JPH0451114A - Optical wavelength filter - Google Patents

Optical wavelength filter

Info

Publication number
JPH0451114A
JPH0451114A JP16010490A JP16010490A JPH0451114A JP H0451114 A JPH0451114 A JP H0451114A JP 16010490 A JP16010490 A JP 16010490A JP 16010490 A JP16010490 A JP 16010490A JP H0451114 A JPH0451114 A JP H0451114A
Authority
JP
Japan
Prior art keywords
polarized light
optical waveguide
center
output end
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16010490A
Other languages
Japanese (ja)
Other versions
JP2880770B2 (en
Inventor
Toru Hosoi
細井 亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2160104A priority Critical patent/JP2880770B2/en
Publication of JPH0451114A publication Critical patent/JPH0451114A/en
Application granted granted Critical
Publication of JP2880770B2 publication Critical patent/JP2880770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/125Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves in an optical waveguide structure

Abstract

PURPOSE:To improve the transmission characteristics of a filter with a low impressed electric power by providing an electrode for exciting surface waves via a buffer layer on the part near the center of the input end and output end of a channel type optical waveguide and providing an element which separate linearly polarized light intersecting orthogonally with each other near the center and near the output end. CONSTITUTION:The electrode 4 for exciting the surface waves is provided via the buffer layer 3 on the optical waveguide near the center of the input end and output end of the optical waveguide 2. The element which separates the linearly polarized light intersecting orthogonally with each other is provided near the center and near the output end. A periodic change in refractive index is generated in the optical waveguide in interaction regions 7a, 7b by the surface acoustic waves excited in both directions of the electrode 4 and the TE polarizd of the characteristic wavelength inputted in the interaction region 7a is converted to TM polarized light. The non- filtered light (TE polarized light) is radiated and the light to be filtered (TM polarized light) is transmitted by providing the TM polarized light detecting element 6 near the center. The transmission characteristic of the filter is improved with the low impressed electric power in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光波長フィルタに関し、特にコリニア結合によ
る音響光学効果を用いた光波長フィルタに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical wavelength filter, and particularly to an optical wavelength filter using an acousto-optic effect due to collinear coupling.

〔従来の技術〕[Conventional technology]

音響光学効果を用いた光波長フィルタは同調可変幅が大
きく、複数波長を選択できるなどの特徴がある。透過帯
域の半値全幅(Δλ3dB)は光波と音波の相互作用長
により決定する6透過帯域の狭帯域化は相互作用長の増
加、偏光変換素子の多段構成などにより行・つ。
Optical wavelength filters using the acousto-optic effect have a wide tuning range and are capable of selecting multiple wavelengths. The full width at half maximum (Δλ3 dB) of the transmission band is determined by the interaction length between light waves and sound waves.6 Narrowing of the transmission band is achieved by increasing the interaction length, multi-stage configuration of polarization conversion elements, etc.

従来の技術としては、以下に挙げる例がある。Examples of conventional techniques are listed below.

