JPH044942B2 - - Google Patents

Info

Publication number
JPH044942B2
JPH044942B2 JP59166035A JP16603584A JPH044942B2 JP H044942 B2 JPH044942 B2 JP H044942B2 JP 59166035 A JP59166035 A JP 59166035A JP 16603584 A JP16603584 A JP 16603584A JP H044942 B2 JPH044942 B2 JP H044942B2
Authority
JP
Japan
Prior art keywords
steam
foam particles
mold
pressure
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59166035A
Other languages
Japanese (ja)
Other versions
JPS6143539A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59166035A priority Critical patent/JPS6143539A/en
Publication of JPS6143539A publication Critical patent/JPS6143539A/en
Publication of JPH044942B2 publication Critical patent/JPH044942B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、壁、床等の断熱材、車のバンパー用
芯材、容器のクツシヨン材として有用なポリオレ
フイン型物発泡成形品の製造方法に関するもので
ある。 〔従来の技術〕 架橋ポリエチレン、無架橋ポリプロピレン、架
橋ポリプロピレン等のポリオレフインの発泡体
は、ポリスチレンフオームと比較して機械的強
度、耐油性に優れているのでバンパーの芯材、テ
レビ、電気冷蔵庫等の梱包に用いる包装緩衝材と
して用いられている。 かかるポリオレフイン型物発泡体の製造方法と
しては、次の方法が知られている。 (1) 架橋ポリエチレンの発泡体粒子に無機ガスで
加圧処理したのち、除圧して発泡させ、1.18気
圧以上のガス圧力を内蔵する収縮のなくなつた
粒子とし、これをスチーム孔を有する型に常圧
または減圧下で充填し、該粒子が1.18気圧以上
の圧力を内蔵している間にスチーム加熱して発
泡粒子を発泡させ、粒子を相互に融着させて型
物発泡体製品を製造する加圧熟成成形法(特公
昭51−22951号)。 (2) ポリプロピレンの発泡体粒子に無機ガスまた
は無機ガスと揮発性有機膨張剤との混合ガスで
加圧処理して無機ガスの分圧が0.4〜1.1Kg/cm2
G、揮発性有機膨張剤の分圧が0.8〜1.6Kg/cm2
Gであり、かつ全圧が1.4〜2.5Kg/cm2Gである
ガス圧力を内蔵する粒子とし、これを常圧でス
チーム孔を有する金型内に充填し、ついでスチ
ーム加熱して粒子を相互に融着させて型物発泡
体製品を製造する加圧熟成成形法(特開昭57−
12035号)。 (3) 架橋ポリエチレン発泡体粒子を、元の見かけ
の嵩容積の40〜80%に無機ガスまたは揮発性有
機膨張剤のガス圧力で圧縮してスチーム孔を有
する金型内に充填し、ついでスチーム加熱して
粒子同志を相互に融着させて型物発泡製品を製
造する圧縮充填成形法(特公昭53−33996号)。 (1)と(2)の加圧熟成成形方法は、(3)の圧縮充填成
形法により得られる型物成形品よりも発泡体粒子
間の間隙のない外観の優れた製品が得られる利点
を有するが、無機ガスによる発泡体粒子の加圧処
理、除圧による発泡、収縮のない発泡体粒子とす
る加圧熟成時間が20〜40時間と長い欠点があり、
生産性が悪い。 (3)の圧縮充填成形法は、成形サイクルの面では
上記加圧熟成成形法よりも優れるが、発泡体粒子
を元の見かけ容積の40〜80%に圧縮して型内に充
填して成形する方法であるから発泡体粒子の密度
が小さい嵩ばつたものが必要とされ、発泡体粒子
の製造メーカーより型物製品の加工メーカーへの
発泡体粒子の輸送コストが高いとともに、その貯
蔵コストも高くなる欠点がある。 〔発明が解決しようとする問題点〕 本発明は、加圧熟成成形法と圧縮充填成形法の
両者を組み合すことにより、加圧熟成成形法にお
いて成形サイクルが長いという欠点を解決し、外
観の良好な発泡体製品を製造する方法を提供する
ものである。 すなわち、発泡体粒子をスチーム孔を有する金
型の型窩内に充填し、加熱融着させて型物発泡体
製品を製造する方法に於ては、型窩内に充填され
た発泡体粒子間に空隙が生じる。この空隙を埋め
るために(1)と(2)の加圧熟成成形法では、無機ガス
または揮発性有機膨張剤を発泡体粒子内に浸透さ
せて発泡体粒子に膨張性を付与し、加熱により該
発泡体粒子を膨張させて前記粒子間の空隙を埋め
ている。後者の圧縮充填成形法では圧縮された発
泡体粒子が除圧されて複元する力を利用して粒子
間の空隙を埋めている。 〔問題点を解決する具体的な手段〕 本発明においては、両方法を併用することによ
り、加圧熟成成形法における成形サイクルおよ
び、加圧熟成時間を短縮するとともに、圧縮充填
成形法では得られない外観の良好な発泡体型物製
品を得ることが可能としたものである。すなわ
ち、本発明の方法においては、型窩内における発
泡体粒子間の空隙を発泡体粒子内に浸透させた無
機ガスおよび/または揮発性有機膨張剤の膨張力
と圧縮された発泡体粒子の復元力を併用するので
加圧熟成成形法単独の場合よりも浸透させるガス
圧力を小さくすることができ、それ故に成形サイ
クルを短縮できる。 即ち、本発明は、独立気泡を有するポリオレフ
イン発泡体粒子に加圧ガスで、0.3〜1Kg/cm2
のガス圧力を発泡体粒子内に付与せしめたのち、
これを加圧した無機ガスで見かけの嵩容積が60〜
90%となるように圧縮しつつ型窩内に充填し、つ
いで発泡体粒子が圧縮された状態で型窩よりガス
を抜き、しかるのちに型窩内にスチームを導き圧
縮された発泡体粒子同志を融着させることを特徴
とするポリオレフイン型物発泡体の製造方法を提
供するものである。 (発泡体粒子) 本発明の発泡体粒子は、嵩密度が12g/〜50
g/、粒子径が2〜5mmのポリオレフイン発泡
体粒子で、ポリオレフイン発泡体粒子は架橋され
ていても架橋されていなくてもよい。ポリオレフ
インとしては、ポリエチレン、ポリプロピレン、
エチレン・プロピレンランダム共重合体(エチレ
ン含量1〜12重量%)、エチレン・プロピレン・
ブテン−1ランダム共重合体(エチレン含量1〜
10重量%、ブテン−1含量2〜10重量%)、エチ
レン・酢酸ビニル共重合体(酢酸ビニル含量3〜
28重量%)、シラン変性ポリプロピレン、これら
の架橋物等があげられる。 発泡体粒子の製造法としては、ポリオレフイン
と熱分解型発泡剤の混合物を押出機でストランド
状に押し出し、発泡させ、これをペレツト状に架
橋したもの、ポリオレフイン粒子にジクロロジフ
ルオロメタン、ブタン等の揮発性膨張剤を含浸さ
せて発泡力を付与したのち、加熱発泡させたも
の、ポリオレフイン発泡体製品を粉砕したもの、
水に分散した無機充填剤含有ポリオレフイン粒子
に水を浸透させ、加熱加圧したのち、水とともに
ポリオレフイン粒子をオートクレーブ内より大気
圧中に放出して得た発泡体粒子等があげられる
(特公昭46−38716号、同49−2183号、同51−
22951号、同56−1344号、同57−17890号、特開昭
47−34458号、同57−90027号、同58−55231号、
同58−197027号等)。 この発泡体粒子は、2,6−t−ブチルフエノ
ール等の安定剤、紫外線吸収剤、染料、酸化チタ
ン、カーボンブラツク等の顔料、高級脂肪酸金属
塩等の滑剤、高級脂肪酸のトリグリセライド等の
表面改質剤等を含有していてもよい。 この発泡体粒子は、独立気泡率が70%以上のも
のが通常である。 (加圧処理) ポリオレフイン発泡体粒子に膨張性を付与させ
るために、発泡体粒子を加圧ガス雰囲気中に保持
して発泡体粒子のセルの内圧を0.3〜1Kg/cm2
まで高める。加圧処理は加圧容器内に発泡体粒子
を入れ、該加圧容器内に0.1〜4Kg/cm2Gの加圧
ガスを5〜20時間供給して行なう。加圧処理時の
温度は、通常、常温で行なうが加熱してもよく、
上記温度は粒子の材質、粒子径、加圧処理時間等
を考慮して決められる。加圧ガスは、無機ガスで
も揮発性有機膨張剤でも、両者を併用してもよ
い。 無機ガスとしては、例えば空気、窒素、アルゴ
ン、ネオン、二酸化炭素等が、揮発性膨張剤とし
てはプロパン、ブタン、ペンタン、シクロブタ
ン、トリクロロフロロメタン、ジクロロジフロロ
メタン、メチルクロライド等があげられる。これ
らの中でも経済的には空気が好ましい。 加圧処理の方法は、特公昭51−22951号、同52
−30304号、特開昭57−12035号、同58−101025号
公報等に記載されているので、ここでは詳細な説
明を省く。 加圧処理により発泡体粒子内にガスが浸透さ
れ、発泡体粒子内に一定のガス圧力が付与され
る。この粒子内圧は、0.3〜1Kg/cm2Gである。
0.3Kg/cm2G未満ではスチームにて加熱して発泡
体粒子同志を相互に融着させて型物発泡製品を製
造する際、発泡体粒子間の間隙をうめるのに不充
分である。逆に1Kg/cm2Gを越えては加圧処理に
時間を要する欠点がある。 (圧縮充填) 前記加圧処理された発泡体粒子は、加圧円筒状
容器(ホツパー)内に貯蔵され、加圧ガスにより
もとの見かけの嵩容積の60〜90%となるように加
圧ガスで圧縮(従つて圧縮率は10〜40%)され、
ついで1対の雌型と雄型とよりなる型より形成さ
れる1〜10Kg/cm2Gに加圧された型窩内に充填さ
れ、ついで充填ガンを閉じたのち、発泡体粒子が
圧縮されている状態でガス抜きを行ない、型窩内
の圧力を大気圧近くまで、または大気圧まで調整
して圧縮された発泡体粒子の復元力を利用して粒
子間の空隙を埋める。 加圧ガスとしては前述の無機ガスや揮発性有機
膨張剤が利用できるが、経済的、安全性の面から
空気、窒素ガス等の無機ガスを用いる。 発泡体粒子を圧縮する無機ガスの圧力は、大気
圧を越える圧力であるが、圧縮の程度や圧縮に要
する時間等を考慮して決められる。その圧力は1
〜10Kg/cm2G、好ましくは3〜5Kg/cm2Gであ
る。発泡体粒子を圧縮するときの温度はポリオレ
フインの軟化店より低い温度で行なう。 型は、発泡体粒子を充填する前に予じめ加熱し
ておくと成形サイクルを短縮することができる。 (型物成形) 型に充填された発泡体粒子は、水蒸気を型窩内
に導くことにより発泡体粒子同志を加熱融着さ
せ、ついで冷却することにより型窩に忠実な発泡
体製品となる。加熱の際、発泡体粒子内の加圧気
体が膨張し、前記の復元力のみでは埋めきれなか
つた粒子間の空隙を樹脂の発泡により完全に埋め
る。 水蒸気の圧力は、0.2〜6Kg/cm2Gである。成
形に用いる型は、雌型、雄型ともスチーム孔(ス
リツトでもよい)を有するスチーム金型でも、西
独公開特許第2928119号明細書の第1図、第4図
に開示される雄型か雌型の一方がスチーム孔を有
し、他方の型はスチーム孔を有していない型を用
いてもよい。 型窩内の発泡体粒子間に存在する無機ガスを型
外へ排気して得られる発泡体製品に巣が発生する
のを防ぐことは得策である。かかる無機ガスの排
気方法としては、 前記西独公開特許明細書の図面に開示される
ように、スチーム室が分画された型のこの分画
スチーム室へのスチームの導入を行つた後この
チヤンバー内のスチームの供給をとめ、然る
後、他の分画スチーム室にスチームを導入し、
次いで両方の企画されたスチーム室にスチーム
を導いて本格的な加熱を行なう方法、 予じめ雌型のスチームチヤンバー内にスチー
ム孔を導いた後、この雌型のチヤンバー内への
スチームの供給をとめ、然るのち雄型のスチー
ムチヤンバー内にスチームを導き、ついで両型
のスチームチヤンバー内にスチームを導いて本
格的な加熱を行う方法があげられる。 冷却は、冷却水(5〜60℃)を型に導くことに
より行われる。 このようにして得られた型物発泡体製品の嵩密
度は18〜70g/であり、外観が良好で、発泡体
内部に巣や間隙が殆んどないものである。 以下、実施例により更に本発明を詳細に説明す
る。なお、例中の部、%は重量基準である。 発泡体粒子の製造例 オートクレーブ内に、水250部、エチレン(4
%)・プロピレン共重合体粒子(融点140℃)100
部、粒径0.3〜0.5ミクロンの第三リン酸カルシウ
ム0.7部、ドデシルベンゼンスルホン酸ソーダ
0.007部を仕込み、次いで撹拌下で窒素ガスをオ
ートクレーブ内圧が5Kg/cm2Gとなるまで加圧
し、窒素ガスの供給を中止した。ついで、イソブ
タン24部を密閉容器内に供給し、1時間かけて
135℃まで加温し、同温度で30分間保持したとこ
ろ、オートクレーブ内圧は23Kg/cm2Gを示した。 その後、オートクレーブの底部にある吐出ノズ
ルの弁を開き、分散液を大気圧中に約2秒で放出
して発泡を行わしめた。 このようにして得られた粒径2.5〜4mmのポリ
プロピレン発泡体粒子の嵩密度は約21.8g/で
あつた。また、発泡体粒子同志のブロツキングは
見受けられなかつた。 実施例 1 (加圧処理) 上記例で得た嵩密度が21.8g/のポリプロピ
レン発泡体粒子を耐圧容器内に収容し、3Kg/cm2
Gの空気を耐圧容器内に供給し、同圧力で10時間
保持し、しかるのち、大気圧まで除去し、内圧が
0.75Kg/cm2Gの発泡体粒子を得た。 (圧縮充填) この発泡体粒子10を耐圧円筒型容器(ホツパ
ー)中に収容し、圧縮空気3Kg/cm2Gで加圧して
発泡体粒子を元の嵩容積の66%(6.6)まで圧
縮したのち、2.5Kg/cm2Gの加圧下の内容積5.8
の雌雄1対の型よりなる包装容器用金型の型窩内
へ圧縮した発泡体粒子を10秒で充填し、ついで充
填ガンを閉じた後、型窩内の圧力を0.5Kg/cm2
まで除圧した。 ついで、雄型のスチームチヤンバー内に3Kg/
cm2Gのスチームを4秒間、その後、雌型のスチー
ムチヤンバー内にスチームを4秒間導き、ついで
両型のチヤンバー内に該圧力のスチームを8秒間
導き、発泡体粒子同志を加熱融着させた。 その後、スチームの供給をとめ、型を60℃に90
秒間冷却し、型を開き、嵩密度が約33g/の発
泡体製品を得た。 このものの外観は平滑で良好であり、発泡体断
面には巣や隙間が見受けられなかつた。 実施例 2〜4 成形条件を表1のように変更する他は同様にし
て型物発泡体製品を得た。 参考例 1(圧縮充填法) 前記例で得た嵩密度が21.8g/のポリプロピ
レン発泡体粒子を実施例1で用いたホツパー内に
収容し、3Kg/cm2Gの窒素ガスで発泡体粒子を元
の嵩容積の50%まで圧縮した後、2.5Kg/cm2Gの
加圧下の型窩内に供給し、表1に示す条件で成形
を行ない、同表に示す物性の型物発泡体製品を得
た。 参考例 2〜3 参考例1において、成形条件を表1のように変
更する他は同様にして同表に示す物性の型物発泡
体製品を得た。 参考例 4(加圧熟成法) 嵩密度が約30g/のプロピレン・エチレン
(4重量%)ランダム共重合体発泡体粒子を耐圧
容器内に収容し、3Kg/cm2Gの加圧空気を耐圧容
器内に供給し、同圧力で40時間保持し、然るの
ち、大気圧まで除圧し、内圧が1.8Kg/cm2Gの発
泡体粒子を得た。 この発泡体粒子を実施例1で用いた包装容器用
型内に充填し、表1に示す条件で成形して嵩密度
が約31g/の発泡体製品を得た。 参考例 5 参考例4において、成形条件を表1のように変
更する他は同様にして同表に示す物性の発泡体製
品を得た。 なお、表中の評価基準は次のとおりである。 外 観 ◎:表面光択が優れ、平滑であり、変形が見受
けられない。 〇:表面光択が優れ、平滑であるが、若干変形
が見受けられる。 ×:表面光択は普通であるが、表面にところど
ころ、へこみがある。また、変形も見受け
られる。 巣、間隙の有無 断面積100cm2(10×10)の中に巣、間隙が ◎:5個以下である。 〇:5〜10個である。 △:10〜20個である。 ×:20個以上である。 【表】
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a polyolefin foam molded product useful as a heat insulating material for walls, floors, etc., a core material for car bumpers, and a cushion material for containers. It is something. [Prior Art] Polyolefin foams such as cross-linked polyethylene, non-cross-linked polypropylene, and cross-linked polypropylene have superior mechanical strength and oil resistance compared to polystyrene foam, so they are used as core materials for bumpers, televisions, electric refrigerators, etc. It is used as a packaging cushioning material for packaging. The following method is known as a method for producing such a polyolefin foam. (1) Cross-linked polyethylene foam particles are pressurized with an inorganic gas, then depressurized and foamed to form non-shrinkable particles with a built-in gas pressure of 1.18 atmospheres or more, which are then molded into a mold with steam holes. The foamed particles are filled under normal pressure or reduced pressure, and heated with steam while the particles contain a built-in pressure of 1.18 atmospheres or more to foam the foamed particles, and the particles are fused together to produce molded foam products. Pressure ripening molding method (Special Publication No. 51-22951). (2) Polypropylene foam particles are pressurized with an inorganic gas or a mixed gas of an inorganic gas and a volatile organic expansion agent, so that the partial pressure of the inorganic gas is 0.4 to 1.1 Kg/cm 2
G, partial pressure of volatile organic swelling agent is 0.8 to 1.6 Kg/cm 2
G and a total pressure of 1.4 to 2.5 Kg/cm 2 G, the particles are filled into a mold with steam holes at normal pressure, and then heated with steam to make the particles mutually Pressure ripening molding method for manufacturing molded foam products by fusing with
No. 12035). (3) Cross-linked polyethylene foam particles are compressed to 40 to 80% of their original apparent bulk volume using gas pressure of an inorganic gas or volatile organic expansion agent and filled into a mold with steam holes, and then steamed. A compression-filling molding method (Japanese Patent Publication No. 33996/1983) that produces molded foam products by heating and fusing particles together. The pressure aging molding methods (1) and (2) have the advantage of producing products with a better appearance without gaps between foam particles than the molded products obtained by the compression filling molding method (3). However, it has the disadvantage that the pressure treatment of the foam particles with inorganic gas, the foaming by removing pressure, and the pressure aging time to form foam particles without shrinkage are long, ranging from 20 to 40 hours.
Poor productivity. The compression filling molding method (3) is superior to the above-mentioned pressure aging molding method in terms of the molding cycle, but the foam particles are compressed to 40 to 80% of their original apparent volume and filled into a mold. Since this method requires bulky foam particles with low density, the transportation cost of the foam particles from the foam particle manufacturer to the mold product processing manufacturer is high, and the storage cost is also high. It has the disadvantage of being expensive. [Problems to be Solved by the Invention] The present invention solves the disadvantage of the long molding cycle in the pressure aging molding method by combining both the pressure aging molding method and the compression filling molding method, and improves the appearance. The present invention provides a method for manufacturing a foam product with good quality. In other words, in the method of manufacturing a molded foam product by filling foam particles into the mold cavities of a mold having steam holes and heating and fusing them, the foam particles filled in the mold cavities are A void is created. In order to fill these voids, in the pressure aging molding methods (1) and (2), an inorganic gas or volatile organic expansion agent is infiltrated into the foam particles to give them expandability, and then heated. The foam particles are expanded to fill the voids between the particles. In the latter compression filling molding method, the compressed foam particles are decompressed and multiple forces are used to fill the voids between the particles. [Specific means for solving the problem] In the present invention, by using both methods in combination, the molding cycle and pressure aging time in the pressure aging molding method are shortened, and at the same time, the molding cycle and the pressure aging time can be shortened, and the This makes it possible to obtain a foam product with a good appearance. That is, in the method of the present invention, the expansion force of the inorganic gas and/or volatile organic expansion agent that penetrates the voids between the foam particles in the mold cavity and the restoration of the compressed foam particles are combined. Since force is used in combination, the gas pressure for infiltration can be lowered than in the case of the pressure aging molding method alone, and therefore the molding cycle can be shortened. That is, the present invention provides polyolefin foam particles having closed cells with a pressurized gas of 0.3 to 1 Kg/cm 2 G.
After applying a gas pressure of
The apparent bulk volume of this pressurized inorganic gas is 60~
Fill the mold cavity while compressing the foam particles to 90%, then remove gas from the mold cavity while the foam particles are compressed, and then introduce steam into the mold cavity to compress the compressed foam particles. The present invention provides a method for producing a polyolefin foam, characterized by fusing the polyolefin foam. (Foam particles) The foam particles of the present invention have a bulk density of 12 g/~50
g/, polyolefin foam particles having a particle size of 2 to 5 mm, and the polyolefin foam particles may be crosslinked or non-crosslinked. Polyolefins include polyethylene, polypropylene,
Ethylene/propylene random copolymer (ethylene content 1-12% by weight), ethylene/propylene/
Butene-1 random copolymer (ethylene content 1~
10% by weight, butene-1 content 2~10% by weight), ethylene/vinyl acetate copolymer (vinyl acetate content 3~10% by weight),
28% by weight), silane-modified polypropylene, and crosslinked products thereof. The foam particles can be produced by extruding a mixture of polyolefin and a pyrolyzable blowing agent into a strand using an extruder, foaming it, and crosslinking it into pellets, or by adding volatile substances such as dichlorodifluoromethane or butane to the polyolefin particles. Products that have been impregnated with a foaming agent to give them foaming power and then heated and foamed, and products that have been crushed from polyolefin foam products.
Examples include foamed particles obtained by infiltrating polyolefin particles containing an inorganic filler dispersed in water, heating and pressurizing the particles, and then releasing the polyolefin particles together with water into atmospheric pressure from an autoclave. -38716, 49-2183, 51-
No. 22951, No. 56-1344, No. 57-17890, JP-A-Sho
No. 47-34458, No. 57-90027, No. 58-55231,
No. 58-197027, etc.). These foam particles contain stabilizers such as 2,6-t-butylphenol, ultraviolet absorbers, dyes, pigments such as titanium oxide and carbon black, lubricants such as higher fatty acid metal salts, and surface modifications such as triglycerides of higher fatty acids. It may contain a quality agent and the like. These foam particles usually have a closed cell ratio of 70% or more. (Pressure treatment) In order to impart expandability to the polyolefin foam particles, the foam particles are held in a pressurized gas atmosphere and the internal pressure of the cells of the foam particles is adjusted to 0.3 to 1 Kg/cm 2 G.
increase to The pressurization treatment is carried out by placing the foam particles in a pressurized container and supplying pressurized gas of 0.1 to 4 kg/cm 2 G into the pressurized container for 5 to 20 hours. The temperature during pressure treatment is usually room temperature, but heating may be used.
The above temperature is determined in consideration of the material of the particles, the particle size, the pressure treatment time, etc. The pressurized gas may be an inorganic gas or a volatile organic expansion agent, or both may be used in combination. Examples of the inorganic gas include air, nitrogen, argon, neon, carbon dioxide, etc., and examples of the volatile expansion agent include propane, butane, pentane, cyclobutane, trichlorofluoromethane, dichlorodifluoromethane, methyl chloride, etc. Among these, air is economically preferable. The method of pressure treatment is described in Japanese Patent Publication No. 51-22951 and No. 52.
30304, Japanese Patent Laid-open No. 57-12035, Japanese Patent Application Laid-Open No. 58-101025, etc., detailed explanation will be omitted here. The pressure treatment infiltrates gas into the foam particles and provides a constant gas pressure within the foam particles. This particle internal pressure is 0.3 to 1 Kg/cm 2 G.
If it is less than 0.3 Kg/cm 2 G, it is insufficient to fill the gaps between the foam particles when heating with steam to fuse the foam particles together to produce a molded foam product. On the other hand, if the pressure exceeds 1 kg/cm 2 G, there is a drawback that the pressure treatment takes time. (Compression filling) The pressurized foam particles are stored in a pressurized cylindrical container (hopper) and pressurized with pressurized gas to 60 to 90% of the original apparent bulk volume. Compressed with gas (therefore the compression ratio is 10-40%),
The foam particles are then filled into a mold cavity pressurized to 1 to 10 kg/cm 2 G formed by a mold consisting of a pair of female and male molds, and then the filling gun is closed and the foam particles are compressed. The pressure inside the mold cavity is adjusted to near or atmospheric pressure, and the restoring force of the compressed foam particles is used to fill the voids between the particles. As the pressurized gas, the above-mentioned inorganic gases and volatile organic expansion agents can be used, but in terms of economy and safety, inorganic gases such as air and nitrogen gas are used. The pressure of the inorganic gas that compresses the foam particles is higher than atmospheric pressure, and is determined by taking into consideration the degree of compression, the time required for compression, and the like. The pressure is 1
~10Kg/ cm2G , preferably 3-5Kg/ cm2G . The temperature at which the foam particles are compressed is lower than the softening temperature of the polyolefin. Preheating the mold before filling it with foam particles can shorten the molding cycle. (Molding) The foam particles filled in the mold are heated and fused together by introducing water vapor into the mold cavity, and then cooled to form a foam product that is faithful to the mold cavity. During heating, the pressurized gas within the foam particles expands, and the foaming of the resin completely fills the gaps between the particles that could not be filled by the restoring force alone. The pressure of water vapor is 0.2 to 6 Kg/cm 2 G. The mold used for molding may be a steam mold having steam holes (or slits) for both the female mold and the male mold, or the male mold or the female mold as disclosed in FIGS. 1 and 4 of West German Published Patent No. 2928119. A mold may be used in which one of the molds has steam holes and the other mold does not have steam holes. It is a good idea to exhaust the inorganic gas present between the foam particles in the mold cavity to the outside of the mold to prevent the formation of cavities in the resulting foam product. As disclosed in the drawings of the above-mentioned West German patent specification, the method for exhausting such inorganic gas is as follows: After introducing steam into a fractionated steam chamber, the steam chamber is of a fractionated type. Stop the supply of steam, and then introduce steam to other fractionated steam chambers,
Next, the steam is introduced into both planned steam chambers for full-scale heating.The steam hole is introduced into the female steam chamber in advance, and then the steam is supplied into the female chamber. One method is to stop the heating, then introduce steam into the male steam chamber, and then introduce steam into both steam chambers to perform full-scale heating. Cooling is performed by introducing cooling water (5 to 60°C) into the mold. The molded foam product thus obtained has a bulk density of 18 to 70 g/, has a good appearance, and has almost no cavities or gaps inside the foam. Hereinafter, the present invention will be explained in further detail with reference to Examples. Note that parts and percentages in the examples are based on weight. Example of manufacturing foam particles: In an autoclave, 250 parts of water, ethylene (4 parts)
%) Propylene copolymer particles (melting point 140℃) 100
parts, 0.7 parts of tricalcium phosphate with a particle size of 0.3-0.5 microns, sodium dodecylbenzenesulfonate
After charging 0.007 parts, nitrogen gas was applied under stirring until the internal pressure of the autoclave reached 5 kg/cm 2 G, and the supply of nitrogen gas was stopped. Next, 24 parts of isobutane was supplied into the sealed container and the mixture was heated for 1 hour.
When the autoclave was heated to 135° C. and maintained at the same temperature for 30 minutes, the autoclave internal pressure was 23 Kg/cm 2 G. Thereafter, the valve of the discharge nozzle at the bottom of the autoclave was opened, and the dispersion was discharged into atmospheric pressure for about 2 seconds to cause foaming. The bulk density of the polypropylene foam particles thus obtained having a particle size of 2.5 to 4 mm was about 21.8 g/. Further, no blocking between foam particles was observed. Example 1 (Pressure treatment) The polypropylene foam particles having a bulk density of 21.8 g/cm2 obtained in the above example were placed in a pressure-resistant container and heated to 3 kg/ cm2 .
G air is supplied into a pressure-resistant container, held at the same pressure for 10 hours, and then removed to atmospheric pressure until the internal pressure is
Foam particles of 0.75 Kg/cm 2 G were obtained. (Compression filling) The foam particles 10 were placed in a pressure-resistant cylindrical container (hopper) and compressed with compressed air of 3 kg/cm 2 G to compress the foam particles to 66% (6.6) of the original bulk volume. Later, the internal volume under pressure of 2.5Kg/cm 2 G was 5.8
The compressed foam particles were filled into the mold cavity of a packaging container mold consisting of a pair of female and male molds for 10 seconds, and then the filling gun was closed, and the pressure inside the mold cavity was increased to 0.5 kg/cm 2 G.
The pressure was released to Next, 3 kg/kg was placed in the male steam chamber.
Steam at cm 2 G was applied for 4 seconds, then steam was introduced into the female steam chamber for 4 seconds, and then steam at the same pressure was introduced into both chambers for 8 seconds to fuse the foam particles together. Ta. After that, stop the steam supply and heat the mold to 60℃ at 90℃.
After cooling for seconds, the mold was opened, yielding a foam product with a bulk density of approximately 33 g/m. The appearance of this product was smooth and good, and no cavities or gaps were observed in the cross section of the foam. Examples 2 to 4 Molded foam products were obtained in the same manner except that the molding conditions were changed as shown in Table 1. Reference Example 1 (Compression filling method) The polypropylene foam particles with a bulk density of 21.8 g/g obtained in the above example were placed in the hopper used in Example 1, and the foam particles were heated with nitrogen gas of 3 Kg/cm 2 G. After compressing to 50% of the original bulk volume, it was fed into a mold cavity under pressure of 2.5 kg/cm 2 G, and molded under the conditions shown in Table 1 to produce a molded foam product with the physical properties shown in the table. I got it. Reference Examples 2 to 3 Molded foam products having the physical properties shown in Table 1 were obtained in the same manner as in Reference Example 1, except that the molding conditions were changed as shown in Table 1. Reference Example 4 (Pressure Aging Method) Propylene-ethylene (4% by weight) random copolymer foam particles with a bulk density of approximately 30 g/cm are placed in a pressure-resistant container, and pressurized air of 3 kg/cm 2 G is resistant to the pressure. The mixture was supplied into a container, maintained at the same pressure for 40 hours, and then depressurized to atmospheric pressure to obtain foam particles having an internal pressure of 1.8 Kg/cm 2 G. These foam particles were filled into the packaging container mold used in Example 1 and molded under the conditions shown in Table 1 to obtain a foam product having a bulk density of about 31 g/. Reference Example 5 A foam product having the physical properties shown in Table 1 was obtained in the same manner as in Reference Example 4, except that the molding conditions were changed as shown in Table 1. The evaluation criteria in the table are as follows. Appearance ◎: The surface has excellent light selection, is smooth, and no deformation is observed. ○: The surface has excellent optical selectivity and is smooth, but some deformation is observed. ×: Surface brightness is normal, but there are some dents on the surface. Also, deformation can be seen. Presence of nests and gaps ◎: There are 5 or less nests and gaps in a cross-sectional area of 100 cm 2 (10 x 10). ○: 5 to 10 pieces. △: 10 to 20 pieces. ×: 20 or more. 【table】

Claims (1)

【特許請求の範囲】 1 独立気泡を有するポリオレフイン発泡体粒子
に加圧ガスで、0.3〜1Kg/cm2Gのガス圧力を発
泡体粒子内に付与せしめたのち、これを加圧した
無機ガスで見かけの嵩容積が60〜90%となるよう
に圧縮しつつ型窩内に充填し、ついで発泡体粒子
が圧縮された状態で型窩よりガスを抜き、しかる
のちに型窩内にスチームを導き圧縮された発泡体
粒子同志を融着させることを特徴とするポリオレ
フイン型物発泡体の製造方法。 2 ポリオレフイン発泡体粒子がポリプロピレン
発泡体粒子であることを特徴とする特許請求の範
囲第1項記載の製造方法。 3 型窩がスチームチヤンバーを有する雌型と雄
型の1対の金型から形成されていることを特徴と
する特許請求の範囲第1項記載の製造方法。 4 型窩内へのスチームの導入が、予じめ雌雄金
型の一方の型のチヤンバーにスチームを導き、他
方の型のチヤンバーを通過して型外へ排出した
後、他方の型のチヤンバーに新たなスチームを導
き、このスチームを最初にスチームを導いたチヤ
ンバーを通過して型外へ排出し、然るのちに両型
のチヤンバーに同時にスチームを導き、チヤンバ
ーを通過させてスチームを型外へ排出することに
より圧縮したポリオレフイン発泡体粒子の加熱融
着を行なうことを特徴とする特許請求の範囲第3
項記載の製造方法。 5 ポリオレフイン発泡体粒子が架橋ポリエチレ
ン発泡体粒子であることを特徴とする特許請求の
範囲第1項記載の製造方法。
[Claims] 1. A gas pressure of 0.3 to 1 Kg/cm 2 G is applied to polyolefin foam particles having closed cells using a pressurized gas, and then this is applied with a pressurized inorganic gas. The foam particles are compressed and filled into the mold cavity so that the apparent bulk volume is 60 to 90%, then gas is removed from the mold cavity while the foam particles are compressed, and then steam is introduced into the mold cavity. A method for producing a polyolefin foam, which comprises fusing compressed foam particles together. 2. The manufacturing method according to claim 1, wherein the polyolefin foam particles are polypropylene foam particles. 3. The manufacturing method according to claim 1, wherein the mold cavity is formed from a pair of female and male molds each having a steam chamber. 4 Steam is introduced into the mold cavity by first introducing the steam into the chamber of one of the male and female molds, passing through the chamber of the other mold and exhausting it outside the mold, and then introducing the steam into the chamber of the other mold. New steam is introduced, this steam passes through the chamber that originally introduced the steam, and is discharged out of the mold.Then, steam is then introduced into both chambers at the same time, and the steam is passed through the chamber and discharged out of the mold. Claim 3, characterized in that the compressed polyolefin foam particles are heated and fused by discharging.
