうる。検出された運動値と駆
動運動値との位相差が導管を貫流する流体の質量
流量のめやすである。
OBJECTS OF THE INVENTION It is therefore an object of the present invention to provide a device for measuring the mass flow rate of a fluid, comprising a pair of parallel conduits having opposite ends, a longitudinal length and a center point, and a device for measuring the mass flow rate of a fluid. It consists of a support body for supporting the conduit in a fixed state, and a drive means for swinging the intermediate portions of both ends of the conduit in a direction transverse to the longitudinal direction,
Coupling means are provided on the support means for supplying fluid to the conduits and distributing the fluid flow substantially equally to each conduit, and further includes at least one variation at a location spaced from the center point and spaced from each end. The object of the present invention is to provide a device in which a quantity detection sensor is provided. A sensor that detects the amount of variation can detect displacement, velocity, or acceleration. The phase difference between the detected motion value and the drive motion value is a measure of the mass flow rate of the fluid flowing through the conduit.

本発明の他の目的は、導管の中心点に駆動手段
が備えられ且つ中心点の各側に一対のセンサが設
けられ、上流側のセンサで駆動力の位相が遅れ、
そして下流側のセンサで駆動力の位相が進み、こ
うした位相の進み及び遅れが質量流量の測定値の
基礎となる様な装置を提供する事に有る。
Another object of the invention is to provide a drive means at the center point of the conduit and a pair of sensors on each side of the center point, the upstream sensor delaying the phase of the drive force;
The object of the present invention is to provide a device in which the phase of the driving force is advanced by a sensor on the downstream side, and such phase advance and lag become the basis of the measured value of the mass flow rate.

本発明の他の目的は、簡潔な形状で堅牢且つ製
造コストの安価な質量流量を計量する為の装置を
提供する事に有る。
Another object of the invention is to provide a device for metering mass flow that is compact, robust and inexpensive to manufacture.

本発明の他の目的は、揺動する平行状態の導管
の検出された変動と導管の中心点付近に加えられ
た揺動力との間の位相差を利用する、質量流量を
計量する為の方法を提供する事に有る。
Another object of the present invention is to provide a method for metering mass flow that utilizes the phase difference between the detected fluctuations of a swinging parallel conduit and the swinging force applied near the center point of the pipe. It lies in providing the following.

(好ましい実施例の説明) 第3図を参照されたい。ここに示す本発明の具
体例は、入口継手30に供給される質量流量計量
の為の装置より成立つている。入口継手30は、
一対の導管36及び37の端部34及び35を固
定する第1の支持体32に連結される。Y字形通
路38が、入口継手30に流入する質量流れを2
つの概略等しい分流へと分割する為の第1の支持
体32内に画成される。質量流量の半分は導管3
6に供給され、残余の半分は導管37に配分され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENT Please refer to FIG. The embodiment of the invention shown here consists of a device for mass flow metering supplied to the inlet fitting 30. The inlet joint 30 is
It is connected to a first support 32 which fixes the ends 34 and 35 of a pair of conduits 36 and 37. A Y-shaped passageway 38 directs the mass flow into the inlet fitting 30 by 2
defined within a first support 32 for splitting into two generally equal branch streams. Half of the mass flow is in conduit 3
6 and the remaining half is distributed to conduit 37.

導管36及び37は、出口継手44を担持する
第2の支持体40に夫々連結された他方の端部4
2及び43を備えている。Y字形の別の通路46
が、導管36及び37の流量を再合流し出口継手
44へと送流する為第2の支持体40内に画成さ
れる。
Conduits 36 and 37 have their other ends 4 connected respectively to a second support 40 carrying an outlet fitting 44.
2 and 43. Another Y-shaped passage 46
is defined in second support 40 for recombining the flow rates of conduits 36 and 37 and directing them to outlet fitting 44 .

駆動機構48が、導管36及び37の間で且つ
それら導管の中央付近に設けられる。駆動機構4
8は、例えば導管36に固定されたソレノイドコ
イル54と、ソレノイドコイル54内を往復動し
且つ導管37に固定された永久磁石52とを含ん
でいる。ソレノイドコイル54に選択された周波
数の電流を付加する事によつて、導管36及び3
7の上下方向に於て互いに近づきそして離れる揺
動を起こす事が出来る。
A drive mechanism 48 is provided between conduits 36 and 37 and near the center of the conduits. Drive mechanism 4
8 includes, for example, a solenoid coil 54 fixed to the conduit 36 and a permanent magnet 52 reciprocating within the solenoid coil 54 and fixed to the conduit 37. By applying current at a selected frequency to solenoid coil 54, conduits 36 and 3
7 can be caused to swing toward and away from each other in the vertical direction.

第3図の概略模式図である第4図では、導管3
6及び37は直線で表わされている。導管が相互
に離間する最大の振幅が実線36a及び37aで
示される。導管が互いに最も接近する振幅は点線
36c及び37cで示され、そして静止位置は一
点鎖線36b及び37bで示される。
In FIG. 4, which is a schematic diagram of FIG.
6 and 37 are represented by straight lines. The maximum amplitude at which the conduits separate from each other is shown by solid lines 36a and 37a. The amplitude at which the conduits are closest to each other is shown by dotted lines 36c and 37c, and the rest position is shown by dash-dotted lines 36b and 37b.

再び第3図を参照するに、導管36及び37に
は、互いに離間し且つ駆動機構48の各側に位置
づけられた一対のセンサ56及び58が設けられ
ている。センサ56は、夫々導管37及び36に
結合されたコイル66に磁気的に連結された永久
磁石62を具備している。同様に、センサ58
は、夫々導管37及び36に結合されたコイル7
6内を往復動しうる永久磁石72を有している。
Referring again to FIG. 3, conduits 36 and 37 are provided with a pair of sensors 56 and 58 spaced apart from each other and positioned on each side of drive mechanism 48. Sensor 56 includes a permanent magnet 62 magnetically coupled to a coil 66 coupled to conduits 37 and 36, respectively. Similarly, sensor 58
are coils 7 coupled to conduits 37 and 36, respectively.
It has a permanent magnet 72 that can reciprocate within 6.

導管36及び37を第4図に示す態様で揺動す
る事により、コイル66及び76に正弦電流が誘
起される。これらの信号は、夫々のセンサ位置で
の互いに近づきそして離れ合う導管の速度に比例
する。
By rocking conduits 36 and 37 in the manner shown in FIG. 4, sinusoidal currents are induced in coils 66 and 76. These signals are proportional to the velocity of the conduits approaching and away from each other at each sensor location.

導管36及び37内も流体が流通しない時は、
導管36及び37の中心点に駆動機構48によつ
て加えられた揺動は、センサ56及び58に於て
互いに同相で且つ駆動機構48の速度と同相の信
号を発生する。
When fluid does not flow in the conduits 36 and 37,
The oscillations applied by drive mechanism 48 to the center points of conduits 36 and 37 produce signals at sensors 56 and 58 that are in phase with each other and with the speed of drive mechanism 48.

しかし、導管36及び37を流体が流通する時
は、センサ56及び58の間に位相差が生じる。
However, when fluid flows through conduits 36 and 37, a phase difference occurs between sensors 56 and 58.

センサ56は、駆動機構48の速度から遅れた
速度信号を発生し、センサ58は駆動機構48の
速度信号よる進んだ速度信号を発生する。
Sensor 56 generates a speed signal that lags the speed of drive mechanism 48 , and sensor 58 generates a speed signal that advances the speed signal of drive mechanism 48 .

第3図に番号80で概略示される装置が、夫々
の速度信号の遅進を計測する為に、センサ56及
び58のみならず駆動機構48或いは少くともそ
の電源に結合される。駆動機構の速度に関する位
相の遅進は、導管36及び37を貫流する質量流
量に直接関連している。
A device, generally indicated at 80 in FIG. 3, is coupled to the sensors 56 and 58 as well as to the drive mechanism 48, or at least its power source, for measuring the lag in the respective velocity signals. The phase retardation with respect to the speed of the drive mechanism is directly related to the mass flow rate through conduits 36 and 37.

第5図は導管の一方の概略図である。センサの
一つの位置が点“0”で示される。この位置は、
導管の為の最も近い支持体からの距離がrの地点
である。
FIG. 5 is a schematic diagram of one of the conduits. One position of the sensor is indicated by point "0". This position is
The distance from the nearest support for the conduit is the point r.

この点“0”では、導管の上方への最大振幅は
+Aであり、また下方への最大振幅は−Aであ
る。
At this point "0", the maximum upward amplitude of the conduit is +A and the maximum downward amplitude is -A.

以下に述べる解析に於ては点“0”からの変位
は記号yで示される。
In the analysis described below, the displacement from point "0" is indicated by the symbol y.

流体の流通する導管が最大振幅Aと単純調和状
態に共振して揺動せしめられる間の、導管の任意
の点に対する静止位置からの変位yは、以下の様
に与えられる。
The displacement y from the rest position for any point on the conduit while the conduit through which the fluid flows is caused to oscillate in simple harmonic resonance with the maximum amplitude A is given by:

y=A sin wt ……(1) ここで、 y=静止位置からの変位 A=最大振幅 w=2πf f=共振振動数 t=時間(tは揺動開始時点ではθである。) を表わす。 y=A sin wt...(1) here, y = displacement from rest position A = maximum amplitude w=2πf f=resonant frequency t = time (t is θ at the start of swinging.) represents.

導管は両端を固定され、その長手方向軸の横断
方向だけに可動であることから、変位yは上下方
向に生ずる。従つて点“0”での上下方向への速
度は、 v=dy/dt=wA cos wt ……(2) で表わされ、そして加速度は、 a=dv/dt=dU2y/dtU2=−wU2A sin wt ……(3) で表わされる。
Since the conduit is fixed at both ends and movable only transversely to its longitudinal axis, the displacement y occurs in the vertical direction. Therefore, the velocity in the vertical direction at point "0" is expressed as v=dy/dt=wA cos wt...(2), and the acceleration is a=dv/dt=d U2 y/dt U2 =-w U2 A sin wt ...(3) It is expressed as follows.

点“0”に作用する力−c(ベクトル)は、
誘起される揺動と同様に、以下の等式に従つて上
下動する。
The force − c (vector) acting on point “0” is
Similar to the induced rocking motion, it moves up and down according to the following equation:

c=−2mc×c ……(4) ここで、−c=流動する流体上の角度効果から
生じる見掛け上の力。
c = −2m c × c ……(4) where − c = apparent force resulting from angular effects on the flowing fluid.

mc=点“0”を流通する流体質量 c=点“0”の角速度=|/r|即ち(
=×) c=点“0”を流通する流体の速度 を表わす。
m c = mass of fluid flowing through point “0” c = angular velocity of point “0” = |/r|, that is, (
=×) c = Represents the velocity of the fluid flowing through the point “0”.

点“0”での導管のバネ定数をkとすれば、誘
起される揺動力の振幅は、 ||=−ky=−kA sin wt ……(5) と表わされる。
If the spring constant of the conduit at point "0" is k, the amplitude of the induced rocking force is expressed as ||=-ky=-kA sin wt (5).

2つの力は同一方向に於て作用する事から、そ
れらの大きさは、 F−Fc=||+|−c| =(−2mcvcv/r)+(−kA sin wt)
……(6) として直接的に合計される。
Since the two forces act in the same direction, their magnitude is F−F c = | | + | − c | = (−2m c v c v/r) + (−kA sin wt)
...(6) are directly summed.

v=wA cos wtから、 F−Fc=(−2mcvc/r)wA cos wt −kA sin wt ……(7) となる。 From v=wA cos wt, F−F c = (−2m c v c /r) wA cos wt −kA sin wt ……(7).

mc、r、vc、wU2そしてAは全て一定の質量流
量に対する定数であるから、B1=−2wAmcvc/r、 B2=−kAとすれば、 F−Fc=B1cos wt+B2sin wt ……(8) となる。
m c , r, v c , w U2 and A are all constants for a constant mass flow rate, so if B 1 = -2wAm c v c /r, B 2 = -kA, then F - F c = B 1 cos wt+B 2 sin wt...(8)

式(8)に示されたB1 cos wt+B2sin wtの合計
値は、 γ=(BU21+BU22)、β=tanU-1(B1/BU2)とすれ ば、 B1cos wt+B2sin wt =γ sin(wt+β) ……(9) となる。
The total value of B 1 cos wt + B 2 sin wt shown in equation (8) is, if γ = (B U21 + B U22 ) and β = tan U-1 (B 1 /B U2 ), then B 1 cos wt + B 2 sin wt = γ sin (wt + β) ...(9).

式(9)は、点“0”での合成力が、駆動用の2つ
の共振振幅B1cos wt及びB2sin wtと同一である
が、位相差がβである事を数学的に表わしてい
る。
Equation (9) mathematically expresses that the resultant force at point "0" is the same as the two resonance amplitudes B 1 cos wt and B 2 sin wt for driving, but the phase difference is β. ing.

ここで、 β=tanU-1(B1/B2)=tanU-1 (−2wAmcVc/−kAr) ……(10) 或いは β=tanU-1(2wmcvc/kr) ……(11) である。Here, β=tan U-1 (B 1 /B 2 )=tan U-1 (−2wAm c V c /−kAr) ...(10) or β=tan U-1 (2wm c v c /kr ) ...(11).

w=2πfであり、fは導管の自然共振振動数に
於て一定値とされた揺動の振動数であり、そして
rは固定距離、kは定数であるから、α=kr/4πfと すれば、 β=tanU-1(mcvc/α) ……(12) となり、従つて、mcvc=質量流量とすると、 mcvc=α tan(β) ……(13) となる。
Since w = 2πf, f is the frequency of oscillation held constant at the natural resonance frequency of the conduit, r is a fixed distance, and k is a constant, α = kr / 4πf. For example, β=tan U-1 (m c v c /α) ...(12) Therefore, if m c v c = mass flow rate, m c v c = α tan (β) ... (13 ) becomes.

従つて、点“0”に作用する力は、駆動力と同
様に正弦曲線状であり、同じ振動数であり、位相
がβ相違するだけである。変位、速度或いは加速
度の関数(これらの任意の尚次の導関数も同様
に)の位相も又、相当する駆動力に対し同じ大き
さ、即ちnを整数とすれば、 β±nU〓/2 ……(14) だけ相違する。
Therefore, the force acting on point "0" is sinusoidal like the driving force, has the same frequency, and differs only in phase by β. The phase of a function of displacement, velocity or acceleration (as well as any further derivatives thereof) is also of the same magnitude for the corresponding driving force, i.e. if n is an integer, then β±n U 〓/ 2 They differ by...(14).

僅かな位相差に対しては、式(12)は、 β=tanU-1(mcvc/α)mcvc/α =mcvc(4πf/−kr) ……(15) とする。 For small phase differences, equation (12) becomes β=tan U-1 (m c v c /α) m c v c /α = m c v c (4πf/−kr) ... ).

振動数に依存因子fを消去する為に、第6図の
時間グラフの関数としての振幅で表わされた位相
がφ異なるだけの2つの信号を検討する必要が有
る。
In order to eliminate the frequency-dependent factor f, it is necessary to consider two signals whose phases, expressed in amplitude as a function of time in FIG. 6, differ by φ.

それらの振動数は等しく、またその周期は、 T=1/f ……(16) ここでT=周期=2(t1+t2) ……(17) である。そして関連する位相角βは、 β=πt1/(t1+t2)=2πt1f ……(18) として定義される。 Their frequencies are equal, and their period is T=1/f...(16) where T=period=2( t1 + t2 )...(17). The associated phase angle β is then defined as β=πt 1 /(t 1 +t 2 )=2πt 1 f (18).

式(18)を式(15)に代入すれば、 β=mcvc(4πf/kr)=2πt1f ……(19) となる。従つて、 mcvc=質量流量=(kr/2)t1 ……(20) なる。 If equation (18) is substituted into equation (15), β=m c v c (4πf/kr)=2πt 1 f (19). Therefore, m c v c = mass flow rate = (kr/2) t 1 ...(20).

式(20)では振動数に従属する値が消去され、
既知のバネ定数、長さr及び時間差t1だけが要求
される。時間差t1は、オシロスコープ及び標準的
な実験器具を使用して測定可能である。
In equation (20), the value dependent on the frequency is eliminated,
Only a known spring constant, length r and time difference t 1 are required. The time difference t 1 can be measured using an oscilloscope and standard laboratory equipment.

任意の設定状況に於て、k及びrは定数であ
り、従つて時間差t1の度合は質量流量に直接的に
比例する。時間差t1が、第6図に示す様に信号波
形を横切る任意の直線に沿つて測定可能であり、
座標の原点には限定されない事が明らかである。
時間差t1は、利得、即ち直流の残留偏差に拘らず
2つの信号の任意の一周期の間の、等しい一次及
び二次微分係数を使用して任意の2時点間に於て
求める事が出来る。
In any given setting, k and r are constants, so the magnitude of the time difference t 1 is directly proportional to the mass flow rate. The time difference t 1 can be measured along any straight line that crosses the signal waveform as shown in FIG.
It is clear that the coordinates are not limited to the origin.
The time difference t 1 can be found at any two points in time using equal first and second derivatives between any period of the two signals, regardless of the gain, i.e. the residual deviation of the DC. .

この実施例に於ては、第3図の平行状態の導管
の一方側の点“a”に於て上記測定が為される。
質量流量は、誘起された信号の点“u”及び質量
流量が起こした信号の点“a”間の時間差t1を計
測する事によつて直接的に計量する事が出来る。
第3図の実施例に於ては、信号は点“a”では点
“u”より遅れる。同様に、点“b”では点“x”
より遅れ、点“c”では点“u”より進み、そし
て点“d”では点“x”より進む。(位相角振幅
はこれら全ての点に於て等しく、進む点では正
数、遅れる点では負数となる。)斯くして、信号
の遅れる点“a”及び点“b”と、信号の進む点
“c”及び点“d”との間の全位相差φは、双方
の導管の2倍の重量平均としての全質量流量をサ
ンプリングする信号を提供する。従つて、位相角
の進み及び遅れの和は相殺され、圧力、密度或い
は温度の変化に拘らず、導管をそれらの自然共振
振動数に維持するに要する共振振動数データが提
供される。
In this embodiment, the above measurements are made at point "a" on one side of the parallel conduits of FIG.
Mass flow rate can be measured directly by measuring the time difference t 1 between point "u" of the induced signal and point "a" of the signal caused by the mass flow rate.
In the embodiment of FIG. 3, the signal lags at point "a" than at point "u." Similarly, at point “b”, point “x”
later, at point "c" it is ahead of point "u" and at point "d" it is ahead of point "x". (The phase angle amplitude is equal at all these points, being a positive number at the leading point and a negative number at the lagging point.) Thus, the points "a" and "b" where the signal lags, and the points where the signal advances. The total phase difference φ between "c" and point "d" provides a signal that samples the total mass flow rate as a twice weighted average of both conduits. Thus, the sum of the phase angle leads and lags cancel out and provide the resonant frequency data necessary to maintain the conduits at their natural resonant frequency regardless of changes in pressure, density, or temperature.

第3図に示される平行状態の導管構成に於て
は、駆動機構48の両半分及び両センサ66,7
6を導管36及び37に直接取付け、共通モード
の振動ノイズを減少せしめ能率を改善する事も出
来る。(点“a”、“b”、“c”及び“d”でのば
ね上重量は等しく、また点“u”及び“x”での
ばね上重量も等しい。) 第3図の平行導管の利点を以下に述べると;2
つの等しい振動数信号の任意の一周期間の等しい
一次及び二次微分係数を使用しての2点間の時間
差の測定値に比例する質量流量の直接計量である
事、簡単且つ堅牢な構造である事、組立てが簡単
な事、全体に小型な事、組込みが簡単な事、流体
密度に無関係な事、温度との係りが僅かな事、大
きさの変更が簡単な事、流体の粘度に無関係な
事、そして液体、気体及びスラリに適用可能な
事、である。
In the parallel conduit configuration shown in FIG. 3, both halves of drive mechanism 48 and both sensors 66, 7
6 can also be attached directly to conduits 36 and 37 to reduce common mode vibration noise and improve efficiency. (The sprung masses at points "a,""b,""c," and "d" are equal, and the sprung masses at points "u" and "x" are also equal.) The advantages are described below:2
Direct metering of mass flow proportional to the measured time difference between two points using equal first and second derivatives between any period of two equal frequency signals, simple and robust construction. It is easy to assemble, it is small overall, it is easy to integrate, it has nothing to do with fluid density, it has little relation to temperature, it is easy to change the size, and it has nothing to do with fluid viscosity. It is applicable to liquids, gases and slurries.

別態様に於ては、第3図に番号80で示される
位相測定装置が配設される。一例としてはヒユー
レツトパツカードモデル3575Aがある。駆動位置
から導管の中心付近の且つ中心から離間した検出
点にかけての位相差が質量流量の計量に利用され
得る。駆動機構の両側にセンサを配設する事で精
度が向上する。
In an alternative embodiment, a phase measuring device is provided, designated by the numeral 80 in FIG. One example is the Heuretsu Pats Card Model 3575A. The phase difference from the drive position to a detection point near and spaced from the center of the conduit can be used to measure mass flow rate. Accuracy is improved by placing sensors on both sides of the drive mechanism.

以上、本発明を実施例に基づき説明したが、本
発明の内で多くの変更を為し得る事を銘記された
い。
Although the present invention has been described above based on embodiments, it should be noted that many changes can be made within the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、力cの発生を例示する、質量流量
を担持する為の導管が回転可能な座標系の概略図
である。第2図は、第1図の導管が或る点に於て
受ける変動及び力の種々の特性を示すグラフであ
る。第3図は、本発明の一実施例の断面図であ
る。第4図は、本発明の導管の受ける変動の概念
図である。第5図は、揺動する導管の最大振幅を
示す概略図である。第6図は、振動数は等しいが
時間差t1に於て位相の相違する2つの正弦曲線を
示すグラフである。 図中主な部分の名称は以下の通りである。30
……入口継手、32……第1の支持体、36,3
7……導管、40……第2の支持体、44……出
口継手、48……駆動手段、56……第1のセン
サ、58……第2のセンサ。
FIG. 1 is a schematic diagram of a coordinate system in which a conduit for carrying a mass flow rate can be rotated, illustrating the generation of force c . FIG. 2 is a graph showing various characteristics of the fluctuations and forces experienced by the conduit of FIG. 1 at a certain point. FIG. 3 is a cross-sectional view of one embodiment of the present invention. FIG. 4 is a conceptual diagram of the fluctuations that the conduit of the present invention undergoes. FIG. 5 is a schematic diagram showing the maximum amplitude of an oscillating conduit. FIG. 6 is a graph showing two sinusoidal curves having the same frequency but different phases at a time difference t1 . The names of the main parts in the figure are as follows. 30
...Inlet joint, 32...First support, 36,3
7... Conduit, 40... Second support, 44... Outlet joint, 48... Drive means, 56... First sensor, 58... Second sensor.

Claims (1)

【特許請求の範囲】 1 流体流れの質量流量を計量する為の装置であ
つて、 各々両端並びに長手方向長さ及び前記両端間の
中心点とを有し各々導管が流体流れの概略半分を
受容する一対の平行状態の導管と、 前記両端を実質的に固定位置に於て保持する為
の、前記導管に連結された支持手段と、 前記一対の平行状態の導管に質量流量を計量す
るべき流体を供給する為に前記支持手段に連結さ
れた継手手段と、 前記導管をそれら各々の長手方向を横断する方
向に於て実質的にそれらの中心点を選択された振
動数で揺動する為の、前記導管に関連する駆動手
段と、 前記導管の振動を、各々の中心点及び両端から
離間した第1の検出点に於て検出する為の少くと
も一つの第1のセンサと、 導管の振動を、各々の中心点から離間し且つ
各々の中心点の一方側の第1の検出点とは反対側
の第2の検出点に於て検出する為の第2のセンサ
とを具備し、 前記第1の検出点が流体流れの方向に関して
各々の中心点の上流側に有り、前記第2の検出点
が前記流体流れの方向に関し前記各々の中心点の
下流側にあり、前記第1の検出点での変動の位相
が選択された振動数より遅れ、前記第2の検出点
での変動の位相が選択された振動数より進み、該
位相の遅進が流体流れの質量流量に一致する前記
流体流れの質量流量を計量する為の装置。 2 駆動手段は、一対の導管の一方の中心点に結
合されたソレノイドコイルと、前記一対の導管の
他方の中心点に結合され且つ前記ソレノイドコイ
ル内での可動の永久磁石と、前記導管を揺動する
為、前記ソレノイドコイルに選択された振動数の
電流を付加する為の、前記ソレノイドコイルに結
合された電流手段とによつて成立つ特許請求の範
囲第1項記載の装置。 3 第1のセンサが、一対の導管の一方の前記第
1の検出点に結合された第1の検出用コイルと、
前記一対の導管の他方に結合された第1のセンサ
永久磁石とを具備し、第2のセンサが、一対の導
管の一方の前記第2の検出点に結合された第2の
検出用コイルと、前記一対の導管の他方に結合さ
れた第2の永久磁石とを具備して成る特許請求の
範囲第2項記載の装置。 4 各々の導管の第1及び第2の検出用コイルと
ソレノイドコイルとに結合された位相測定手段に
して、第1及び第2の検出点での振動の、選択さ
れた振動数に対する位相の遅進を測定する為の手
段を備えて成る特許請求の範囲第3項記載の装
置。 5 支持手段が、流体流れを受容する為の入口継
手を具備する第1の支持体と、各導管に流体分流
する為の、前記入口継手と各導管の第1の端部と
の間に結合された前記第1の支持体内のY字形通
路とを有して成る特許請求の範囲第4項記載の装
置。 6 支持手段は、導管からの流体流れを受容する
為の出口継手を有する第2の支持体と、導管の第
2の端部と前記出口継手との間に結合された前記
第2の支持体内に画成された別のY字形通路とを
有して成る特許請求の範囲第5項記載の装置。 7 検出点で検出された変動と、導管を実質的に
夫々の中心点に於て揺動する為の選択された振動
数との間の位相差にして、流体流れの質量流量の
計量値に一致する位相差を測定する為の検出手段
を含んで成る特許請求の範囲第1項記載の装置。 8 流体流れの質量流量を計量する為の方法であ
つて、 一対の平行状態の導管の中心点を、導管の両端
を実質的に固定しつつ選択された振動数に於て導
管を横断方向に揺動する段階と、 質量流量を計量するべき流体流れの約半分を
各々の導管に流通させる段階と、 各々の導管の変動を、導管の中心点及び導管の
両端から離間した第1の検出位置に於て検出する
段階と、 前記中心点での揺動の選択された振動数と前記
第1の検出位置に於て測定された変動との間の位
相差を測定する段階と、 導管の中心点から離間し且つ該中心点の、第1
の検出位置とは反対側の第2の検出位置にして、
導管の両端からも又離間した第2の検出位置に於
て導管の変動を検出する段階と、 前記第2の検出位置での変動と前記中心点での
揺動の選択された振動数との間の位相差を測定す
る段階とを含み、 前記中心点での揺動の選択された振動数と前記
第1の検出位置に於て測定された変動との間の位
相差の測定値が流体流れの質量流量に一致し、 前記第2の検出位置での変動と前記中心点での
揺動の選択された振動数との間の位相差が流体流
れの質量流量にもまた一致する事を特徴とする前
記流体流れの質量流量を計量する為の方法。
Claims: 1. An apparatus for metering the mass flow rate of a fluid stream, wherein each conduit has opposite ends and a longitudinal length and a center point between said ends, each conduit receiving approximately half of the fluid flow. a pair of parallel conduits, a support means connected to the conduits for holding the ends in a substantially fixed position; and a fluid to be metered for mass flow into the pair of parallel conduits. coupling means connected to said support means for providing said conduits with said conduits at a selected frequency in a direction transverse to their respective longitudinal directions substantially about their center points; , drive means associated with the conduit; at least one first sensor for detecting vibrations in the conduit at a first detection point spaced from each center point and opposite ends; and a second sensor for detecting at a second detection point spaced apart from each center point and on the opposite side of the first detection point on one side of each center point, a first detection point upstream of each center point with respect to the direction of fluid flow; a second detection point downstream of each center point with respect to the direction of fluid flow; the phase of the fluctuation at the point lags the selected frequency, the phase of the fluctuation at the second detection point leads the selected frequency, and the phase lag corresponds to the mass flow rate of the fluid flow. A device for measuring the mass flow rate of a fluid stream. 2. The driving means includes a solenoid coil coupled to the center point of one of the pair of conduits, a permanent magnet coupled to the center point of the other of the pair of conduits and movable within the solenoid coil, and a permanent magnet that oscillates the conduit. 2. The apparatus of claim 1, further comprising current means coupled to said solenoid coil for applying a current of a selected frequency to said solenoid coil to cause said solenoid coil to move. 3 a first detection coil in which a first sensor is coupled to the first detection point of one of the pair of conduits;
a first sensor permanent magnet coupled to the other of the pair of conduits, and a second sensor coupled to the second detection point of one of the pair of conduits; , and a second permanent magnet coupled to the other of the pair of conduits. 4 phase measuring means coupled to the first and second detection coils and solenoid coils of each conduit to determine the phase retardation of the vibrations at the first and second detection points relative to the selected frequency; 4. A device according to claim 3, comprising means for measuring the speed. 5 a support means is coupled between a first support comprising an inlet fitting for receiving fluid flow and between said inlet fitting and the first end of each conduit for diverting fluid to each conduit; 5. The apparatus of claim 4, further comprising a Y-shaped passageway in said first support. 6. The support means comprises a second support having an outlet fitting for receiving fluid flow from the conduit and within said second support coupled between the second end of the conduit and said outlet fitting. 6. A device according to claim 5, further comprising another Y-shaped passageway defined in the . 7. The phase difference between the fluctuations detected at the detection point and the selected frequency of oscillation to cause the conduit to oscillate substantially at its respective center point, resulting in a measured value of the mass flow rate of the fluid flow. 2. Apparatus according to claim 1, comprising detection means for measuring coincident phase differences. 8 A method for measuring the mass flow rate of a fluid stream, the method comprising: determining the center point of a pair of parallel conduits transversely across the conduit at a selected frequency while keeping the ends of the conduits substantially fixed; oscillating, passing approximately half of the fluid flow whose mass flow rate is to be measured through each conduit, and detecting fluctuations in each conduit at a first detection location spaced from the center point of the conduit and from opposite ends of the conduit; detecting at the center of the conduit; and measuring a phase difference between a selected frequency of oscillation at the center point and the measured fluctuation at the first detection location; a first point away from the point and at the center point;
at the second detection position opposite to the detection position of
detecting fluctuations in the conduit at a second detection position also spaced from both ends of the conduit; and combining the fluctuations at said second detection position with a selected frequency of oscillation at said center point. and measuring a phase difference between the selected frequency of oscillation at the center point and the measured fluctuation at the first sensing position of the fluid. a mass flow rate of the fluid flow, and a phase difference between a fluctuation at said second sensing position and a selected frequency of oscillations at said center point also corresponds to a mass flow rate of the fluid flow. A method for metering the mass flow rate of a fluid stream, characterized in that:
JP61058431A 1985-03-25 1986-03-18 Device and method for continuously measuring mass flow rate Granted JPS61223616A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/715,692 US4622858A (en) 1985-03-25 1985-03-25 Apparatus and method for continuously measuring mass flow
US715692 1985-03-25

Publications (2)

Publication Number Publication Date
JPS61223616A JPS61223616A (en) 1986-10-04
JPH0463325B2 true JPH0463325B2 (en) 1992-10-09

Family

ID=24875101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61058431A Granted JPS61223616A (en) 1985-03-25 1986-03-18 Device and method for continuously measuring mass flow rate

Country Status (12)

Country Link
US (1) US4622858A (en)
EP (1) EP0196150B1 (en)
JP (1) JPS61223616A (en)
KR (1) KR900006408B1 (en)
AU (1) AU585326B2 (en)
BR (1) BR8600669A (en)
CA (1) CA1266189A (en)
DE (1) DE3675412D1 (en)
ES (1) ES8800426A1 (en)
HK (1) HK9991A (en)
IN (1) IN164947B (en)
MX (1) MX163398B (en)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8304783D0 (en) * 1983-02-21 1983-03-23 Shell Int Research Coriolis-type mass flow meter
US4984472A (en) * 1985-09-13 1991-01-15 Exac Corporation Apparatus for mass flow rate and density measurement
DE3534288A1 (en) * 1985-09-26 1987-04-02 Danfoss As MASS FLOW METER ACCORDING TO THE CORIOLIS PRINCIPLE
US5423221A (en) * 1986-02-11 1995-06-13 Abb K-Flow Inc. Mass flow measuring device
US4823614A (en) * 1986-04-28 1989-04-25 Dahlin Erik B Coriolis-type mass flowmeter
US4730501A (en) * 1986-05-19 1988-03-15 Exac Corporation Single tube parallel flow coriolis mass flow sensor
EP0324783B1 (en) * 1986-10-03 1995-06-14 Micro Motion Incorporated Custody transfer meter
US4911006A (en) * 1986-10-03 1990-03-27 Micro Motion Incorporated Custody transfer meter
US4763530A (en) * 1986-10-10 1988-08-16 The Babcock & Wilcox Company Apparatus and method for continuously measuring mass flow
CA1322467C (en) * 1986-10-14 1993-09-28 Wayne Pratt Method and apparatus for measuring mass flow
US5271281A (en) * 1986-10-28 1993-12-21 The Foxboro Company Coriolis-type mass flowmeter
KR960000099B1 (en) * 1986-10-28 1996-01-03 더폭스보로 컴패니 Coriolis-type mass flowmeter
US5343764A (en) * 1986-10-28 1994-09-06 The Foxboro Company Coriolis-type mass flowmeter
US4777833A (en) * 1986-11-12 1988-10-18 Micro Motion, Inc. Ferromagnetic drive and velocity sensors for a coriolis mass flow rate meter
US4856346A (en) * 1986-11-13 1989-08-15 K-Flow Division Of Kane Steel Company, Inc. Dual flexures for coriolis type mass flow meters
IT1213434B (en) * 1986-12-23 1989-12-20 Nuovo Pignone S P A Ind Meccan PROCEDURE PERFECTED FOR THE MEASUREMENT OF WEIGHT CAPACITIES AND RELATED DEVICES.
US4811606A (en) * 1987-04-20 1989-03-14 Tokico, Ltd. Mass flowmeter
US4803867A (en) * 1987-04-28 1989-02-14 Dahlin Erik B Fluid measurement apparatus providing flow tube strain relief
US4813289A (en) * 1987-07-10 1989-03-21 Lew Hyok S Convective attenuation flowmeter
US4829832A (en) * 1987-07-27 1989-05-16 Lew Hyok S Convective inertia force flowmeter
US4840071A (en) * 1987-07-10 1989-06-20 Lew Hyok S Convective attenuation flowmeter
US5027662A (en) * 1987-07-15 1991-07-02 Micro Motion, Inc. Accuracy mass flow meter with asymmetry and viscous damping compensation
WO1989001134A1 (en) * 1987-07-27 1989-02-09 Lew Hyok S Convective inertia force flowmeter
DE3738018A1 (en) * 1987-11-09 1989-05-24 Flowtec Ag METHOD FOR ERROR DETECTION AND CORRECTION, IN PARTICULAR WITH A MASS FLOW MEASURING DEVICE
DE3824111A1 (en) * 1988-07-15 1990-01-18 Fischer & Porter Gmbh METHOD FOR MEASURING THE MASS CURRENT OF A MEDIUM AND DEVICE FOR IMPLEMENTING THE METHOD
DE3928839A1 (en) * 1989-08-31 1991-03-07 Hung Nguyen Dr Chi METHOD AND DEVICE FOR MEASURING THE MASS FLOW RATE
DE4016907C3 (en) * 1990-05-25 1998-06-10 Krohne Ag Mass flow meter
DE4124296A1 (en) * 1990-07-28 1992-02-06 Krohne Messtechnik Massametron Mass flow measurement arrangement with vibration generator
US5295398A (en) * 1991-01-22 1994-03-22 Lew Hyok S Method for measuring convective inertia force
US5448921A (en) * 1991-02-05 1995-09-12 Direct Measurement Corporation Coriolis mass flow rate meter
WO1992014123A1 (en) * 1991-02-05 1992-08-20 Donald Reed Cage Improved coriolis mass flow rate meter
US5497665A (en) * 1991-02-05 1996-03-12 Direct Measurement Corporation Coriolis mass flow rate meter having adjustable pressure and density sensitivity
US5373745A (en) * 1991-02-05 1994-12-20 Direct Measurement Corporation Single path radial mode Coriolis mass flow rate meter
US5275061A (en) * 1991-05-13 1994-01-04 Exac Corporation Coriolis mass flowmeter
DE4124295A1 (en) 1991-07-22 1993-01-28 Krohne Ag MASS FLOW MEASURING DEVICE
JPH0820295B2 (en) * 1991-08-01 1996-03-04 マイクロ モーション,インコーポレイティド Coriolis effect mass flow meter
EP0547455B1 (en) * 1991-12-19 1996-09-18 Krohne AG Mass flow rate meter
DE4224379C2 (en) 1992-07-06 1998-05-20 Krohne Messtechnik Kg Mass flow meter
GB9215043D0 (en) * 1992-07-15 1992-08-26 Flow Inc K Fluid mass flow meters
FR2707395B1 (en) * 1993-07-09 1995-10-06 Facom Torque measurement tool, such as an electronic torque wrench.
DE4423168C2 (en) 1994-07-04 1998-09-24 Krohne Ag Mass flow meter
DE4435809A1 (en) 1994-10-07 1996-04-11 Krohne Messtechnik Kg Measuring device for flowing media
US5546814A (en) * 1994-10-26 1996-08-20 The Foxboro Company Parallel-flow coriolis-type mass flowmeter with flow-dividing manifold
US5753827A (en) * 1995-10-17 1998-05-19 Direct Measurement Corporation Coriolis meteR having a geometry insensitive to changes in fluid pressure and density and method of operation thereof
US5907104A (en) * 1995-12-08 1999-05-25 Direct Measurement Corporation Signal processing and field proving methods and circuits for a coriolis mass flow meter
US5827979A (en) * 1996-04-22 1998-10-27 Direct Measurement Corporation Signal processing apparati and methods for attenuating shifts in zero intercept attributable to a changing boundary condition in a Coriolis mass flow meter
GB2332519B (en) * 1997-12-19 2002-08-07 Abb Kent Taylor Ltd Coriolis flow meter
US6227059B1 (en) 1999-01-12 2001-05-08 Direct Measurement Corporation System and method for employing an imaginary difference signal component to compensate for boundary condition effects on a Coriolis mass flow meter
US6711958B2 (en) 2000-05-12 2004-03-30 Endress + Hauser Flowtec Ag Coriolis mass flow rate/density/viscoy sensor with two bent measuring tubes
US8100552B2 (en) * 2002-07-12 2012-01-24 Yechezkal Evan Spero Multiple light-source illuminating system
US20070186684A1 (en) * 2003-07-24 2007-08-16 Pham Nghieu Q Vibrating tube mass flow meter
US7549319B2 (en) * 2006-11-16 2009-06-23 Halliburton Energy Services, Inc. High pressure resonant vibrating-tube densitometer
DE102008050113A1 (en) * 2008-10-06 2010-04-08 Endress + Hauser Flowtec Ag In-line measuring device
CA2709762C (en) * 2009-07-16 2018-03-06 Simon Fraser University Rotation sensing apparatus and methods
MD20100049A2 (en) * 2010-04-13 2011-11-30 Николае БЕЛДИМАН Device for measuring the fluid flow rate in the transport pipeline
US20170082765A1 (en) * 2014-07-23 2017-03-23 Halliburton Energy Services, Inc Thermal Modulated Vibrating Sensing Module for Gas Molecular Weight Detection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444723A (en) * 1965-12-29 1969-05-20 Solartron Electronic Group Fluid density meters
JPS57137818A (en) * 1981-02-19 1982-08-25 Tokyo Keiki Co Ltd Straight tube type mass flowmeter
JPS58120122A (en) * 1982-01-13 1983-07-16 Yokogawa Hokushin Electric Corp Mass flowmeter
JPS5992314A (en) * 1982-11-03 1984-05-28 マイクロ・モ−ション・インコ−ポレ−テッド Parallel path coriolis-force mass flowmeter
JPS59162416A (en) * 1983-02-21 1984-09-13 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− Coriolis type mass flowmeter consisting of at least two parallel rectilinear vibrating pipe
DE3329544A1 (en) * 1983-08-16 1985-03-07 Karl Dipl.-Ing. 8060 Dachau Küppers MASS FLOW METER

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865201A (en) 1954-08-26 1958-12-23 Roth Wilfred Gyroscopic mass flowmeter
US3229019A (en) * 1960-01-04 1966-01-11 Richard H Peterson Electronic musical instrument
US3218851A (en) * 1961-05-24 1965-11-23 Anatole J Sipin Mass flowmeter systems
US3355944A (en) 1964-09-03 1967-12-05 Anatole J Sipin Mass flow metering means
US3485098A (en) 1964-09-03 1969-12-23 Anatole J Sipin Mass flow metering means
FR1472039A (en) * 1965-05-28 1967-03-10 Gaz De France Fluid mass flow meter
US4109524A (en) 1975-06-30 1978-08-29 S & F Associates Method and apparatus for mass flow rate measurement
US4444059A (en) * 1982-09-13 1984-04-24 Micro Motion Oscillating tube mass flow rate meter
US4559833A (en) * 1982-09-30 1985-12-24 Smith Meter Inc. Meter for measuring mass flow rate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444723A (en) * 1965-12-29 1969-05-20 Solartron Electronic Group Fluid density meters
JPS57137818A (en) * 1981-02-19 1982-08-25 Tokyo Keiki Co Ltd Straight tube type mass flowmeter
JPS58120122A (en) * 1982-01-13 1983-07-16 Yokogawa Hokushin Electric Corp Mass flowmeter
JPS5992314A (en) * 1982-11-03 1984-05-28 マイクロ・モ−ション・インコ−ポレ−テッド Parallel path coriolis-force mass flowmeter
JPS59162416A (en) * 1983-02-21 1984-09-13 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− Coriolis type mass flowmeter consisting of at least two parallel rectilinear vibrating pipe
DE3329544A1 (en) * 1983-08-16 1985-03-07 Karl Dipl.-Ing. 8060 Dachau Küppers MASS FLOW METER

Also Published As

Publication number Publication date
KR860007537A (en) 1986-10-13
BR8600669A (en) 1986-10-29
IN164947B (en) 1989-07-15
MX163398B (en) 1992-05-11
AU5494686A (en) 1986-10-02
HK9991A (en) 1991-02-08
EP0196150B1 (en) 1990-11-07
ES8800426A1 (en) 1987-10-16
KR900006408B1 (en) 1990-08-30
EP0196150A1 (en) 1986-10-01
US4622858A (en) 1986-11-18
JPS61223616A (en) 1986-10-04
ES553135A0 (en) 1987-10-16
DE3675412D1 (en) 1990-12-13
CA1266189A (en) 1990-02-27
AU585326B2 (en) 1989-06-15

Similar Documents

Publication Publication Date Title
JPH0463325B2 (en)
EP0311610B1 (en) Coriolis mass flowmeters
US5347874A (en) In-flow coriolis effect mass flowmeter
US4747312A (en) Double-loop Coriolis type mass flowmeter
US5497666A (en) Increased sensitivity coriolis effect flowmeter using nodal-proximate sensors
US4691578A (en) Coriolis-type mass flowmeter
JP2575203B2 (en) Mass flow meter with improved accuracy by compensating for asymmetry and viscous damping
US4756197A (en) Coriolis-type mass flowmeter
JPS62238419A (en) Device and method for continuously measuring flow
EP0381302B1 (en) Measuring mass flow rates of fluid flows
US5355737A (en) Single vibrating conduit mass flowmeter
US5078014A (en) Convective inertia force flowmeter
US5700958A (en) Inertia force flowmeter with transverse pressure gradient sensors
JP2557098B2 (en) Convection inertial force flow meter
US5485755A (en) Mass flowmeter
JPH0455250B2 (en)
JPH067324Y2 (en) Mass flow meter
JPH067325Y2 (en) Mass flow meter
JPH0682061B2 (en) Mass flow meter
CA1324004C (en) Convective inertia force flowmeter
JPH0455251B2 (en)
JPH032525A (en) Coriolis flowmeter
JPH01136026A (en) Mass flowmeter
PL168889B1 (en) Oscillometer-type mass flow meter
JPS63205520A (en) Mass flowmeter