第4図はエレクトロニクス・レター第25巻6号398
〜399頁(ELECTRONIC8LETTER8V
o1.25 No、6.pp398−399.1989
)より引用した光波長フィルタである。ニオブ酸リチウ
ム基板1に作製されたチタン拡散光導波路2上に装荷さ
れた第一の表面波励振用電極44aにより表面弾性波に
よって、相互作用領域74aの光導波路に対して周期的
な屈折率変化が生じる。入力端で励起された、基板に対
して垂直な電界成分を有する直線偏光(以後TM偏光と
呼ぶ)の中で光導波路の周期的な屈折率変化により位相
整合条件が満たされる特定波長のTM偏f−が 基板に
対して平行な電界成分を有する直線偏光(以後TE偏光
と呼ぶ)に変換される。後段のZカットのニオブ酸リチ
ウムウェハー片によるTE偏光検光素子54によりTE
偏光は透過、TM偏先は放射されて特定波長の選択が行
える。第二の表面波励振用電極44bにより相互作用領
域74bで再度特定波長のTE偏光が7M偏光に変換さ
れる。二段回の偏光変換によってフィルタ光の透過特性
の改善がはかられている。
Figure 4 is Electronics Letter Vol. 25 No. 6 398
~399 pages (ELECTRONIC8LETTER8V
o1.25 No, 6. pp398-399.1989
This is an optical wavelength filter quoted from ). The first surface wave excitation electrode 44a loaded on the titanium diffused optical waveguide 2 fabricated on the lithium niobate substrate 1 causes a periodic refractive index change for the optical waveguide in the interaction region 74a by surface acoustic waves. occurs. TM polarization of a specific wavelength that satisfies the phase matching condition due to periodic changes in the refractive index of the optical waveguide in linearly polarized light (hereinafter referred to as TM polarized light) that is excited at the input end and has an electric field component perpendicular to the substrate. f- is converted into linearly polarized light (hereinafter referred to as TE polarized light) having an electric field component parallel to the substrate. TE is detected by the TE polarization analysis element 54 using a Z-cut lithium niobate wafer piece in the latter stage.
Polarized light is transmitted, and TM polarized light is emitted, allowing selection of a specific wavelength. The TE polarized light of the specific wavelength is again converted into 7M polarized light in the interaction region 74b by the second surface wave excitation electrode 44b. The two-stage polarization conversion improves the transmission characteristics of the filtered light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図の光波長フィルタは透過帯域幅の狭帯域化とサイ
ドロープを抑圧するためTE/TMi光変換素子を二段
に設けている。そのことにより、同一デバイス長・電極
−段の光波長フィルタと比較して印加電力が増加してい
る。印加電力の低減は素子の実用化を図る上で重要な項
目である。また、非フィルタ光を除去するための検光素
子作製の工程が必要である、薄膜プロセスを利用できな
いため工数がかかる等の問題がある。さらに、非フィル
タ光の取り出しができないため、使用用途が限定される
欠点がある。
The optical wavelength filter shown in FIG. 4 has two stages of TE/TMi optical conversion elements in order to narrow the transmission bandwidth and suppress side lobes. As a result, the applied power is increased compared to an optical wavelength filter having the same device length and electrode stages. Reducing the applied power is an important item in putting the device into practical use. Further, there are other problems, such as the need for a process for producing an analyzing element to remove unfiltered light, and the inability to use a thin film process, which requires a lot of man-hours. Furthermore, since it is not possible to extract unfiltered light, there is a drawback that the usage is limited.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は2つある。第1の発明の光波長フィルタは、光
導波路の入力端と出力端の中央付近の光導波路上にバッ
ファ層を介して表面波励振用電極を設け、中央付近と出
力端付近に互いに直交する直線偏光を分離する素子を有
する構成である。
The present invention has two aspects. In the optical wavelength filter of the first invention, a surface wave excitation electrode is provided on the optical waveguide near the center of the input end and the output end of the optical waveguide via a buffer layer, and straight lines orthogonal to each other are provided near the center and near the output end. This configuration includes an element that separates polarized light.

第2の発明の光波長フィルタは、7M偏光が充分に減衰
するように光導波路上に直接装荷した表面波励振用電極
を入力端と出力端の中央付近に設け、出力端付近に互い
に直交する直線偏光を分離する素子を有する構成である
In the optical wavelength filter of the second invention, surface wave excitation electrodes directly loaded on the optical waveguide are provided near the center of the input end and the output end so that the 7M polarized light is sufficiently attenuated, and electrodes for surface wave excitation are provided near the center of the input end and the output end, and the electrodes are arranged orthogonally to each other near the output end. This configuration includes an element that separates linearly polarized light.

〔作用〕[Effect]

第1の発明では一つの表面波励振用電極の両側からの出
力を用いることにより3dBの挿入損失が無くなり、一
つの電極で二段の偏光変換を行うことができることから
、従来の技術と同等のフィルタ透過特性の改善を低印加
電力で行うことができる。
In the first invention, by using outputs from both sides of one surface wave excitation electrode, 3 dB insertion loss is eliminated, and two-stage polarization conversion can be performed with one electrode, so it is equivalent to the conventional technology. Filter transmission characteristics can be improved with low applied power.

第2の発明では表面波励振用電極により7M偏光の減衰
、TE偏光の透過を行うことにより、検光素子の作製工
程の省略、光波長フィルタの構成の簡略化を図ることが
できる。
In the second invention, by attenuating the 7M polarized light and transmitting the TE polarized light using the surface wave excitation electrode, it is possible to omit the manufacturing process of the analyzing element and simplify the configuration of the optical wavelength filter.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は第1の発明の詳細な説明するための平面図であ
る。ニオブ酸リチウム基板を用いた場合を例にとる。X
カットY軸伝搬ニオブ酸リチウム基板1の上に導波路幅
6〜10μm、膜厚400〜600人のチタンストライ
プを形成し、950〜1100℃で熱拡散を行い単一モ
ードチタン拡散光導波路2を作製する。フォトリソグラ
フィ法を用いて電極指周期10〜50μmの原状の電極
4を入力端と出力端の中央付近のバッファ層3上に作製
する。電極4の両方向に励起された表面弾性波10によ
って相互作用領域7a、7bにおける光導波路に周期的
屈折率変化が生じる。
FIG. 1 is a plan view for explaining the first invention in detail. Let us take as an example a case where a lithium niobate substrate is used. X
A titanium stripe with a waveguide width of 6 to 10 μm and a film thickness of 400 to 600 layers is formed on a cut Y-axis propagation lithium niobate substrate 1, and thermal diffusion is performed at 950 to 1100°C to form a single mode titanium diffused optical waveguide 2. Create. An original electrode 4 having an electrode finger pitch of 10 to 50 μm is fabricated on the buffer layer 3 near the center of the input end and the output end using a photolithography method. The surface acoustic waves 10 excited in both directions of the electrode 4 cause periodic refractive index changes in the optical waveguides in the interaction regions 7a and 7b.

相互作用領域7aにおいて入力した特定波長のTE偏光
は7M偏光に変換される。中央付近にTM偏光検光素子
6を設けることで非フィルタ光(TE偏光)は放射、被
フィルタ光(7M偏光)は透過する。TM[光種光素子
6は安息香酸中に200〜400℃数十分浸しさらにア
ニールを行って形成したプロトン交換領域をチタン拡散
光導波路の両サイドに設けることにより作製できる。
The TE polarized light of a specific wavelength input in the interaction region 7a is converted into 7M polarized light. By providing the TM polarization analyzer 6 near the center, unfiltered light (TE polarized light) is emitted and filtered light (7M polarized light) is transmitted. TM [Light seed optical device 6 can be manufactured by providing proton exchange regions on both sides of a titanium diffused optical waveguide, which are formed by immersing the device in benzoic acid at 200 to 400° C. for several minutes and then annealing.

チタン拡散による異常光線の表面屈折率変化:Δneは
+0.002〜+0.004程度である。これに対し、
プロトン交換法で形成した場合はΔne=+o、12と
増加するなめ異常光線(TE偏光)の放射が生じる。透
過した特性波長のTM11光は相互作用領域7bにおい
て再度TE偏光に変換される。出力端付近に設けた表面
弾性波の吸収作用も兼用した金属膜(アルミニウム膜厚
400〜600人)装荷によるTE([1光検光素子5
より非フィルタ光(7M偏光)は減衰、被フィルタ光(
TE偏光)は透過して二段の偏光変換によるフィルタ光
が出力される。従来の電極−段でのサイドローブ抑圧比
−10dBが同一数の電極、同一印加電圧で一20dB
に改善できている。
The surface refractive index change of the extraordinary ray due to titanium diffusion: Δne is about +0.002 to +0.004. On the other hand,
When formed by the proton exchange method, a slanted extraordinary ray (TE polarized light) is emitted which increases as Δne=+o,12. The transmitted TM11 light having the characteristic wavelength is again converted into TE polarized light in the interaction region 7b. TE ([1 optical analysis element 5
The unfiltered light (7M polarization) is attenuated, and the filtered light (
(TE polarized light) is transmitted and filtered light resulting from two-stage polarization conversion is output. The sidelobe suppression ratio in the conventional electrode stage is -10 dB, but with the same number of electrodes and the same applied voltage, it is -20 dB.
This has been improved.

第2図は第2の発明の詳細な説明するための平面図であ
る。前述のチタン拡散光導波路と同様の工程で単一モー
ドチタン拡散光導波路2を作製する。電極4によって両
方向に励起された表面弾性波によって相互作用領域7a
の光導波路の周期的屈折率変化が起こり、入力した特定
波長のTM偏光はTE偏光に変換される。電極4を光導
波路上に直接装荷することにより、TM11光の減衰、
TE偏光の透過を行うことができ、TE偏光検光素子と
して作用する。透過した特定波長のTE偏光は相互作用
領域7bにおいて再度TM偏光に変換される。出力端付
近に前述したTM偏光検光素子6を設けることで非フィ
ルタ光(TE(ii光)は放射、被フィルタ光(TM偏
光)は透過して出力される。
FIG. 2 is a plan view for explaining the second invention in detail. A single mode titanium diffused optical waveguide 2 is fabricated using the same process as the titanium diffused optical waveguide described above. The interaction region 7a is generated by the surface acoustic waves excited in both directions by the electrode 4.
A periodic change in the refractive index of the optical waveguide occurs, and the input TM polarized light of a specific wavelength is converted into TE polarized light. By directly loading the electrode 4 on the optical waveguide, attenuation of the TM11 light,
It can transmit TE polarized light and acts as a TE polarized light analyzer. The transmitted TE polarized light of a specific wavelength is converted into TM polarized light again in the interaction region 7b. By providing the aforementioned TM polarization analyzer 6 near the output end, the unfiltered light (TE (ii light)) is emitted and the filtered light (TM polarized light) is transmitted and output.

第3図は第1の発明の第2の実施例を説明するための平
面図である。前述のチタン拡散光導波路と同様の工程で
分岐部分が入力端と出力端の中央付近にある単一モード
非対称Y分岐型チタン拡散光導波路23を作製する。分
岐部分に表面弾性波の伝搬を妨げないTE/TM偏光分
離素子を設番フることにより、非フィルタ光の取り出し
が行える。−例としてプロトン交換領域を用いたTE/
TM偏光分離素子を述べる。安息香酸中に200〜40
0℃数十分浸しさらにアニールを行って形成したプロト
ン交換領域8を、チタン拡散領域との境界が光波進行方
向に対して斜めになるように設ける。チタン拡散による
異常光線・常光線の表面屈折率変化:Δne Δn0は
、それぞれ+0.002〜+0.004程度であるこれ
に対し、プロトン変換法で形成した場合はΔn8−+0
.002、Δno =−0,04と変化が大きいため、
チタン拡散光導波路とプロトン交換領域の境界面におい
て、常光線の全反射条件を満たず大きな入射角条件が存
在する。進入角1.38rad以上で被フィルタ光であ
る異常光線(TE偏光)は屈折・浸透をし、非フィルタ
光である異常光線(TM偏光)は全反射して分岐枝23
aへ出射し偏光分離と非フィルタ光の取り出しが行える
。透過した特定波長のTE偏光は相互作用領域7bにお
いて再度TM偏光に変換される。出力端付近に前述した
TM偏光検光素子6を介して非フィルタ光(TE偏光)
は放射、被フィルタ光(TM偏光)は透過して二段の偏
光変換によるフィルタ光が出力される。
FIG. 3 is a plan view for explaining the second embodiment of the first invention. A single mode asymmetrical Y-branch type titanium diffused optical waveguide 23 having a branch portion near the center between the input end and the output end is fabricated using the same process as that for the titanium diffused optical waveguide described above. By installing a TE/TM polarization separation element that does not interfere with the propagation of surface acoustic waves at the branching portion, unfiltered light can be taken out. - TE using proton exchange region as an example/
The TM polarization splitting element will be described. 200-40 in benzoic acid
A proton exchange region 8 formed by dipping at 0° C. for several minutes and then annealing is provided so that the boundary with the titanium diffusion region is oblique to the direction of light wave propagation. Changes in the surface refractive index of extraordinary rays and ordinary rays due to titanium diffusion: Δne Δn0 are about +0.002 to +0.004, respectively.On the other hand, when formed by the proton conversion method, Δn8−+0
.. 002, Δno = -0,04, which is a large change,
At the interface between the titanium diffused optical waveguide and the proton exchange region, there exists a large incident angle condition that does not satisfy the total reflection condition for ordinary rays. At an approach angle of 1.38 rad or more, the filtered extraordinary ray (TE polarized light) is refracted and penetrated, and the unfiltered extraordinary ray (TM polarized light) is totally reflected and passes through the branch 23.
The polarized light can be separated and the unfiltered light can be taken out. The transmitted TE polarized light of a specific wavelength is converted into TM polarized light again in the interaction region 7b. Unfiltered light (TE polarized light) is passed through the TM polarization analyzer 6 near the output end.
is emitted, the filtered light (TM polarized light) is transmitted, and a filtered light resulting from two-stage polarization conversion is output.

以上の説明は7M偏光入力の場合であるが、偏光分離素
子8におけるプロトン交換領域の形状を変化し、TM偏
光検光素子6をTE偏光検光素子で置き換えることによ
り、TE4M光入力の光波長フィルタを構成することも
できる。
The above explanation is for the case of 7M polarized light input, but by changing the shape of the proton exchange region in the polarization separation element 8 and replacing the TM polarization analysis element 6 with a TE polarization analysis element, the optical wavelength of the TE4M light input can be changed. Filters can also be configured.

さらに、゛これらTE/TM両偏光入力の光波長フィル
タをパラレルに並べ、前段、後段にTE/TM偏光分離
素子を設けることで偏光無依存型の光波長フィルタの構
成も可能である。
Furthermore, by arranging these optical wavelength filters for both TE/TM polarization input in parallel and providing TE/TM polarization separation elements at the front and rear stages, it is possible to construct a polarization-independent optical wavelength filter.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では一つの表面波励振用電極
の両側からの出力を用いることにより3dBの挿入損失
が無くなり、一つのtaで二段の偏光変換を行うことが
できることから従来の技術と同等のフィルタ透過特性の
改善を低印加電極で行うことができる。また、表面波励
振用電極自体でTM偏光の減衰とTE偏光の透過を行う
ことにより検光素子の作製工程の省略、光波長フィルタ
の構成の簡略化をも図ることができる。さらに、非フィ
ルタ光の取り出しを行うことが可能になり使用用途が拡
大する。このような光波長フィルタを供給できる効果は
極めて大きなものであるといえる。
As explained above, in the present invention, the 3 dB insertion loss is eliminated by using the outputs from both sides of one surface wave excitation electrode, and two stages of polarization conversion can be performed with one ta, which is different from the conventional technology. Equivalent improvements in filter transmission properties can be achieved with lower applied electrodes. Furthermore, by attenuating TM polarized light and transmitting TE polarized light using the surface wave excitation electrode itself, it is possible to omit the manufacturing process of the analyzing element and to simplify the configuration of the optical wavelength filter. Furthermore, it becomes possible to extract unfiltered light, which expands the range of uses. It can be said that the effect of being able to supply such an optical wavelength filter is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明の光波長フィルタの一
実施例を説明するための平面図である。 第4図は従来の技術を説明するための図である。 1・・・ニオブ酸リチウム基板、2・・・チタン拡散光
導波路、23・・・Y分岐型チタン拡散光導波路、23
a・・・Y分岐型チタン拡散光導波路の分岐枝、3・・
・バッファ層、4.44a、44b・・・表面波励振用
電極、5,54・・・TE偏光検光素子、6・・・TM
偏光検光素子、7a、7b、74a、74b・・・相互
作用領域。
FIG. 1, FIG. 2, and FIG. 3 are plan views for explaining one embodiment of the optical wavelength filter of the present invention. FIG. 4 is a diagram for explaining the conventional technique. DESCRIPTION OF SYMBOLS 1... Lithium niobate substrate, 2... Titanium diffused optical waveguide, 23... Y-branch type titanium diffused optical waveguide, 23
a... Branch branch of Y-branch type titanium diffused optical waveguide, 3...
・Buffer layer, 4.44a, 44b... Electrode for surface wave excitation, 5, 54... TE polarization analysis element, 6... TM
Polarization analysis element, 7a, 7b, 74a, 74b... interaction region.

Claims (1)

【特許請求の範囲】 1、基板にチャネル型光導波路を備え、前記チャネル型
光導波路の入力端と出力端の中央付近上にバッファ層を
介して表面波励振用電極を設け、中央付近と出力端付近
に、互いに直交する直線偏光を分離する素子を設けたこ
とを特徴とする光波長フィルタ。 2、基板にチャネル型光導波路を備え、基板に対して垂
直な電界成分を有する直線偏光が充分に減衰するように
光導波路上に直接装荷した表面波励振用電極を前記チャ
ネル型光導波路の入力端と出力端の中央付近に設け、出
力端付近に互いに直交する直線偏光を分離する素子を設
けたことを特徴とする光波長フィルタ。
[Claims] 1. A channel-type optical waveguide is provided on a substrate, and a surface wave excitation electrode is provided via a buffer layer near the center of the input end and output end of the channel-type optical waveguide, and An optical wavelength filter characterized in that an element for separating mutually orthogonal linearly polarized light is provided near an end. 2. A channel type optical waveguide is provided on the substrate, and a surface wave excitation electrode loaded directly on the optical waveguide is input to the channel type optical waveguide so that linearly polarized light having an electric field component perpendicular to the substrate is sufficiently attenuated. An optical wavelength filter characterized in that an element is provided near the center of an end and an output end and separates mutually orthogonal linearly polarized light near the output end.
JP2160104A 1990-06-19 1990-06-19 Optical wavelength filter Expired - Fee Related JP2880770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160104A JP2880770B2 (en) 1990-06-19 1990-06-19 Optical wavelength filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160104A JP2880770B2 (en) 1990-06-19 1990-06-19 Optical wavelength filter

Publications (2)

Publication Number Publication Date
JPH0451114A true JPH0451114A (en) 1992-02-19
JP2880770B2 JP2880770B2 (en) 1999-04-12

Family

ID=15707939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160104A Expired - Fee Related JP2880770B2 (en) 1990-06-19 1990-06-19 Optical wavelength filter

Country Status (1)

Country Link
JP (1) JP2880770B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234150A (en) * 1995-02-28 1996-09-13 Nec Corp Acoustic optical filter
EP0889349A2 (en) * 1997-07-02 1999-01-07 Fujitsu Limited Acousto-optical device
US6233372B1 (en) 1998-03-03 2001-05-15 Nec Corporation Waveguide path type polarization independent optical wavelength tunable filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153329A (en) * 1988-12-06 1990-06-13 Omron Tateisi Electron Co Acoustooptic effect type waveguide type frequency shifter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153329A (en) * 1988-12-06 1990-06-13 Omron Tateisi Electron Co Acoustooptic effect type waveguide type frequency shifter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234150A (en) * 1995-02-28 1996-09-13 Nec Corp Acoustic optical filter
EP0889349A2 (en) * 1997-07-02 1999-01-07 Fujitsu Limited Acousto-optical device
EP0889349A3 (en) * 1997-07-02 1999-04-14 Fujitsu Limited Acousto-optical device
US6370308B1 (en) 1997-07-02 2002-04-09 Fujitsu Limited Acousto-optical device
US6233372B1 (en) 1998-03-03 2001-05-15 Nec Corporation Waveguide path type polarization independent optical wavelength tunable filter

Also Published As

Publication number Publication date
JP2880770B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
JP2737030B2 (en) Spatial filters for improving the polarization extinction ratio of proton exchange waveguide devices
US5076675A (en) Polarizing separating device and optical isolator employing the same
PL180680B1 (en) Optoacoustic waveguide device for wavelength selection and method of making same
JPH09211406A (en) Microphotonic polarization independent acousto-optical tunable filter and receiver
JPH06289241A (en) Polarized light separating element
JPH0749427A (en) Optical nonreciprocal circuit
JPH06331837A (en) Optical device
JP3165106B2 (en) Optical tunable wavelength filter
JP2004170924A (en) Waveguide embedded optical circuit and optical element used therefor
JPH0451114A (en) Optical wavelength filter
JPH08286160A (en) Acoustooptic filter
JP3000995B2 (en) Waveguide-type polarization-independent light tunable filter
Molchanov et al. Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection
JPS59102203A (en) Optical polarizing plane separating element
JP3215252B2 (en) Polarization separation element and variable wavelength filter
JPH11125801A (en) Wavelength selection filter
JPH0926516A (en) Waveguide type polarized light separating element and waveguide type isolator using the same
JP2752848B2 (en) Manufacturing method of optical waveguide with interference filter
JPH04125602A (en) Optical waveguide type polarizer
US5834055A (en) Guided wave device and method of fabrication thereof
JP3016387B2 (en) Optical wavelength filter
JPH10260380A (en) Light-wavelength filter
JPS63279627A (en) Two-way optical communication module
JP2856183B2 (en) Optical wavelength filter
JPH0850267A (en) Acoustooptical filter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees