JPH0451491A - Multicolor electroluminescent element - Google Patents

Multicolor electroluminescent element

Info

Publication number
JPH0451491A
JPH0451491A JP2159069A JP15906990A JPH0451491A JP H0451491 A JPH0451491 A JP H0451491A JP 2159069 A JP2159069 A JP 2159069A JP 15906990 A JP15906990 A JP 15906990A JP H0451491 A JPH0451491 A JP H0451491A
Authority
JP
Japan
Prior art keywords
light
layers
luminous
emitting layer
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2159069A
Other languages
Japanese (ja)
Inventor
Toshihiko Takahashi
俊彦 高橋
Teruyuki Onuma
大沼 照行
Masabumi Ota
正文 太田
Fumio Kawamura
史生 河村
Hirota Sakon
洋太 左近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2159069A priority Critical patent/JPH0451491A/en
Publication of JPH0451491A publication Critical patent/JPH0451491A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently take out emitted light from each of luminous layers while increasing also the luminous area of the layer to some degree and obtaining a multicolor electroluminescent element of not only high brightness but also very compactness by dividing the luminous layers respectively into plural parts, and also making up the divided regions respectively of materials having luminous spectra different from one another. CONSTITUTION:Anodes 2, at least one or plural luminous layers 4, 4', 4'' and cathodes 6 each having its light reflecting ability are laminatedly formed in this order respectively on both obverse and reverse faces of a transparent substrate 1 while the luminous layers 4, 4', 4'' formed on either the obverse or reverse of, or respectively on both surfaces of the substrate 1 are divided respectively into plural parts and they are made up respectively of materials having luminous spectra different from one another. The luminous layers 4, 4', 4'' are respectively 50 to 5,000Angstrom thick, and preferably 100 to 1,000Angstrom thick. Positive- hole transport layers 3, 3' and electron transport layers 5, 5' on the other hand are respectively 200 to 5,000Angstrom thick, and preferably 500 to 1,000Angstrom thick.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発光性物質からなる発光層を有し、電界を印加
することにより電気エネルギーを直接光エネルギーに変
換できる電界発光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroluminescent device that has a luminescent layer made of a luminescent substance and can directly convert electrical energy into light energy by applying an electric field.

〔従来の技術〕[Conventional technology]

従来、この種の電界発光素子すなわちエレク1〜ロルミ
ネッセンス(以下ELと略称)素子は、第2図に示した
ように、電極の少なくとも一方を透明電極とし、発光層
から放出された光を、基板を通して外部に取り出してい
た。ところが、発光層から放出されるEL光はあらゆる
方向に等方向に放出されるため、素子の外部に出てくる
までには絶縁層や透明電極、ガラス基板の屈折率の相違
により、それぞれの界面で一部が全反射される(特開昭
57−60691によれば、全発光量のうち基板を通し
て外部に取り出される光量の割合は高々10%足らすで
ある)。この点を改善するために、第3図に示されるよ
うな端面発光型EL素子が提案されている。この素子に
おいては発光層を挾持する電極の両方を反射率の高い金
属電極とし、発光層において放出されたEL光は両方の
電極間で全反射をくり返し、発光層端面より素子の外部
に取り出される。従って、このタイプの場合には素子内
部に吸収される分を除き、全発光量のうち大部分が外部
に放出されるので、EL光が効率的に取り出される。
Conventionally, this type of electroluminescent device, ie, the Elec-1 to Luminescence (hereinafter abbreviated as EL) device, uses at least one of the electrodes as a transparent electrode, as shown in FIG. 2, and the light emitted from the light emitting layer is It was taken out through the board. However, since the EL light emitted from the light-emitting layer is emitted uniformly in all directions, the EL light is emitted from the interfaces of the insulating layer, transparent electrode, and glass substrate due to differences in the refractive index before it exits the device. (According to Japanese Patent Laid-Open No. 57-60691, the proportion of the amount of light extracted to the outside through the substrate is at most 10% of the total amount of light emitted). In order to improve this point, an edge-emitting type EL element as shown in FIG. 3 has been proposed. In this device, both of the electrodes that sandwich the light-emitting layer are metal electrodes with high reflectance, and the EL light emitted from the light-emitting layer undergoes total internal reflection between both electrodes, and is extracted from the end face of the light-emitting layer to the outside of the device. . Therefore, in the case of this type, most of the total amount of light emitted is emitted to the outside except for the part absorbed inside the element, so that EL light can be extracted efficiently.

ところで、EL素子の発光層の厚さは一般的には1、.
000〜10,000人程度であり、特に近年注目を集
めている、有機薄膜を発光層として用いる有機EL素子
においてはこれより更に薄く、50〜1..000人程
度である。このため、有機EL素子を端面発光タイプと
した場合、確かに発光の利用効率は高くなるものの、発
光面積は著しく小さくなり、用途によっては甚だ不都合
が生じる。例えば画像読取装置(イメージセンサ)用光
源として用いる場合には原稿の照射面積が狭く、読取速
度に制約を生じ、また端面より放出される光の色調をコ
ン1−ロールすることが困難となるといった問題が発生
する。
By the way, the thickness of the light emitting layer of an EL element is generally 1, .
000 to 10,000, and it is even thinner than this for organic EL devices that use organic thin films as light-emitting layers, which have been attracting attention in recent years, and have been attracting attention in recent years. .. Approximately 000 people. For this reason, when the organic EL element is of the edge-emitting type, although the efficiency of emitting light is certainly increased, the light-emitting area becomes significantly smaller, which may cause severe inconvenience depending on the application. For example, when used as a light source for an image reading device (image sensor), the irradiation area of the document is small, which limits the reading speed and makes it difficult to control the color tone of the light emitted from the edge. A problem occurs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上述の従来技術の欠点に鑑みなされたもので、
その目的は発光を効率良く外部に取り出し得るとともに
、発光面積もある程度大きく、しかも高輝度でかつ極め
てコンパクトな電界発光素子を提供することである。
The present invention has been made in view of the above-mentioned drawbacks of the prior art.
The purpose is to provide an extremely compact electroluminescent device that can efficiently extract light emitted to the outside, has a relatively large light emitting area, has high brightness, and is extremely compact.

本発明の更に他の目的は端面より放出される光の色調を
制御することのできる発光素子を提供することである。
Still another object of the present invention is to provide a light emitting device that can control the color tone of light emitted from the end face.

本発明の更に他の目的は高輝度の白色光を得ることので
きる小型で簡易な電界発光素子を提供することにある。
Still another object of the present invention is to provide a small and simple electroluminescent device capable of producing high-intensity white light.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記目的を達成すべく鋭意検討した結果
、発光層を複数の部分に分割し、かつそれぞれの分割領
域を異なる発光スペクトルを有する材料によって構成し
た電界発光素子が有効であることを見出し、本発明を完
成するに至った。
As a result of intensive studies to achieve the above object, the present inventors have found that an electroluminescent device in which the light-emitting layer is divided into a plurality of parts and each divided region is made of a material having a different emission spectrum is effective. They discovered this and completed the present invention.

即ち、本発明によれば、透明基板の表裏両面に、陽極、
少なくとも一層または複数層の発光層及び光反射能を有
する陰極がこの順に積層形成されると共に前記基板の表
裏いずれか一方または両方の表面に形成された発光層が
複数の部分に分割され、かつ該発光層はそれぞれ異なる
発光スペクトルを有する材料によって構成されているこ
とを特徴とする多色電界発光素子が提供される。
That is, according to the present invention, an anode,
At least one or more layers of a light emitting layer and a cathode having light reflecting ability are laminated in this order, and the light emitting layer formed on one or both of the front and back surfaces of the substrate is divided into a plurality of parts, and A multicolor electroluminescent device is provided in which the light emitting layers are each made of a material having a different emission spectrum.

〔実施例〕〔Example〕

以下、添付図面によって本発明の実施例を詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の代表的な電界発光素子の要部断面図で
ある。この例においては、基板の一方の側に形成された
発光層が、光の放出方向に対して直角方向に2分割され
ている場合が採り上げられている。第1図において、1
は基板であり、発光層より放出される光の波長域におい
て透明な材質が用いられる。−船釣にはガラスや各種の
透光性樹脂シート(ポリエチレンテレフタレート、ポリ
イミド等)である。1は後述するように発光より放出さ
れた光の導光路の後目も兼ねるので、できるだけ透明で
あることが望ましい。2は陽極として働く透明電極であ
り、ニッケル、金、白金、パラジウムやこれらの合金あ
るいは酸化錫(Sn02)、酸化錫インジウム(ITO
)、沃化銅などの仕事関数の大きな金属やそれらの合金
、化合物が用いられる。
FIG. 1 is a sectional view of a main part of a typical electroluminescent device of the present invention. In this example, a case is taken in which the light emitting layer formed on one side of the substrate is divided into two parts in a direction perpendicular to the light emission direction. In Figure 1, 1
is a substrate, and is made of a transparent material in the wavelength range of light emitted from the light emitting layer. -For boat fishing, use glass or various translucent resin sheets (polyethylene terephthalate, polyimide, etc.). 1 also serves as the rear end of the light guide path for the light emitted from the light emission, as will be described later, so it is desirable that it be as transparent as possible. 2 is a transparent electrode that serves as an anode, and is made of nickel, gold, platinum, palladium, alloys of these, tin oxide (Sn02), indium tin oxide (ITO), etc.
), metals with large work functions such as copper iodide, and their alloys and compounds are used.

陽極の厚さは100〜5,000人、好ましくは200
〜1,500人である。
The thickness of the anode is 100 to 5,000, preferably 200
~1,500 people.

3.3′は正孔輸送層であり、陽極より注入された正孔
を発光層へ輸送する。
3.3' is a hole transport layer, which transports holes injected from the anode to the light emitting layer.

正孔輸送能を有する有機化合物としては、ポリビニルカ
ルバゾールのような正孔輸送能に優れた高分子化合物や
正孔輸送能に優れた低分子化合物が挙げられる。低分子
化合物の例としては、I・リフェニルアミン類、スチル
ベン誘導体類、オキサジアゾール類等が挙げられ、その
具体例としては、たとえば以下のようなものが例示され
る。
Examples of the organic compound having a hole transporting ability include a high molecular compound having an excellent hole transporting ability such as polyvinylcarbazole, and a low molecular compound having an excellent hole transporting ability. Examples of low molecular weight compounds include I.liphenylamines, stilbene derivatives, oxadiazoles, etc. Specific examples thereof include the following.

正孔輸送層3,3′には同じ化合物を用いても良いし、
異なる化合物を用いても良い。
The same compound may be used for the hole transport layers 3 and 3',
Different compounds may also be used.

4.4’、4″は発光層であり、正孔と電子の再結合に
より励起され、発光する蛍光性有機化合物が用いられる
。具体的な化合物例としては 発光N4,4’、4″にはそれぞれ異なる発光スペクト
ルを有する化合物が用いられる。
4.4', 4'' are light-emitting layers, and fluorescent organic compounds that are excited by recombination of holes and electrons and emit light are used.Specific compound examples include light-emitting layers N4,4',4''. Compounds each having a different emission spectrum are used.

5.5′は電子輸送層であり、陰極より注入された電子
撃発光層へ輸送する。
5.5' is an electron transport layer, which transports the electrons injected from the cathode to the electrostimulant luminescence layer.

電子注入輸送材料としては、従来公知の種々のものが用
いI2Iれ、たとえば下記に示すようなオキサジアゾー
ル誘導体を用いることができる。
As the electron injection/transport material, various conventionally known materials can be used. For example, oxadiazole derivatives as shown below can be used.

C,、H5 電子輸送層5,5′には同じ化合物を用いても良いし、
異なる化合物を用いてもかまわない。
C,,H5 The same compound may be used for the electron transport layers 5 and 5',
Different compounds may be used.

6は陰極であり、仕事関数の小さな金属たとえば銀、錫
、鉛、マグネシウム、マンガン、アルミニウム、或いは
これらの合金が使用される。陰極は発光層より放出され
た光を反射し素子内に閉じ込めるための反射層も兼ねる
ので、比較的厚めに形成される。通常は800Å以上、
好ましくは1..500Å以上あった方が良い。
6 is a cathode, and a metal having a small work function such as silver, tin, lead, magnesium, manganese, aluminum, or an alloy thereof is used. The cathode also serves as a reflective layer for reflecting light emitted from the light emitting layer and confining it within the device, so it is formed relatively thick. Usually more than 800Å,
Preferably 1. .. It is better to have a thickness of 500 Å or more.

以」二の各層はいずれも通常は真空蒸着法により形成さ
れるが、電極はスパッタリング法等によってもよい。
The following two layers are usually formed by vacuum evaporation, but the electrodes may also be formed by sputtering or the like.

発光層の厚さは、50〜5,000人、好ましくは10
0〜1 、000人であり、正孔輸送層及び電子輸送層
の厚さは200〜5,000人、好ましくは500〜1
 、000人である。
The thickness of the luminescent layer is 50 to 5,000, preferably 10
The thickness of the hole transport layer and the electron transport layer is 200 to 5,000, preferably 500 to 1,000.
, 000 people.

発光層として用いる化合物によっては正孔輸送層、電子
輸送層のうちいずれか一方、または両方を省略すること
も可能である。また必要に応して陰極6の上に保護層を
設けても良い。
Depending on the compound used as the light emitting layer, either one or both of the hole transport layer and the electron transport layer may be omitted. Further, a protective layer may be provided on the cathode 6 if necessary.

次に本発明の電界発光素子の動作について説明する。陽
極及び陰極間の電源を接続し、電圧を印加すると、陰極
に対して陽極側が高電位になった時に陽極から正孔、陰
極から電子がそれぞれの輸送層を通しで発光層に注入さ
れる。注入された正孔と電子は再結合し、発光層中の分
子を励起状態に導く。励起された分子が再び基底状態に
戻る際に放出されるエネルギーの一部が、El光となっ
て放射される。El光はあらゆる方向に放射されるが、
陰極6により全反射され、端面方向に進行方向が揃う。
Next, the operation of the electroluminescent device of the present invention will be explained. When a power source is connected between the anode and the cathode and a voltage is applied, when the anode side becomes a high potential with respect to the cathode, holes are injected from the anode and electrons from the cathode are injected into the light emitting layer through their respective transport layers. The injected holes and electrons recombine and lead molecules in the light emitting layer to an excited state. A part of the energy released when the excited molecules return to the ground state is emitted as El light. El light is emitted in all directions, but
It is totally reflected by the cathode 6, and its traveling direction is aligned in the direction of the end face.

この際、基板1が導光路の機能を果たし、素子端面にお
いては基板1の断面より、大部分の光が放出される。基
板1は発光層4に比べて断面積ははるかに大きいので、
光の放出面積もそれに応じて大きくなる。
At this time, the substrate 1 functions as a light guide path, and most of the light is emitted from the cross section of the substrate 1 at the element end face. Since the cross-sectional area of the substrate 1 is much larger than that of the light emitting layer 4,
The light emission area also increases accordingly.

第4図に、本発明の発光層に含有させる化合物である前
記化合物(E−8)、化合物(E−9)及び化合物(E
−10)のそれぞれ単独の発光スペクl〜ルを示す。
FIG. 4 shows the compound (E-8), compound (E-9), and compound (E
-10) are shown, respectively.

図中、実線は化合物(E−10)、−点鎖線は化合物(
E−8)、破線は化合物(E−9)の発光スペクトルで
ある。化合物(E−1,0)は発光ピーク波長630n
mの赤色、化合物(E−8)は同520nmの緑色、化
合物(E−9)は同460nmの青色にそれぞれ発光す
る。したがって、これらの発光層を、いずれも輝度を調
整しながら発光させると、素子から放出される光は白色
として観測されることが判る。
In the figure, the solid line is the compound (E-10), and the dashed-dotted line is the compound (E-10).
E-8), the broken line is the emission spectrum of compound (E-9). Compound (E-1,0) has an emission peak wavelength of 630n
Compound (E-8) emits green light at 520 nm, and compound (E-9) emits blue light at 460 nm. Therefore, it can be seen that when these light-emitting layers are made to emit light while adjusting the brightness, the light emitted from the device is observed as white.

また、逆に各発光層の輝度を、電極への印加電圧や周波
数、デユーティ比等を変えることにより制御すれば、素
子からの放出光を、可視域のあらゆる色に変えることが
できる。発光層に用いる化合物によって発光効率は異な
るので、発光層の面積を変えることにより、輝度の補正
を行なうことも可能である。
Conversely, if the brightness of each light-emitting layer is controlled by changing the voltage applied to the electrodes, the frequency, the duty ratio, etc., the light emitted from the device can be changed to any color in the visible range. Since the luminous efficiency varies depending on the compound used in the luminescent layer, it is also possible to correct the brightness by changing the area of the luminescent layer.

以」二の例ではEl、素子として有機薄膜を発光層とし
て用いる場合について説明したが、無機薄膜を発光層と
するタイプについても、本発明を応用できることは勿論
である。また基板の片面だけでなく、両面の発光層をそ
れぞれ複数に分割して、それぞれに異なる化合物を発光
層とすることもできる。
In the second example below, a case has been described in which an organic thin film is used as a light-emitting layer for an El element, but it goes without saying that the present invention can also be applied to a type in which an inorganic thin film is used as a light-emitting layer. Further, the light-emitting layer on not only one side of the substrate but also both sides can be divided into a plurality of parts, and a different compound can be used as the light-emitting layer for each part.

〔発明の効果〕〔Effect of the invention〕

本発明の電界発光素子においては透明基板の両面に発光
層を設け、且つ基板自体が導光路の役目を果たすように
構成されているので、従来の端面発光型電界発光素子に
比べて極めて高輝度である上に、光放出面積も広くする
ことができる。
In the electroluminescent device of the present invention, luminescent layers are provided on both sides of the transparent substrate, and the substrate itself is configured to serve as a light guide, so it has extremely high brightness compared to conventional edge-emitting electroluminescent devices. In addition, the light emitting area can also be increased.

また基板の両面に発光スペクトルの異なる複数の発光層
を形成したので、素子の発光層を任意に変えることがで
きる。また発光層化合物として三原色に発光する材料を
選ぶことにより、白色を含むあらゆる可視域の光を放出
する発光素子を得ることができる。
Furthermore, since a plurality of light emitting layers with different emission spectra are formed on both sides of the substrate, the light emitting layers of the device can be changed as desired. Furthermore, by selecting a material that emits light in three primary colors as the light-emitting layer compound, a light-emitting element that emits light in all visible ranges including white can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の代表的な電界発光素子の要部模式断面
図である。第2図及び第3図は従来の電界発光素子の模
式断面図である。第4図は本発明において発光層に含有
させる化合物の発光スペクlヘルである。 1:基板         2:陽極 3.3’:正孔輸送J’l    4,4’、4”:発
光層5.5’ :電子輸送層      6:陰極特許
出願人 株式会社 リ  コ
FIG. 1 is a schematic sectional view of a main part of a typical electroluminescent device of the present invention. FIGS. 2 and 3 are schematic cross-sectional views of conventional electroluminescent devices. FIG. 4 shows the luminescence spectra of the compounds contained in the luminescent layer in the present invention. 1: Substrate 2: Anode 3.3': Hole transport J'l 4,4', 4'': Light emitting layer 5.5': Electron transport layer 6: Cathode Patent applicant Rico Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)透明基板の表裏両面に、陽極、少なくとも一層ま
たは複数層の発光層及び光反射能を有する陰極がこの順
に積層形成されると共に前記基板の表裏いずれか一方ま
たは両方の表面に形成された発光層が複数の部分に分割
され、かつ該発光層はそれぞれ異なる発光スペクトルを
有する材料によって構成されていることを特徴とする多
色電界発光素子。
(1) An anode, at least one or more light emitting layers, and a cathode having light reflecting ability are laminated in this order on both the front and back surfaces of a transparent substrate, and are also formed on one or both of the front and back surfaces of the substrate. A multicolor electroluminescent device characterized in that a light emitting layer is divided into a plurality of parts, and each of the light emitting layers is made of a material having a different emission spectrum.
(2)発光層が三原色付近に発光ピーク波長を有する複
数の材料によって構成されている請求項(1)の多色電
界発光素子。
(2) The multicolor electroluminescent device according to claim (1), wherein the light-emitting layer is composed of a plurality of materials having emission peak wavelengths near the three primary colors.
JP2159069A 1990-06-18 1990-06-18 Multicolor electroluminescent element Pending JPH0451491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2159069A JPH0451491A (en) 1990-06-18 1990-06-18 Multicolor electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2159069A JPH0451491A (en) 1990-06-18 1990-06-18 Multicolor electroluminescent element

Publications (1)

Publication Number Publication Date
JPH0451491A true JPH0451491A (en) 1992-02-19

Family

ID=15685540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159069A Pending JPH0451491A (en) 1990-06-18 1990-06-18 Multicolor electroluminescent element

Country Status (1)

Country Link
JP (1) JPH0451491A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893485A1 (en) * 1997-07-22 1999-01-27 Sumitomo Chemical Company, Limited Hole transporting polymer and organic electroluminescence device
WO2000041443A1 (en) 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2003500799A (en) * 1999-05-18 2003-01-07 セイコーエプソン株式会社 Organic light emitting devices
JP2004063404A (en) * 2002-07-31 2004-02-26 Tohoku Pioneer Corp Light-emitting device
US7274511B2 (en) 2002-09-13 2007-09-25 Fujifilm Corporation Anti-reflection film, organic EL device, and display medium using the anti-reflection film and the organic EL device
CN101807313A (en) * 2010-04-02 2010-08-18 中兴通讯股份有限公司 Method and device for sending checking-in data
EP2674442A2 (en) 2012-06-12 2013-12-18 Toyo Ink SC Holdings Co., Ltd. Resin composition for light scattering layer, light scattering layer, and organic electroluminescence device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893485A1 (en) * 1997-07-22 1999-01-27 Sumitomo Chemical Company, Limited Hole transporting polymer and organic electroluminescence device
US6544670B1 (en) 1997-07-22 2003-04-08 Sumitomo Chemical Company, Ltd. Hole transporting polymer and organic electroluminescence device using the same
US6841269B2 (en) 1997-07-22 2005-01-11 Sumitomo Chemical Company, Ltd. Hole transporting polymer and organic electroluminescence device using the same
WO2000041443A1 (en) 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
EP2270117A2 (en) 1998-12-28 2011-01-05 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2003500799A (en) * 1999-05-18 2003-01-07 セイコーエプソン株式会社 Organic light emitting devices
JP2004063404A (en) * 2002-07-31 2004-02-26 Tohoku Pioneer Corp Light-emitting device
US7274511B2 (en) 2002-09-13 2007-09-25 Fujifilm Corporation Anti-reflection film, organic EL device, and display medium using the anti-reflection film and the organic EL device
CN101807313A (en) * 2010-04-02 2010-08-18 中兴通讯股份有限公司 Method and device for sending checking-in data
EP2674442A2 (en) 2012-06-12 2013-12-18 Toyo Ink SC Holdings Co., Ltd. Resin composition for light scattering layer, light scattering layer, and organic electroluminescence device

Similar Documents

Publication Publication Date Title
TWI284492B (en) Organic EL device
JP4951130B2 (en) ORGANIC LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
JP3297619B2 (en) Organic EL color display
US7602117B2 (en) Display device and display unit using the same
TWI448195B (en) Organic electroluminescence device, display device including the same, and method of manufacturing an organic electroluminescence device
US7615921B2 (en) Organic EL device and organic EL panel
JP4769068B2 (en) ORGANIC LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
JP2008521165A (en) Organic light emitting device, method for manufacturing the same, and array comprising a plurality of organic light emitting devices
JPH06163158A (en) Organic electroluminescence element
KR20010107695A (en) Reduction of ambient-light-reflection in organic light-emitting devices
JPH09180883A (en) Micro-light resonating organic electroluminescent element
JP2008533655A (en) Transparent light emitting parts
JP2002260859A (en) Illumination device
KR20050086626A (en) Organic light emitting diode(oled) with enhancement features
WO2004095892A1 (en) Organic electroluminescent device and display
KR20050039014A (en) Electrode for organic light emitting device and organic light emitting device comprising the same
JP3242992B2 (en) Organic electroluminescence device
JP2881212B2 (en) EL device
JPH0451491A (en) Multicolor electroluminescent element
JP3247148B2 (en) Electroluminescence element
JP2002216975A (en) Organic electric field light-emitting element
JP2002260858A (en) Light-emitting element and its manufacturing method
JP2002289350A (en) El element, el display and electronic equipment
JP4104339B2 (en) LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
KR100528916B1 (en) Rear type electroluminescence device