Manufacturing method described in section. 5. The manufacturing method according to claim 1, wherein the polyolefin foam particles are crosslinked polyethylene foam particles.
JP59166035A 1984-08-08 1984-08-08 Manufacture of polyolefin shaped foam Granted JPS6143539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59166035A JPS6143539A (en) 1984-08-08 1984-08-08 Manufacture of polyolefin shaped foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59166035A JPS6143539A (en) 1984-08-08 1984-08-08 Manufacture of polyolefin shaped foam

Publications (2)

Publication Number Publication Date
JPS6143539A JPS6143539A (en) 1986-03-03
JPH044942B2 true JPH044942B2 (en) 1992-01-29

Family

ID=15823736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59166035A Granted JPS6143539A (en) 1984-08-08 1984-08-08 Manufacture of polyolefin shaped foam

Country Status (1)

Country Link
JP (1) JPS6143539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062218A (en) * 2009-10-30 2011-05-18 米利波尔有限公司 Fluid transfer device and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499574A (en) * 1972-05-24 1974-01-28
JPS5329371A (en) * 1976-09-01 1978-03-18 Japan Styrene Paper Corp Process for molding expandable polyethylene powder
JPS5712035A (en) * 1980-06-25 1982-01-21 Japan Styrene Paper Co Ltd Production of polyolefin resin molded foam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499574A (en) * 1972-05-24 1974-01-28
JPS5329371A (en) * 1976-09-01 1978-03-18 Japan Styrene Paper Corp Process for molding expandable polyethylene powder
JPS5712035A (en) * 1980-06-25 1982-01-21 Japan Styrene Paper Co Ltd Production of polyolefin resin molded foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062218A (en) * 2009-10-30 2011-05-18 米利波尔有限公司 Fluid transfer device and system

Also Published As

Publication number Publication date
JPS6143539A (en) 1986-03-03

Similar Documents

Publication Publication Date Title
US5252270A (en) Method of forming foam moldings having varied density regions
EP0450205B1 (en) Method for preparing moldable shrunken thermoplastic polymer foam beads
AU2004267408A1 (en) Process for processing expandable polymer particles and foam article thereof
JPS5943492B2 (en) Manufacturing method of polypropylene resin foam molding
JPH0446217B2 (en)
JPH0313057B2 (en)
US4698191A (en) Methods of producing molded products from foamed polypropylene particles
JPH0432854B2 (en)
JPH0622919B2 (en) In-mold molding method for expanded polypropylene resin particles
JP2003039565A (en) Foamed particle molded object
JP3418081B2 (en) Expanded resin particles
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
EP0928806B1 (en) Expanded resin beads
JPH044942B2 (en)
JP2000000894A (en) Production of thermoplastic resin foam molding
JPH0657435B2 (en) In-mold foam molding of polypropylene resin
JPH06104749B2 (en) Moldable shrinkable thermoplastic polymer foam beads
JP2001162640A (en) Method for manufacturing thermoplastic resin foamed molding
JPH08113667A (en) Molded linear low-density polyethylene resin foam and its production
JPH09227711A (en) Flame-retardant expandable polyolefin resin particle and in-mold expansion molded article produced by using the particle
JP2637201B2 (en) Processing method for expanded polypropylene resin particles
JPH0757498B2 (en) Molding method of olefin resin foam particles
JP2798572B2 (en) Method for producing recycled expanded polystyrene resin molded article
JP3504042B2 (en) Method for producing expanded polypropylene resin particles, and method for molding in a mold using the same
CA2000226A1 (en) Method of producing a foamed polymer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees