JPH0459606B2 - - Google Patents

Info

Publication number
JPH0459606B2
JPH0459606B2 JP58041186A JP4118683A JPH0459606B2 JP H0459606 B2 JPH0459606 B2 JP H0459606B2 JP 58041186 A JP58041186 A JP 58041186A JP 4118683 A JP4118683 A JP 4118683A JP H0459606 B2 JPH0459606 B2 JP H0459606B2
Authority
JP
Japan
Prior art keywords
light
core
optical transmission
angle
transmission material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58041186A
Other languages
Japanese (ja)
Other versions
JPS59166901A (en
Inventor
Hiroshi Yamashita
Kaneshige Fujii
Junji Hayakawa
Tooru Komyama
Shun Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Daikin Kogyo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP58041186A priority Critical patent/JPS59166901A/en
Publication of JPS59166901A publication Critical patent/JPS59166901A/en
Publication of JPH0459606B2 publication Critical patent/JPH0459606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Description

【発明の詳細な説明】 本発明は光伝送材、特に光学系によつて集光し
た太陽光(キセノンランプなどの人工太陽を含
む)を照明用などの用途に長距離伝送する場合に
適用して極めて有用な光伝送材に関する。
[Detailed Description of the Invention] The present invention is applicable to light transmission materials, particularly when transmitting sunlight (including artificial sunlight such as xenon lamps) concentrated by an optical system over long distances for purposes such as lighting. The present invention relates to an extremely useful optical transmission material.

従来光フアイバーの多数本を集束してなる光伝
送材を用いて、集光した太陽光を伝送することが
提案されている。しかしながらこのような光フア
イバー方式の光伝送材では、受光端面に於て、ク
ラツド部やフアイバー間の〓間に太陽光が入つて
しまい、その受光端面の有効受光断面積は70%程
度にすぎず、受光端面に於ける受光ロスが大き
い。またこのような問題点を解消するために、受
光端面の近傍を変型してクラツド部及びフアイバ
ー間の〓間をなくすることにより、有効受光断面
隙の拡大を計ることが提案されているが、このよ
うな変形により強制的に光を取り込んでも取り込
まれた光は、無変型部の各フアイバーへの移行時
にかなりの部分が逃げてしまい、実際には余り効
果がなく、受光ロスの問題は解決できない。
Conventionally, it has been proposed to transmit concentrated sunlight using a light transmission material formed by converging a large number of optical fibers. However, in such optical fiber type optical transmission materials, sunlight enters the cladding part and the gap between the fibers at the light receiving end surface, and the effective light receiving cross section of the light receiving end surface is only about 70%. , the light receiving loss at the light receiving end face is large. In order to solve this problem, it has been proposed to expand the effective light-receiving cross-sectional gap by deforming the vicinity of the light-receiving end face and eliminating the gap between the cladding part and the fibers. Even if light is forcibly taken in through such deformation, a considerable portion of the taken in light escapes when it transfers to each fiber in the undeformed part, so it is actually not very effective, and the problem of light reception loss has been solved. Can not.

また光通信の分野でいわれているように、光導
体は屈折率によつて決まる臨界角(斜入角に対し
て伝送し得る限界角であり、これより大きい角度
で入射した光は急速に減衰して他端まで伝送され
ない)を有し、光フアイバーの臨界角θcは通常20
〜30°といわれている。従つて光フアイバーに於
て、この臨界角の範囲内で入射した光は理想的に
はその全部が損失なく伝送されるはずであるが、
実際にはコアー表面の微細な傷、汚れなどによ
り、反射ごとにわずかに表面散乱を生じ、この散
乱により臨界角外にはみ出す成分を生じ、減衰す
ることが考えられる。本発明者は光フアイバーの
端面に垂直に入射して無反射で伝送される時(θ
=0°)の透過光量に対して、斜入射時(但し0<
θ<θc)の透過量が80%になる角度を“受光角”
と定義し、この受光角につき検討したところ、光
通信の分野のように光源がレーザーである場合に
は、臨界角と受光角の区別はあまり重要ではない
が、光源が太陽光であるときは、臨界角に比べ受
光角がかなり低下し、この低下度合いは伝送距離
が長くなればなる程大きくなり、長距離伝送の場
合、臨界角以内で入射した光でもかなりの伝送ロ
スを生じるいることが判明した。この理由は定か
ではないが、光源がレーザーである場合は光フア
イバーの端面に入射した光は通常10°以内であり
臨界角(20〜30°)よりかなり小さいので、仮に
反射ごとに表面散乱を生じても臨界角外へはみ出
す成分が殆んどないことに加えて、このような表
面散乱を生ずる反射の回数(単位伝送距離当り)
が少ないのに対し、太陽光の場合には入射角が臨
界角まで広がり、臨界角に近い角度で入射した光
は、反射ごとに生じる表面散乱により一部が臨界
角外にはみ出して減衰することに加えこのような
減衰を生ずる反射の回数(単位伝送距離当り)が
臨界角に近いもの程多くなることが大きく影響し
ているものと推察される。
In addition, as is said in the field of optical communications, a light guide has a critical angle determined by its refractive index (the limit angle at which it can be transmitted relative to the angle of oblique incidence; light incident at an angle larger than this is rapidly attenuated). ), and the critical angle θc of the optical fiber is usually 20
It is said to be ~30°. Therefore, in an optical fiber, ideally all of the light incident within this critical angle should be transmitted without loss.
In reality, it is conceivable that minute scratches, dirt, etc. on the core surface cause a slight amount of surface scattering for each reflection, and that this scattering generates a component that protrudes outside the critical angle and is attenuated. The inventor discovered that when the optical fiber is incident perpendicularly to the end face and transmitted without reflection (θ
= 0°), compared to the amount of transmitted light at oblique incidence (however, 0<
The angle at which the amount of transmission for θ<θc) is 80% is the “acceptance angle”
When considering the acceptance angle, we found that when the light source is a laser, as in the field of optical communications, the distinction between the critical angle and the acceptance angle is not very important, but when the light source is sunlight, , the acceptance angle decreases considerably compared to the critical angle, and the degree of this decrease increases as the transmission distance increases, and in the case of long-distance transmission, even light incident within the critical angle can cause considerable transmission loss. found. The reason for this is not clear, but if the light source is a laser, the angle of light incident on the end face of the optical fiber is usually within 10°, which is much smaller than the critical angle (20 to 30°). In addition to the fact that there are almost no components that protrude outside the critical angle, the number of reflections that cause such surface scattering (per unit transmission distance)
On the other hand, in the case of sunlight, the angle of incidence expands to the critical angle, and light that is incident at an angle close to the critical angle will be attenuated due to surface scattering that occurs with each reflection. In addition to this, it is presumed that the fact that the number of reflections (per unit transmission distance) that causes such attenuation increases as the angle approaches the critical angle is considered to be a major influence.

本発明は光フアイバー方式にみられるような受
光ロスが全くないと共に受光角を著しく改善し得
るような高品質、高性能の光伝送材を提供するこ
とを目的としてなされたもので、即ち本発明は、
シリコンゴムからなる透明弾性接続部を介し長さ
方向に順次一体に接続された、直径Dが10mm<D
<30mmの透明合成石英ロツド単体からなるコアー
部を具備し、該コアー部には、接続部を構成する
シリコンゴムの保有弾性により可撓性と伸縮性と
が付与されていることを特徴とする光伝送材に係
る。
The present invention has been made for the purpose of providing a high-quality, high-performance optical transmission material that has no light reception loss as seen in optical fiber systems and can significantly improve the light reception angle. teeth,
The diameter D is 10mm<D, which are connected sequentially in the length direction through transparent elastic connecting parts made of silicone rubber.
It is characterized by having a core made of a single transparent synthetic quartz rod with a diameter of <30 mm, which is given flexibility and stretchability by the elasticity of the silicone rubber constituting the connection part. Related to optical transmission materials.

本発明に於ては、コアー部を特に石英ロツド単
体(直径D10mm<D<30mm)から構成したので、
受光端面に受光ロスの原因となるようなクラツド
部や〓間が全くなくなり、100%の有効受光断面
が得られると共に、このような有効受光断面を全
長を通じて保持でき、受光ロスの問題を一掃でき
る。更に第5図に示すグラフから明らかなように
受光角を著しく改善でき、長距離伝送にみられる
伝送ロスも大巾に低減し得る。この理由は、種々
考えられるが、コアー部に通じて伝送される光の
反射回数(単位伝送距離当り)はコアー部の直径
に逆比例するので、本発明のように直径Dが10mm
<D<30mmの石英ロツドを用いてコアー部の直径
を拡大した場合は、その分反射回数が減ることに
なり、これが受光角改善に大きく寄与していうも
のと考えられる。
In the present invention, since the core part is particularly composed of a single quartz rod (diameter D10mm<D<30mm),
There are no cruds or gaps on the light receiving end surface that would cause light receiving loss, resulting in a 100% effective light receiving cross section, and this effective light receiving cross section can be maintained throughout the entire length, eliminating the problem of light receiving loss. . Furthermore, as is clear from the graph shown in FIG. 5, the acceptance angle can be significantly improved, and the transmission loss seen in long-distance transmission can also be greatly reduced. There are various possible reasons for this, but since the number of reflections (per unit transmission distance) of light transmitted through the core is inversely proportional to the diameter of the core, as in the present invention, the diameter D is 10 mm.
If the diameter of the core is increased by using a quartz rod with <D<30 mm, the number of reflections will be reduced accordingly, which is thought to greatly contribute to improving the acceptance angle.

更にコアー部は、10〜30mmの直径の透明合成石
英ロツドから構成されているとはいえ、長さ方向
に適宜、例えば0.5〜10m程度の間隔で、可撓性
と伸縮性を有している。この可撓性と伸縮性によ
り建造物などへの取付け時の施工性を改善できる
と共に、冬夏あるいは昼夜の寒暖差により、建物
との間に生ずる熱膨脹差を吸収でき、光伝送材の
破損の危険性を一掃できる。
Furthermore, although the core part is composed of transparent synthetic quartz rods with a diameter of 10 to 30 mm, it has flexibility and stretchability at appropriate intervals in the length direction, for example, about 0.5 to 10 m. . This flexibility and stretchability improves workability when attaching to buildings, etc., and also absorbs the difference in thermal expansion that occurs between the building and the temperature difference between winter and summer, or between day and night, and there is a risk of damage to the optical transmission material. You can wipe out sexuality.

このように本発明光伝送材は、100%の有効受
光断面積を持ち受光ロスがなく、しかも受光角の
改善によつて伝送ロスも少なく、高品質、高性能
を有し、しかも実質的に可撓性且つ伸縮性で自由
に屈曲でき、布設面での制限もなくなり、例えば
屋上で集光した太陽光を地下室に照明光として伝
送するような用途に用いて極めて有用である。
In this way, the optical transmission material of the present invention has a 100% effective light-receiving cross-sectional area and no light-receiving loss, and also has low transmission loss due to the improvement of the light-receiving angle, and has high quality and high performance. It is flexible and stretchable, can be bent freely, and there are no restrictions on installation, making it extremely useful for applications such as transmitting sunlight collected on a rooftop as illumination light into a basement.

以下に本発明の一実施例を添付図面にもとづき
説明すると次の通りである。
An embodiment of the present invention will be described below based on the accompanying drawings.

本発明光伝送材Aは、第1図に示すように従来
の光フアイバーと同様にコアー部1と、該コアー
部1を被覆するクラツド部2からなり、特にコア
ー部1が透明合成石英ロツド単体から構成されて
いることを特徴としている。
As shown in FIG. 1, the optical transmission material A of the present invention consists of a core part 1 and a clad part 2 covering the core part 1, like a conventional optical fiber.In particular, the core part 1 is made of a single transparent synthetic quartz rod. It is characterized by being composed of.

石英ロツドとしては、透明を有するように合成
されたものであるかぎり特に限定されないが、で
きるだけ吸光係数及び表面きずの少ないものを用
いることが好ましく、例えば四塩化ケイ素を出発
原料として成形した透明合成石英ロツド(吸光係
数:1.08×10-5cm-1(λ=632.8nm屈折率:1.46)
を有利に使用できる。石英ロツドの直径Dは、こ
れがあまりに小さいと受光角の改善があまり期待
できなくなるのみならず、光学系より集光された
光源像がその受光端面よりはみ出し光源像の全体
を受光することができなくなり、またこれがあま
りに大きすぎても、価格が高騰する割には、品
質、性能の向上を余り期待できないので、10mm<
D<30mmの範囲にあることが必要であり、特に10
mm<D<20mm程度がよい。
The quartz rod is not particularly limited as long as it is synthesized to be transparent, but it is preferable to use one with as little absorption coefficient and surface flaws as possible, such as transparent synthetic quartz molded from silicon tetrachloride as a starting material. Rod (extinction coefficient: 1.08×10 -5 cm -1 (λ=632.8nm refractive index: 1.46)
can be used to advantage. If the diameter D of the quartz rod is too small, not only will it not be possible to expect much improvement in the acceptance angle, but the light source image focused by the optical system will protrude beyond the acceptance end face, making it impossible to receive the entire light source image. , and even if this is too large, we cannot expect much improvement in quality and performance considering the rising price, so 10 mm <
It is necessary that D<30mm, especially 10
It is preferable that mm<D<20mm.

石英ロツドは製品に伸縮性と可撓性を付与する
ために、第2図に示すように長さ方向に透明弾性
接続部3を介して順次一体に接続される。接続部
3の間隔は特に限定されないが、間〓が小さすぎ
ると、接続部3の数が不必要に増えすぎて光伝送
効率面で好ましくない結果を招く虞れがあり、ま
た逆に大きすぎると充分な伸縮性と可撓性を確保
し得なくなるので、接続部3,3間の間隔は0.5
〜10m程度、特に1〜4m程度が好適である。
The quartz rods are successively connected together in the longitudinal direction via transparent elastic connections 3, as shown in FIG. 2, in order to impart stretchability and flexibility to the product. The spacing between the connecting portions 3 is not particularly limited, but if the spacing is too small, the number of connecting portions 3 may increase unnecessarily, resulting in undesirable results in terms of optical transmission efficiency, or conversely, if the spacing is too large Therefore, the distance between the connecting parts 3 and 3 should be set at 0.5.
About 10 m, particularly about 1 to 4 m is suitable.

接続部3を構成するゴムとしてはシリコンゴム
が用いられる。シリコンゴムは透明で且つ適度の
弾性を有し、この保有弾性により、コアー部に可
撓性と伸縮性とを付与できる。シリコンゴムは吸
光係数が3×10-3〜5×10-3cm-1、屈折率が1.4〜
1.5と石英に近いので、接続部3に於ける光伝送
ロスを可及的に少なくできる。更にシリコンゴム
は機械的性質及び可視光、紫外光に対する耐光性
も良好であり、耐久性にも優れている。
Silicone rubber is used as the rubber constituting the connecting portion 3. Silicone rubber is transparent and has appropriate elasticity, and this elasticity allows it to impart flexibility and stretchability to the core portion. Silicone rubber has an extinction coefficient of 3×10 -3 ~5×10 -3 cm -1 and a refractive index of 1.4 ~
1.5, which is close to that of quartz, so optical transmission loss at the connection portion 3 can be reduced as much as possible. Furthermore, silicone rubber has good mechanical properties and light resistance to visible light and ultraviolet light, and is also excellent in durability.

接続部3は第4図aに示すように石英ロツドと
同径になるように形成されていることが望まし
い。尚接続部3をシリコンゴムより構成する場合
は、シリコンゴムは0.9μ以上の波長の赤外線に対
して比較的弱いので、受光端面の手前でこのよう
な赤外線を、例えば熱線カツトフイルムを用いて
除去することが好ましい。尚本発明に於て、この
ような接続部3の形成は、工場生産時に形成され
る場合に加え、施工現場に於て形成される場合が
ある。
It is desirable that the connecting portion 3 is formed to have the same diameter as the quartz rod, as shown in FIG. 4a. If the connecting part 3 is made of silicone rubber, since silicone rubber is relatively weak against infrared rays with a wavelength of 0.9μ or more, such infrared rays should be removed in front of the receiving end using, for example, a hot ray cut film. It is preferable to do so. In the present invention, such a connecting portion 3 may be formed not only during factory production but also at a construction site.

コアー部1の周側部を空気中の塵その他の汚染
物質から保護するためにクラツド部2が設けら
れ。クラツド部2の材質としては、透明度が高く
て且つ光屈折率ができるだけ小さいと共に、光学
的、機械的に耐久性のあるものであればよく、例
えば弗素樹脂、シリコン樹脂、無機弗化物などを
例示できる。特に之等のうちでも弗素樹脂は紫外
線から赤外線にかけて広い範囲で透明であり、光
屈折率は約1.34と低く、しかも耐光性大にして機
械的保護効果に優れているので、最も好適であ
る。
A cladding section 2 is provided to protect the peripheral side of the core section 1 from dust and other contaminants in the air. The material of the cladding part 2 may be any material that has high transparency, has as low a light refractive index as possible, and is optically and mechanically durable, such as fluororesin, silicone resin, inorganic fluoride, etc. can. Among these, fluororesin is the most suitable because it is transparent over a wide range from ultraviolet to infrared rays, has a low optical refractive index of about 1.34, has high light resistance, and has an excellent mechanical protection effect.

第2〜4図に示すように、本発明に於ては、光
伝送材Aを必要に応じ防錆処理を施した金属管又
は硬質合成樹脂管などの保護管4を用いて保護す
るようにしてもよい。この場合保護管4と光伝送
材Aとの間にスペーサ5にもとづく周〓6を形成
しておけば、この周〓6の部分で機械的衝撃を緩
衝したり、保護管4の変型を吸収したりできるの
で有利である。またスペーサー5により周〓6を
密閉しておけば、周〓6への塵や雨水などの侵入
を防止できる。スペーサー5としては通常クラツ
ド部2と同材質のものが用いられる。図中、7は
保護管4を石英ロツドの接続部3ごとに接続する
管接手であり、管接手7としては、第4図に示す
ようなベローズ型など、伸縮性のあるものを使用
することが好ましい。
As shown in FIGS. 2 to 4, in the present invention, the optical transmission material A is protected using a protective tube 4 such as a metal tube or a hard synthetic resin tube that has been subjected to anti-rust treatment as necessary. It's okay. In this case, if a circumference 6 based on the spacer 5 is formed between the protective tube 4 and the optical transmission material A, this circumference 6 can buffer mechanical shocks and absorb deformation of the protective tube 4. This is advantageous because it allows you to Further, by sealing the periphery 6 with the spacer 5, it is possible to prevent dust, rainwater, etc. from entering the periphery 6. The spacer 5 is usually made of the same material as the cladding part 2. In the figure, 7 is a pipe joint that connects the protective tube 4 to each connection part 3 of the quartz rod, and as the pipe joint 7, a flexible one such as a bellows type as shown in Fig. 4 should be used. is preferred.

第5図は、石英ロツド(直径11mmφ、長さ16
m)と石英フアイバー(直径1mmφ、長さ16m)
の受光端面に於ける入射角(横軸)と光透過率
(縦軸)の関係を示すグラフであり、図中aは石
英ロツドのグラフを、またbは石英フアイバーの
グラフを示している。
Figure 5 shows a quartz rod (diameter 11mmφ, length 16mm).
m) and quartz fiber (diameter 1mmφ, length 16m)
This is a graph showing the relationship between the incident angle (horizontal axis) and the light transmittance (vertical axis) at the light-receiving end surface of the quartz rod.

尚第5図のグラフは、石英ロツドについては実
測データ(使用波長He−Neレーザーλ=632.8n
m)にもとづき、また石英フアイバーについては
推測データにもとづき作成されたものである。推
定の方法は次の様に行つた。即ち石英ロツドの実
測データは、ロツドの直径をd(cm)、長さをl
(cm)にすると、端面反射を補正した透過率
(Tint)はα、βをパラメータとして、入射角
(θ)に対して −log Tint= l/cosγ(β/dsin2γ+α) 但し sinγ=sinθ/1.46(屈折率=1.46) なる式によく合致する。ここでαは用いた石英材
料の消光係数、βは表面散乱因子を意味してお
り、夫々 α=1.08×10-5(cm-1) β=5.38×10-4 という値を持つている。石英フアイバーの場合も
石英材質、表面状態が同じであると仮定すると、
α、βはロツドと同じ値になり、違うのは直径d
だけと考えられるから、これらの値を用いて推定
できる。
The graph in Figure 5 is based on actual measurement data for quartz rods (wavelength used: H e −N e laser λ = 632.8n).
m), and the quartz fiber was created based on estimated data. The estimation method was as follows. In other words, the actual measurement data for the quartz rod is that the diameter of the rod is d (cm) and the length is l.
(cm), the transmittance (Tint) corrected for end face reflection is -log Tint=l/cosγ(β/dsin 2 γ+α) with α and β as parameters for the angle of incidence (θ), where sinγ=sinθ /1.46 (refractive index = 1.46). Here, α means the extinction coefficient of the quartz material used, and β means the surface scattering factor, and they have the values of α=1.08×10 −5 (cm −1 ) and β=5.38×10 −4 , respectively. In the case of quartz fiber, assuming that the quartz material and surface condition are the same,
α and β are the same values as the rod, the difference is the diameter d
Therefore, it can be estimated using these values.

第5図のグラフに於て破線cは透過光量が80%
に減じた位置、即ち受光角を示し、この受光角は
石英ロツドの場合は半角で約28°であるのに対し、
石英フアイバーの場合は約9°であり、本発明のよ
うにコアーとして石英ロツドを用いることにより
受光角を著しく改善できることが判る。
In the graph of Figure 5, the broken line c indicates the amount of transmitted light is 80%.
In other words, this acceptance angle is approximately 28 degrees in half angle in the case of quartz rod.
In the case of quartz fiber, the angle is approximately 9°, and it can be seen that the acceptance angle can be significantly improved by using a quartz rod as the core as in the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す1部切欠き正
面図、第2図はその変更態様の一例を示す縦断面
図、第3図は第2図のI〜I線に沿う断面図、第
4図は第2図の接続部の構造を示す拡大断面図、
第5図は石英ロツドと石英フアイバーの受光角の
比較を示すグラフである。 図に於て、1はコアー部、2はクラツド部、3
は接続部、4は保護管、5はスペーサ、6は周
〓、7は管接手である。
Fig. 1 is a partially cutaway front view showing an embodiment of the present invention, Fig. 2 is a longitudinal cross-sectional view showing an example of a modification thereof, and Fig. 3 is a cross-sectional view taken along line I-I in Fig. 2. , FIG. 4 is an enlarged sectional view showing the structure of the connection part in FIG. 2,
FIG. 5 is a graph showing a comparison of the acceptance angles of quartz rod and quartz fiber. In the figure, 1 is the core part, 2 is the clad part, and 3
4 is a connection part, 4 is a protection tube, 5 is a spacer, 6 is a circumference, and 7 is a pipe joint.

Claims (1)

【特許請求の範囲】 1 シリコンゴムからなる透明弾性接続部を介し
長さ方向に順次一体に接続された、直径Dが10mm
<D<30mmの透明合成石英ロツド単体からなるコ
アー部を具備し、該コアー部には、接続部を構成
するシリコンゴムの保有弾性により可撓性と伸縮
性とが付与されていることを特徴とする光伝送
材。 2 コアー部を構成する透明合成石英ロツド単体
が、弗素樹脂からなるクラツド部により被覆され
ていることを特徴とする特許請求の範囲第1項記
載の光伝送材。 3 コアー部を構成する透明合成石英ロツド単体
が、保護管内にスペーサの適用下に遊挿保持さ
れ、該保護筒には、コアー部の透明弾性接続部と
一致する位置に、可撓性且つ伸縮性の管接手部が
設けられていることを特徴とする特許請求の範囲
第1項又は第2項記載の光伝送材。
[Scope of Claims] 1. Diameter D is 10 mm, which are sequentially connected integrally in the length direction via transparent elastic connecting parts made of silicone rubber.
It has a core made of a single transparent synthetic quartz rod with <D<30 mm, and the core has flexibility and stretchability due to the elasticity of the silicone rubber that makes up the connection part. Optical transmission material. 2. The optical transmission material according to claim 1, wherein the single transparent synthetic quartz rod constituting the core portion is covered with a clad portion made of fluororesin. 3 A single transparent synthetic quartz rod constituting the core part is loosely inserted and held in a protective tube under the application of a spacer, and the protective tube has a flexible and stretchable rod at a position that coincides with the transparent elastic connection part of the core part. 3. The optical transmission material according to claim 1 or 2, wherein the optical transmission material is provided with a flexible pipe joint portion.
JP58041186A 1983-03-11 1983-03-11 Optical transmitting material Granted JPS59166901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041186A JPS59166901A (en) 1983-03-11 1983-03-11 Optical transmitting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041186A JPS59166901A (en) 1983-03-11 1983-03-11 Optical transmitting material

Publications (2)

Publication Number Publication Date
JPS59166901A JPS59166901A (en) 1984-09-20
JPH0459606B2 true JPH0459606B2 (en) 1992-09-22

Family

ID=12601384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041186A Granted JPS59166901A (en) 1983-03-11 1983-03-11 Optical transmitting material

Country Status (1)

Country Link
JP (1) JPS59166901A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211252B2 (en) * 1974-08-24 1977-03-30
JPS52110053A (en) * 1976-02-23 1977-09-14 Nath Guenther Uv illuminator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151570U (en) * 1974-05-31 1975-12-17
JPS5211252U (en) * 1975-07-14 1977-01-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211252B2 (en) * 1974-08-24 1977-03-30
JPS52110053A (en) * 1976-02-23 1977-09-14 Nath Guenther Uv illuminator

Also Published As

Publication number Publication date
JPS59166901A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
US7369735B2 (en) Apparatus for the collection and transmission of electromagnetic radiation
JPS60140313A (en) Diagonally viewing optical system of hard endoscope
JPS5859403A (en) Arc and fire detector
EP0857992A3 (en) Decentered prism optical system
US2844998A (en) Glass building block having lightdirecting properties
JPS6363005A (en) Infrared fiber
JPH0459606B2 (en)
JPS60131503A (en) Optical attenuating method using optical fiber
JPH0356442B2 (en)
DE59205595D1 (en) Composite insulation system
US5971578A (en) Light trap for a laser-based fiber optic vehicle lighting system
US5037171A (en) Optical fiber coupling structure
KR980010468A (en) Fiber optic attenuator
CN216251608U (en) Thermal bonding crystal with end face protection function
CN215457841U (en) Improved generation reduces and gets for instance delay optic fibre leaded light endoscope module
JPH035867Y2 (en)
JP2943311B2 (en) Solar lighting equipment
KR20180027177A (en) Lightning System Using optical Fiber and Solar Reflector
EP0840149A3 (en) A method for optically connecting an optical element, for example an end portion of an optical fibre with a lens
Aleksandrov et al. Transfer of soft X-rays in an optical waveguide
JPH0743535A (en) Sunlight collection transmitter
JPH01225907A (en) Optical coupler module
JPS638601A (en) Optical fiber with anti-reflection coating
JPS6012087Y2 (en) Connector device for illumination light transmission
JPS6232446B2 (en)