JPH0448394B2 - - Google Patents

Info

Publication number
JPH0448394B2
JPH0448394B2 JP60268787A JP26878785A JPH0448394B2 JP H0448394 B2 JPH0448394 B2 JP H0448394B2 JP 60268787 A JP60268787 A JP 60268787A JP 26878785 A JP26878785 A JP 26878785A JP H0448394 B2 JPH0448394 B2 JP H0448394B2
Authority
JP
Japan
Prior art keywords
toner
magnetic
electrostatic latent
sleeve
magnetic toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60268787A
Other languages
Japanese (ja)
Other versions
JPS62127848A (en
Inventor
Masumi Asanae
Toshio Kumakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP26878785A priority Critical patent/JPS62127848A/en
Priority to DE19863640642 priority patent/DE3640642A1/en
Publication of JPS62127848A publication Critical patent/JPS62127848A/en
Priority to US07/185,242 priority patent/US4865936A/en
Publication of JPH0448394B2 publication Critical patent/JPH0448394B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、画像担体表面に形成された静電潜像
の非帯電領域に一成分系の磁性トナーを付着せし
めて反転トナー像を得る反転現像法に関する。 〔従来の技術〕 近年、コンピユータの普及に伴い、情報を文字
や図形の形で出力し、ハードコピーを作り出す周
辺端末装置として、プリンタの開発が盛んであ
る。従来より、プリンタは選択した活字がインク
リボンを介して用紙に衝突して印字するインパク
トプリンタが主流を占めてきた。しかるに、コン
ピユータの高性能化や情報処理の多様化に伴なつ
て、多量の情報の迅速処理や、漢字、図形、任意
の大きさの文字等の多様な出力形態を必要とし、
この要求に対して従来のインパクトプリンタでは
対応が難しく、新たにノンインパクトプリンタ
(電子プリンタ)が開発されるに至つた。 ノンインパクトプリンタは、記録方式の面から
電子写真方式、静電方式、インクジエツト方式に
分類されるが、最近の記録の高速化、高密度化に
対応するためには電子写真方式が最も有利であ
る。 電子写真方式を用いたプリンタの記録原理は、
一般複写機の記録原理と本質的に異ならず、画像
担体表面の一様帯電と露光による静電潜像の形
成、静電潜像の現像、現像トナー像の普通紙への
転写、定着の各工程からなつている。しかして、
プリンタでは、コンピユータからの情報を一様帯
電した画像担体表面にレーザ光などで書き込み、
この書き込み部即ち露光部にトナーを付着させる
ため、反転現像を行なう必要がある。 反転現像法に使用される乾式現像剤としては、
複写機の場合と同様に磁性キヤリアとトナーから
なる二成分現像剤が一般的であり、現用のプリン
タは、概ねこの現像剤を採用している。 二成分現像剤を用いる場合、トナーはキヤリア
との摩擦帯電により、明確な静電荷を有するた
め、静電潜像の非帯電部を忠実に現像することが
可能である。また現像後もトナーは静電荷を保持
するため、汎用の普通紙へのトナー像の静電転写
が可能であり、高画質のプリンタ画像が得られ
る。しかるに、二成分現像剤を使用する場合、一
定の画像濃度を維持するためにキヤリアとトナー
との混合比率を一定にするための手段が必要であ
り、現像装置が大型化・複雑化するという欠点が
ある。またキヤリアはトナーとの混合攪拌を長時
間続けるとその表面にトナー皮膜が生成されて、
摩擦帯電特性が変化するために、キヤリアを定期
的に交換する必要があるという欠点もある。 このような欠点を解消するため、乾式現像剤と
して磁性を有するトナー粒子のみからなる一成分
系現像剤(磁性トナー)を用いて静電潜像を現像
する方式が提案され、実用化されている。 磁性トナーを用いる反転現像方式においては、
静電潜像と同極性の電荷を持つた磁性トナーを保
持する導電性スリーブに静電潜像と同極性の直流
バイアス電圧を印加することにより、トナーを非
帯電部に付着せしめるのが一般的である。ここで
磁性トナーは所定極性の電解を持つようにするた
め、トナーの内部および/表面に荷電制御剤を添
加した荷電型磁性トナー(例えば特開昭55−
48754号、同57−45555〜45557号等参照)が使用
される。この荷電型磁性トナーは、スリーブやド
クターブレードとの接触あるいはトナー同志の接
触により電荷をもつようになる。 また現像して得られたトナー像を転写シート上
に静電転写する場合、転写画像の乱れを防ぐため
に、電気抵抗を高めた絶縁性磁性トナーを用いる
のが一般的である(例えば特開昭53−31136号公
報参照)。 〔発明が解決しようとする問題点〕 上述した荷電型の絶縁性磁性トナーを静電潜像
と同極性に帯電せしめて反転現像を行なつた場
合、画質の点では二成分現像剤より劣るのが実情
であつた。詳述すると、静電潜像と同極性に帯電
する磁性トナーを用いた場合、画像濃度の点では
二成分現像剤と同等の結果が得られるものの、解
像度の点では十分でなく、また文字の回りにチリ
が発生し易いという問題があつた。 したがつて本発明の目的は、磁性トナーを用い
て従来よりも高品質の画像が得られる反転現像法
を提供することである。 〔問題点を解決するための手段〕 上述したように、磁性トナーを用いて静電潜像
を反転現像する場合、静電潜像と同極性に帯電す
る性質を持つた磁性トナーを使用するのが常識で
あり、このような磁性トナーが実際使用されてい
る。 ところが本発明者が種々検討したる結果、驚く
べきことに、静電潜像と逆極性に帯電する性質を
もつた磁性トナーを使用することにより、従来よ
りも解像度が向上しかつチリも極めて少ない、ギ
レのよい画像が得られることを見出した。 したがつて、本発明の反転現像法は、所定の帯
電特性を有する画像担体表面に静電潜像を形成
し、画像担体表面に対向して配置され、内部に磁
界発生部材を備えた非磁性導電性スリーブ上に樹
脂と磁性粉を主体とする絶縁性磁性トナーを供給
し、所定極性に帯電した磁性トナーをスリーブと
磁界発生部材との相対移動により画像担体表面に
向かつて搬送し、スリーブに静電潜像と同極性の
直流電圧を印加して画像担体表面の非帯電部に磁
性トナーを付着させる反転現像法であつて、磁性
トナーとして静電潜像と逆極性の帯電特性を有す
ると共に、ブローオフ法による摩擦帯電量が絶対
値で1〜20μc/gの範囲にあり、かつ内部に永
久磁石部材を有する非磁性スリーブ上でのトナー
粒子の自転による発生電圧が絶対値で10〜90Vの
範囲にある磁性トナーを用いることを特徴とする
ものである。 以下本発明の詳細を図面により説明する。 第1図は本発明を実施するための現像装置の一
例を示す断面図である。 感光体ドラム1は、静電潜像(図中+信号で示
す)を保持する光導電性層1aと電気的に接地さ
れ体導電性基体1bを有し、図示矢印W方向に回
転する。現像装置2は、感光体ドラム1に対向し
て配置されたスリーブ3、スリーブ3内に配置さ
れた表面に複数個の磁極を有する永久磁石部材
4、磁性トナー6を収容するトナー槽5、スリー
ブ3上を搬送される磁性トナー6の厚さを規制す
るドクターブレード7を備えている。ここでスリ
ーブ3は、例えばオーステナイト系ステンレス鋼
又はアルミニウム合金等の非磁性かつ導電性材料
で形成され、直流電圧源8に電気的に接続されて
いる。上記現像装置による反転現像工程は次の通
りである。スリーブ3と永久磁石部材4とを相対
的に回転させることにより、トナー槽5内に収容
された磁性トナー6をスリーブ3上に引出し、図
示矢印Yで示すようにドクターギヤツプdから現
像ギヤツプDに向かつて搬送する。ここで磁性ト
ナーは、静電潜像と逆極性に帯電する性質を有し
ており、上記搬送過程でスリーブ、ドクターブレ
ードあるいはトナー同志の接触により静電潜像と
逆極性の電荷をもつようになる。荷電を持つた磁
性トナー6が現像領域に至ると、静電潜像の非帯
電部に付着してトナー像が得られる。このトナー
像は感光体ドラム1の回転により転写位置に至る
と、転写シート(図示せず)の裏面から静電潜像
と逆極性の電界を印加することにより転写シート
上に転写され、ついで定着される。 本発明は、従来と異なり静電潜像と逆極性に帯
電する性質を有する磁性トナーを用いているた
め、今までの考え方からすると磁性トナーは静電
潜像の画像部に付着するように思われるが、本発
明者等の実験によれば、静電潜像の非帯電部に付
着することが確認された。 本発明により高品質の画像が得られる理由は、
詳細は不明であるが、次のようなことであると推
察される。 磁性トナーはスリーブ上を搬送される過程で、
上述したように静電潜像と逆極性に帯電し、殆ん
どのトナー粒子は静電潜像と逆極性の電荷を持つ
ようになる。この磁性トナーが現像領域に至り、
静電潜像の電界中に入ると、電界の方向に従つて
トナー中の電荷が移動し、静電潜像電位の低い感
光体との界面近傍にあるトナー粒子は静電潜像と
同極性の電荷を持つようになる。これにより静電
潜像と同極性の電荷を持つたトナー粒子が静電潜
像の非帯電部に付着して、反転画像が得られる。
したがつて、従来は静電潜像と同極性に帯電する
磁性トナーを用いていたので、過現像が生じ、即
ち、トナーが感光体表面に付着しすぎて、チリが
発生したのに対し、本発明によれば、感光体との
界面近傍にあるトナーのみが現像に寄与する帯電
極性となるため、過現像が抑制されチリの発生を
防止することができると思われる。 また本発明者等の実験によれば、本発明で用い
る磁性トナーはブローオフ法により測定した時の
摩擦帯電量が絶対値で1〜20μc/gの範囲にあ
り、しかも、トナーの自転により表面に発生した
表面電位が絶対値で10〜90Vの範囲の帯電特性を
有するものが望ましいことがわかつた。これは摩
擦帯電量及び表面電位が過大になると、画像濃度
が低下し、一方摩擦帯電量及び表面電位が不足す
ると、カブリが多くなるからである。また帯電量
と表面電位の最も好適範囲は、それぞれ絶対値で
3〜10μc/g及び絶対値で30〜60Vである。 本発明における磁性トナーは、通常の磁性トナ
ーに用いられる種々の材料により製造できる。 磁性粉としては、フエライト、マグネタイトを
はじめとする鉄、コバルト、ニツケルなどの強磁
性を示す元素を含む合金あるいは化合物、その他
熱処理等何らかの処理を施すことによつて強磁性
を示す種々の合金等が用い得る。これらの強磁性
体は数μmないし数10μmの粒径を有するトナー中
に含有せしめるために、平均粒径が0.1〜3μm位
のものが望ましい。トナー中に含有せしめる量
は、トナーの全重量に対し30〜70重量%とするの
が望ましい。30重量%未満では、トナーの磁力が
低下し、スリーブよりトナーが飛散し易くなり、
一方70重量%を越えると樹脂分が極めて少なくな
るため定着性が低下するからである。 定着用樹脂は、定着方式に応じて適宜選択すれ
ばよい。例えば、定着方式がオーブン加熱あるい
は熱ロール方式の場合、下記のような種々の熱可
塑性樹脂が用いられる。すなわち、スチレン類、
ビニルエステル類、α−メチレン脂肪族モノカル
ボン酸のエステル類、アクリロニトリル、メタク
リロニトリル、アクリルアミド、ビニルエーテル
類、ビニルケトン類、N−ビニル化合物等の単量
体を重合させたホモポリマーもしくは、これらの
単量体を2種以上組合せて共重合させたコポリマ
ーあるいは、それらの混合物を用い得る。この他
にも、ロジン変性フエノールホルマリン樹脂、ビ
スフエノール型エポキシ樹脂、油変性エポキシ樹
脂、ポリウレタン樹脂、セルロース樹脂、ポリエ
ーテル樹脂、ポリエステル樹脂等の非ビニル系熱
可塑性樹脂あるいは、それらと前記の如きビニル
系樹脂との混合物も用い得る。 特に、オーブン加熱により定着する場合、ビス
フエノール型エポキシ樹脂、ビスフエノール型ポ
リエステル樹脂が望ましく、熱ロールを用いて定
着する場合には、スチレン系樹脂あるいはポリエ
スタテル樹脂が望ましい。スチレン系樹脂はスチ
レン成分が多い程熱ロールに対する離型性が向上
する。また、熱ロール材に対する離型性を更に高
めるためには、脂肪酸金属塩類、低分子量ポリオ
レフイン類、炭素数28以上の高級脂肪酸類、天然
あるいは合成のパラフイン類、熱可塑性ゴム等を
添加すればよい。 一方、定着方式が常温で圧力のみによる圧力定
着方式の場合、例えば次のような感圧性の樹脂が
用いられる。すなわち、高級脂肪酸類、高級脂肪
酸金属塩類、高級脂肪酸誘導体、高級脂肪酸アミ
ド類、ワツクス類、ロジン誘導体、アルキツド樹
脂、エポキシ変性フエノール樹脂、天然樹脂変性
フエノール樹脂、アミノ樹脂、シリコン樹脂、ポ
リウレタン、ユリア樹脂、ポリエステル樹脂、ア
クリル酸またはメタクリル酸と長鎖アルチルメタ
クリレート、長鎖アルキルアクリレートとの共重
合オリゴマー、スチレンと長鎖アルキルアクリレ
ート、長鎖アルキルメタクリレートとの共重合オ
リゴマー、ポリオレフイン、エチレン〜酢酸ビニ
ル共重合体、エチレン〜酢酸ビニル共重合体、エ
チレン〜ビニルアルキルエーテル共重合体、無水
マレイン酸系共重合体、石油系残査、ゴム類等が
挙げられる。 これらの樹脂は、任意に選定し、また任意に混
合して用い得るが、トナーとした場合の流動性を
低下させないためには、ガラス転移点が40℃を越
える樹脂、もしくは樹脂混合物が有効に用いられ
る。 また上記以外にも、一般の乾式現像剤に用いら
れている種々の顔料および/又は添料を添加して
もよい。しかし、トナー全量に対する含有量は、
トナーの電気特性等を考慮して10重量%未満が適
当である。用い得る顔料としては、例えば、カー
ボンブラツク、アニリンブルー、カルコオイルブ
ルー、クロームイエロー、ウルトラマリンブル
ー、デユポンオイルレツド、キノリンイエロー、
メチレンブルークロライド、フタロシアニンブル
ー、マラカイトグリーンオクサレート、ランプブ
ラツク、ローズベンガルおよびそれらの混合物が
使用される。マグネタイトのように磁性粉自体が
着色している場合にはあえて添加する必要がな
い。またカーボンブラツクを用いる場合は、トナ
ーの絶縁性を低下させないため、トナーの樹脂成
分100重量部当り0.01〜1重量部の範囲で添加す
ることが望ましい。また荷電制御剤としては、例
えば、正の摩擦帯電特性を有するニグロシン染
料、あるいは高級脂肪酸で変成したニグロシン染
料等、負の摩擦帯電特性を有する含金属(Cr)
アゾ染料等が用い得る。また、特公昭51−28232
号公報、同53−13284号公報に記載されているよ
うに、ある種の高分子染料では電荷が安定してお
り、有効に用い得る。更に酸化処理されたカーボ
ンブラツクおよび正又は負の荷電制御性の基を有
する樹脂等は一種の荷電制御剤とみなすことがで
き、有効に使用できる。荷電制御剤の添加量は、
一般に0.1〜5重量%の範囲とすることが望まし
い。 本発明で用いる磁性トナーは、上記の材料を用
いて粉砕法あるいはスプレードライ法等の公知の
方法により製造できる。例えば粉砕法による場合
には、原料を乾式予備混合し、加熱混練後冷却固
化し、次いで冷却固化物を粉砕してから分級すれ
ばよい。得られたトナーの平均粒径は、5〜
30μm、好ましくは10〜20μmの範囲がよい。また
分級後のトナー粒子の表面には、導電性粒子(例
えばカーボンブラツク、酸化スズ)、シリカ微粉
末等の種々の添加剤を添加して、電気抵抗や流動
性を調節してもよい。 本発明において磁性トナーを現像領域に搬送す
る方式については特に限定されず、スリーブと永
久磁石部材の内の少くとも一方を回転させればよ
い。ただし種々のトナー搬送方式の内では、スリ
ーブと永久磁石部材とを共に同方向に回転させて
磁性トナーを全体としてこれらと逆方向に搬送す
る方式(例えば特公昭57−12148号参照)が、画
質の点から望ましい。このトナー搬送方式におい
ては、ドクターギヤツプ及び現像ギヤツプは各々
0.1〜0.8mm及び0.15〜0.7mmの範囲がよい。 本発明においてトナーの摩擦帯電量は、市販の
ブローオフ粉体帯電量測定器(東芝ケミカル製
TB−200)により次の条件で測定した値とする。
キヤリア(日本鉄粉製Z200)10gとトナー0.5g
を外径40mmφのプラスチツク容器に投入し、流動
表面角度測定器にて10分間回転させ、得られた混
合物の中から200mgの試料を採取し、325メツシユ
の篩を用いた容器に投入し、次いで上記測定器に
てブロー圧1.0Kg/cm2、ブロー時間40secの条件で
帯電量を測定する。 トナーの表面電位は第2図に示す装置により行
なうものとする。同図において、8は非磁性スリ
ーブ(外径50mmφ)、9は永久磁石部材(外径46
mmφ、長さ150mm、12極対称着磁、スリーブ上の
磁束密度1000G)、10は表面電位計(トレツク
344)を示す。測定は、スリーブ8と表面電位計
10との間隙を5mmに調整してから、スリーブ上
にトナーを3g供給し、永久磁石部材9を
1000rpmで1分間回転させたときのトナーの表面
電位を求めるものとする。 トナーの抵抗は、試料を適当量(10数mg)秤取
し、ダイアルゲージを改良した内径3.05mmφのテ
フロン(商品名)製中空シリンダー中に充填し、
0.1Kgの荷重下、D.C4KV/cmの電場を印加して
測定し、抵抗率を算出する。抵抗の測定には横河
ヒユレツトパツカード製4329型絶縁抵抗計を用い
た。 〔実施例〕 以下本発明を実施例によつて具体的に説明する
が、本発明はこれらの例によつて限定されるもの
ではない。 実施例 1 スチレン−アクリル系共重合体(セキスイ化学
製P520)37重量部とマグネタイト(戸田工業製
EPT500)62重量部と負の荷電制御剤(オリエン
ト化学製ボントロンE81)1重量部とを乾式混合
し、ニーダで200℃の温度で加熱混練した。得ら
れた混練物を冷却・固化後ジエツトミルにて
20μm以下の粒子に粉砕した。この粉砕粉をスー
パーミキサーに投入し、更に微粉末シリカ(日本
アエロジル製R972)0.5重量部を加えて混合し
た。混合粉を120℃の熱気流中に導入して熱処理
を行なつた後ジクザグ分級機により周力分級を行
なつて、5〜20μmの粒度分布を有する磁性トナ
ー(No.1)を得た。この磁性トナーの摩擦帯電量
(以下TECという)は−5μc/g、表面電位は−
31Vであつた。 上記の磁性トナーを用いて次のような条件で画
像評価を行なつた。 周速150mm/secで回転するSeドラムをコロナ
帯電で+800Vに一様帯電後市販の半導体レーザ
で分割露光して静電潜像を形成し、次いで第1図
の現像装置により現像を行なつた。ここでスリー
ブ2は外径32mmφのSUS304製円筒を用い、永久
磁石部材3は外径29.3mmφで10極対称着磁を施
し、スリーブ上の磁束密度が800Gのフエライト
磁石を用いた。ドクターギヤツプd及び現像ギヤ
ツプDを各々0.6mm及び0.2mmに設定し、スリーブ
2および永久磁石材3を共に矢印X向にかつ各々
50rpm及び1200rpmで回転させ、バイアス電圧は
+700Vに設定した。 得られたトナー像は普通紙に転写(転写電圧−
4.5KV)してから、表面をPFA樹脂でコートし
た熱ロールとRTVシリコンゴムロールとの間に
通して熱ロール定着を行なつた。定着条件は、熱
ロールの表面温度が180℃、ロール間圧力1.0Kg/
cm、ニツプ幅4.0mmに設定した。 その結果、画像濃度1.4、解像度10本/mmでチ
リのない良好な画像が得られた。 実施例 2 原料の配合比を変えた以外は実施例1と同様の
条件で帯電特性の異なる3種類(No.2〜No.4)の
磁性トナーを製造した。No.2トナーは、TECが
−10μc/g、表面電位が−50V、No.3トナーは、
TECが−15μc/g、表面電位が−60V、No.4ト
ナーは、TECが−20μc/g、表面電位が−90V
であつた。 これらの磁性トナーを用いて実施例1と同様の
条件で作像した。 比較例 1 荷電制御剤として正の荷電制御剤(オリエント
化学製ボントロンN.03)を用いた以外は実施例
1と同様の条件で磁性トナー(No.5)を製造し
た。この磁性トナーは、TECが+5μc/g、表面
電位が+30Vであつた。 この磁性トナーを用いて実施例1と同様の条件
で作像した。 実施例 3 原料の配合比を変えた以外は実施例1と同様の
条件で帯電特性の異なる2種類の磁性トナー(No.
6,7)を製造した。No.6トナーは、TECが−
1μc/g、表面電位が−5V、No.7トナーは、
TECが−25μc/g、表面電位が−100Vであつ
た。 これらの磁性トナーを用いて実施例1と同様の
条件で作像した。 上記実施例及び比較例のトナーの組成と帯電特
性及び画像評価結果を表1に示す。
[Industrial Application Field] The present invention relates to a reversal development method in which a one-component magnetic toner is attached to an uncharged area of an electrostatic latent image formed on the surface of an image carrier to obtain a reversal toner image. [Background Art] In recent years, with the spread of computers, printers have been actively developed as peripheral terminal devices that output information in the form of characters and figures and create hard copies. Conventionally, the mainstream printers have been impact printers, which print by colliding selected printed characters with paper via an ink ribbon. However, with the increasing performance of computers and the diversification of information processing, there is a need for rapid processing of large amounts of information and a variety of output formats such as kanji, graphics, and characters of arbitrary sizes.
It is difficult for conventional impact printers to meet this demand, and a new non-impact printer (electronic printer) has been developed. Non-impact printers are classified into electrophotographic, electrostatic, and inkjet printers in terms of recording methods, but the electrophotographic method is the most advantageous in responding to the recent high-speed and high-density recording. . The recording principle of printers using electrophotography is
The recording principle is essentially the same as that of general copying machines, and includes the following steps: forming an electrostatic latent image by uniformly charging the surface of the image carrier and exposing it to light, developing the electrostatic latent image, transferring the developed toner image to plain paper, and fixing it. It consists of a process. However,
In a printer, information from a computer is written on the surface of a uniformly charged image carrier using a laser beam, etc.
In order to cause toner to adhere to this written area, that is, the exposed area, it is necessary to perform reversal development. The dry developer used in the reversal development method is
As in the case of copying machines, a two-component developer consisting of a magnetic carrier and toner is common, and most current printers employ this developer. When a two-component developer is used, since the toner has a distinct electrostatic charge due to frictional charging with the carrier, it is possible to faithfully develop the uncharged portion of the electrostatic latent image. Furthermore, since the toner retains its electrostatic charge even after development, electrostatic transfer of the toner image onto general-purpose plain paper is possible, and a high-quality printer image can be obtained. However, when using a two-component developer, a means is required to maintain a constant mixing ratio of carrier and toner in order to maintain a constant image density, which has the disadvantage that the developing device becomes larger and more complex. There is. Also, if the carrier is mixed with toner and stirred for a long time, a toner film will be formed on the surface.
Another drawback is that the carrier must be replaced periodically due to changes in triboelectric charging properties. In order to overcome these drawbacks, a method of developing electrostatic latent images using a one-component developer (magnetic toner) consisting only of magnetic toner particles as a dry developer has been proposed and put into practical use. . In the reversal development method using magnetic toner,
Generally, a DC bias voltage of the same polarity as the electrostatic latent image is applied to a conductive sleeve that holds magnetic toner with a charge of the same polarity as the electrostatic latent image, thereby causing the toner to adhere to the uncharged area. It is. Here, in order to make the magnetic toner have a predetermined polarity of electrolysis, a charged magnetic toner (e.g., JP-A-55-1999) is prepared by adding a charge control agent inside and/or on the surface of the toner.
48754, 57-45555 to 45557, etc.) are used. This charged magnetic toner becomes electrically charged when it comes into contact with a sleeve or a doctor blade, or when the toners come into contact with each other. Furthermore, when the developed toner image is electrostatically transferred onto a transfer sheet, insulating magnetic toner with increased electrical resistance is generally used to prevent disturbances in the transferred image (for example, insulating magnetic toner with increased electrical resistance). (See Publication No. 53-31136). [Problems to be Solved by the Invention] When the above-mentioned charged type insulating magnetic toner is charged to the same polarity as the electrostatic latent image and reversal development is performed, the image quality is inferior to that of a two-component developer. was the reality. Specifically, when using magnetic toner that is charged to the same polarity as the electrostatic latent image, it is possible to obtain results equivalent to two-component developers in terms of image density, but the resolution is not sufficient and the character quality is There was a problem that dust was easily generated around it. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a reversal development method that uses magnetic toner and can produce images of higher quality than conventional methods. [Means for solving the problem] As mentioned above, when reversing an electrostatic latent image using magnetic toner, it is necessary to use a magnetic toner that has the property of being charged to the same polarity as the electrostatic latent image. This is common knowledge, and such magnetic toners are actually used. However, as a result of various studies conducted by the present inventor, surprisingly, by using a magnetic toner that has the property of being charged with the opposite polarity to the electrostatic latent image, resolution is improved and dust is extremely reduced compared to conventional methods. It was discovered that images with good sharpness can be obtained. Therefore, in the reversal development method of the present invention, an electrostatic latent image is formed on the surface of an image carrier having predetermined charging characteristics, and a non-magnetic latent image is placed facing the surface of the image carrier and equipped with a magnetic field generating member inside. Insulating magnetic toner mainly composed of resin and magnetic powder is supplied onto the conductive sleeve, and the magnetic toner charged to a predetermined polarity is transported toward the surface of the image carrier by relative movement between the sleeve and the magnetic field generating member, and is then transferred to the sleeve. It is a reversal development method in which magnetic toner is attached to the non-charged area of the image carrier surface by applying a DC voltage of the same polarity as the electrostatic latent image, and the magnetic toner has charging characteristics of the opposite polarity to the electrostatic latent image. , the amount of frictional electrification determined by the blow-off method is in the range of 1 to 20 μc/g in absolute value, and the voltage generated by the rotation of toner particles on the non-magnetic sleeve having an internal permanent magnet member is 10 to 90 V in absolute value. It is characterized by using a magnetic toner within a range. The details of the present invention will be explained below with reference to the drawings. FIG. 1 is a sectional view showing an example of a developing device for carrying out the present invention. The photosensitive drum 1 has a photoconductive layer 1a holding an electrostatic latent image (indicated by a + signal in the figure) and a conductive base 1b which is electrically grounded, and rotates in the direction of arrow W in the figure. The developing device 2 includes a sleeve 3 disposed facing the photosensitive drum 1, a permanent magnet member 4 disposed inside the sleeve 3 having a plurality of magnetic poles on its surface, a toner tank 5 containing magnetic toner 6, and a sleeve. The magnetic toner 3 is provided with a doctor blade 7 for regulating the thickness of the magnetic toner 6 conveyed thereon. Here, the sleeve 3 is made of a non-magnetic and conductive material such as austenitic stainless steel or aluminum alloy, and is electrically connected to a DC voltage source 8. The reversal development process using the above-mentioned development device is as follows. By relatively rotating the sleeve 3 and the permanent magnet member 4, the magnetic toner 6 contained in the toner tank 5 is pulled out onto the sleeve 3 and directed from the doctor gap d to the developing gap D as shown by the arrow Y in the figure. Once conveyed. Here, the magnetic toner has the property of being charged with a polarity opposite to that of the electrostatic latent image, and when it comes into contact with the sleeve, doctor blade, or toner particles during the above-mentioned conveyance process, it becomes charged with the opposite polarity of the electrostatic latent image. Become. When the charged magnetic toner 6 reaches the development area, it adheres to the non-charged portion of the electrostatic latent image to form a toner image. When this toner image reaches the transfer position by rotation of the photoreceptor drum 1, it is transferred onto the transfer sheet by applying an electric field of opposite polarity to the electrostatic latent image from the back side of the transfer sheet (not shown), and then fixed. be done. Unlike conventional methods, the present invention uses magnetic toner that has the property of being charged with a polarity opposite to that of the electrostatic latent image. Accordingly, from the conventional thinking, it seems that the magnetic toner adheres to the image area of the electrostatic latent image. However, according to experiments conducted by the present inventors, it was confirmed that it adheres to the non-charged portion of the electrostatic latent image. The reason why high quality images can be obtained by the present invention is as follows.
Although the details are unknown, it is assumed that the following is the case. In the process of conveying magnetic toner on the sleeve,
As described above, most toner particles are charged with a polarity opposite to that of the electrostatic latent image, and most of the toner particles come to have a charge with a polarity opposite to that of the electrostatic latent image. This magnetic toner reaches the development area,
When entering the electric field of the electrostatic latent image, the charge in the toner moves according to the direction of the electric field, and the toner particles near the interface with the photoreceptor, where the electrostatic latent image potential is low, have the same polarity as the electrostatic latent image. It will have a charge of . As a result, toner particles having a charge of the same polarity as the electrostatic latent image adhere to the uncharged portion of the electrostatic latent image, thereby obtaining a reversed image.
Therefore, in the past, magnetic toner charged to the same polarity as the electrostatic latent image was used, which caused overdevelopment, that is, too much toner adhered to the surface of the photoreceptor, causing dust. According to the present invention, only the toner near the interface with the photoreceptor has a charging polarity that contributes to development, so it is thought that overdevelopment can be suppressed and dust generation can be prevented. Furthermore, according to experiments conducted by the present inventors, the amount of triboelectric charge of the magnetic toner used in the present invention is in the range of 1 to 20 μc/g in absolute value when measured by the blow-off method, and moreover, the amount of triboelectric charge measured by the blow-off method is in the range of 1 to 20 μc/g. It has been found that it is desirable to have charging characteristics in which the generated surface potential is in the range of 10 to 90 V in absolute value. This is because when the amount of triboelectric charge and surface potential become excessive, the image density decreases, while when the amount of triboelectricity and surface potential are insufficient, fog increases. Further, the most preferable ranges for the amount of charge and the surface potential are 3 to 10 μc/g in absolute value and 30 to 60 V in absolute value, respectively. The magnetic toner in the present invention can be manufactured from various materials used in ordinary magnetic toners. Magnetic powders include alloys or compounds containing ferromagnetic elements such as iron, cobalt, and nickel, including ferrite and magnetite, as well as various alloys that exhibit ferromagnetism through some treatment such as heat treatment. Can be used. These ferromagnetic materials preferably have an average particle size of about 0.1 to 3 μm in order to be included in the toner having a particle size of several μm to several tens of μm. The amount contained in the toner is preferably 30 to 70% by weight based on the total weight of the toner. If it is less than 30% by weight, the magnetic force of the toner will decrease and the toner will scatter more easily than the sleeve.
On the other hand, if it exceeds 70% by weight, the resin content will be extremely small and the fixing performance will deteriorate. The fixing resin may be appropriately selected depending on the fixing method. For example, when the fixing method is oven heating or hot roll method, various thermoplastic resins such as those described below are used. That is, styrenes,
Homopolymers made by polymerizing monomers such as vinyl esters, esters of α-methylene aliphatic monocarboxylic acids, acrylonitrile, methacrylonitrile, acrylamide, vinyl ethers, vinyl ketones, N-vinyl compounds, or monopolymers of these monomers. A copolymer obtained by copolymerizing a combination of two or more polymers or a mixture thereof may be used. In addition, non-vinyl thermoplastic resins such as rosin-modified phenol-formalin resin, bisphenol-type epoxy resin, oil-modified epoxy resin, polyurethane resin, cellulose resin, polyether resin, polyester resin, or the above-mentioned vinyl Mixtures with other resins may also be used. In particular, when fixing is performed by heating in an oven, bisphenol type epoxy resins and bisphenol type polyester resins are preferred, and when fixing is performed using a hot roll, styrene resins or polyester resins are preferred. The greater the styrene component in the styrene-based resin, the better the releasability from hot rolls. In addition, in order to further improve the releasability of hot rolled materials, fatty acid metal salts, low molecular weight polyolefins, higher fatty acids having 28 or more carbon atoms, natural or synthetic paraffins, thermoplastic rubber, etc. may be added. . On the other hand, when the fixing method is a pressure fixing method using only pressure at room temperature, the following pressure-sensitive resin is used, for example. Namely, higher fatty acids, higher fatty acid metal salts, higher fatty acid derivatives, higher fatty acid amides, waxes, rosin derivatives, alkyd resins, epoxy-modified phenolic resins, natural resin-modified phenolic resins, amino resins, silicone resins, polyurethane, urea resins. , polyester resin, copolymerized oligomer of acrylic acid or methacrylic acid and long-chain alkyl methacrylate, long-chain alkyl acrylate, copolymerized oligomer of styrene and long-chain alkyl acrylate, long-chain alkyl methacrylate, polyolefin, ethylene-vinyl acetate copolymer Examples include polymers, ethylene-vinyl acetate copolymers, ethylene-vinyl alkyl ether copolymers, maleic anhydride copolymers, petroleum residues, rubbers, and the like. These resins can be arbitrarily selected and mixed as desired, but in order not to reduce the fluidity when used as a toner, resins with a glass transition point exceeding 40°C or resin mixtures are effective. used. In addition to the above, various pigments and/or additives used in general dry developers may be added. However, the content based on the total amount of toner is
Considering the electrical properties of the toner, etc., it is appropriate that the amount is less than 10% by weight. Pigments that can be used include, for example, carbon black, aniline blue, calco oil blue, chrome yellow, ultramarine blue, Dupont oil red, quinoline yellow,
Methylene blue chloride, phthalocyanine blue, malachite green oxalate, lamp black, rose bengal and mixtures thereof are used. If the magnetic powder itself is colored, such as magnetite, there is no need to add it. When carbon black is used, it is preferably added in an amount of 0.01 to 1 part by weight per 100 parts by weight of the resin component of the toner so as not to reduce the insulation properties of the toner. In addition, as a charge control agent, for example, nigrosine dyes having positive triboelectric properties or nigrosine dyes modified with higher fatty acids, metal-containing (Cr) substances having negative triboelectric properties, etc.
Azo dyes and the like can be used. In addition, special public service No. 51-28232
As described in Japanese Patent Application Publication No. 53-13284, certain polymeric dyes have stable charges and can be used effectively. Furthermore, oxidized carbon black and resins having positive or negative charge control groups can be regarded as a type of charge control agent and can be used effectively. The amount of charge control agent added is
Generally, it is desirable to set it in the range of 0.1 to 5% by weight. The magnetic toner used in the present invention can be manufactured using the above-mentioned materials by a known method such as a pulverization method or a spray drying method. For example, in the case of a pulverization method, the raw materials may be dry premixed, heated and kneaded, cooled and solidified, and then the cooled and solidified product is pulverized and then classified. The average particle size of the obtained toner is 5 to 5.
The thickness is preferably 30 μm, preferably in the range of 10 to 20 μm. Further, various additives such as conductive particles (for example, carbon black, tin oxide) and fine silica powder may be added to the surface of the toner particles after classification to adjust the electrical resistance and fluidity. In the present invention, the method of conveying the magnetic toner to the developing area is not particularly limited, and it is sufficient to rotate at least one of the sleeve and the permanent magnet member. However, among the various toner transport methods, the method in which the sleeve and the permanent magnet member are both rotated in the same direction and the magnetic toner is transported as a whole in the opposite direction (for example, see Japanese Patent Publication No. 57-12148) is one that It is desirable from the point of view. In this toner transport method, the doctor gap and developer gap are each
A range of 0.1 to 0.8 mm and 0.15 to 0.7 mm is preferable. In the present invention, the triboelectric charge amount of the toner is measured using a commercially available blow-off powder charge measuring device (manufactured by Toshiba Chemical Co., Ltd.).
TB-200) under the following conditions.
Carrier (Japan Iron Powder Z200) 10g and toner 0.5g
was placed in a plastic container with an outer diameter of 40 mmφ, and rotated for 10 minutes using a flow surface angle measuring device. A 200 mg sample was taken from the resulting mixture and placed in a container using a 325 mesh sieve. The amount of charge was measured using the above measuring device under the conditions of a blow pressure of 1.0 Kg/cm 2 and a blow time of 40 seconds. It is assumed that the surface potential of the toner is measured using the apparatus shown in FIG. In the same figure, 8 is a non-magnetic sleeve (outer diameter 50mmφ), 9 is a permanent magnet member (outer diameter 46mm).
mmφ, length 150mm, 12 poles symmetrical magnetization, magnetic flux density on the sleeve 1000G), 10 is a surface electrometer (trek
344). The measurement was performed by adjusting the gap between the sleeve 8 and the surface electrometer 10 to 5 mm, then supplying 3 g of toner onto the sleeve, and then turning the permanent magnet member 9 on.
Let us determine the surface potential of the toner when it is rotated at 1000 rpm for 1 minute. To measure the resistance of the toner, weigh an appropriate amount (10 mg) of the sample, fill it in a Teflon (trade name) hollow cylinder with an inner diameter of 3.05 mm and equipped with an improved dial gauge.
Under a load of 0.1Kg, an electric field of D.C4KV/cm is applied and measured, and the resistivity is calculated. To measure the resistance, a 4329 type insulation resistance meter manufactured by Yokogawa Hiretsupat Card was used. [Examples] The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1 37 parts by weight of styrene-acrylic copolymer (P520 manufactured by Sekisui Chemical Co., Ltd.) and magnetite (manufactured by Toda Kogyo Co., Ltd.)
62 parts by weight of EPT500) and 1 part by weight of a negative charge control agent (Bontron E81 manufactured by Orient Chemical Co., Ltd.) were dry mixed and kneaded by heating at a temperature of 200° C. in a kneader. After cooling and solidifying the obtained kneaded material, use a jet mill.
Grinded into particles of 20 μm or less. This pulverized powder was put into a super mixer, and 0.5 parts by weight of finely powdered silica (R972 manufactured by Nippon Aerosil) was added and mixed. The mixed powder was heat-treated by introducing it into a hot air stream at 120°C, and then subjected to circumferential force classification using a zigzag classifier to obtain a magnetic toner (No. 1) having a particle size distribution of 5 to 20 μm. The amount of triboelectric charge (hereinafter referred to as TEC) of this magnetic toner is -5μc/g, and the surface potential is -
It was 31V. Image evaluation was performed using the above magnetic toner under the following conditions. An Se drum rotating at a circumferential speed of 150 mm/sec was uniformly charged to +800 V with corona charging, and then exposed in sections using a commercially available semiconductor laser to form an electrostatic latent image, and then developed using the developing device shown in Figure 1. . Here, the sleeve 2 was a cylinder made of SUS304 with an outer diameter of 32 mmφ, and the permanent magnet member 3 was a ferrite magnet with an outer diameter of 29.3 mmφ, symmetrically magnetized with 10 poles, and a magnetic flux density of 800 G on the sleeve. Set the doctor gap d and the developing gap D to 0.6 mm and 0.2 mm, respectively, and move the sleeve 2 and the permanent magnet material 3 both in the direction of the arrow
It was rotated at 50 rpm and 1200 rpm, and the bias voltage was set to +700V. The obtained toner image is transferred to plain paper (transfer voltage -
4.5 KV) and then passed between a heat roll whose surface was coated with PFA resin and an RTV silicone rubber roll for heat roll fixing. The fixing conditions are: the surface temperature of the heat roll is 180℃, and the pressure between the rolls is 1.0Kg/
cm, and the nip width was set to 4.0 mm. As a result, a good image without dust was obtained with an image density of 1.4 and a resolution of 10 lines/mm. Example 2 Three types (No. 2 to No. 4) of magnetic toners having different charging characteristics were manufactured under the same conditions as in Example 1 except that the blending ratio of raw materials was changed. No.2 toner has a TEC of -10μc/g and a surface potential of -50V, and No.3 toner has a TEC of -10μc/g and a surface potential of -50V.
TEC is -15μc/g, surface potential is -60V, and No. 4 toner has a TEC of -20μc/g and surface potential of -90V.
It was hot. Images were formed using these magnetic toners under the same conditions as in Example 1. Comparative Example 1 A magnetic toner (No. 5) was produced under the same conditions as in Example 1 except that a positive charge control agent (Bontron N.03 manufactured by Orient Chemical Co., Ltd.) was used as the charge control agent. This magnetic toner had a TEC of +5 μc/g and a surface potential of +30V. An image was formed using this magnetic toner under the same conditions as in Example 1. Example 3 Two types of magnetic toners (No.
6,7) were produced. No. 6 toner has a TEC of -
1μc/g, surface potential -5V, No.7 toner,
The TEC was -25 μc/g and the surface potential was -100V. Images were formed using these magnetic toners under the same conditions as in Example 1. Table 1 shows the compositions, charging characteristics, and image evaluation results of the toners of the above Examples and Comparative Examples.

【表】 表1から、正荷電型磁性トナー(No.5)を用い
た場合に比べて、負荷電型磁性トナー(No.1〜
4,6,7)を用いることにより画質が向上して
いることがわかる。ただしNo.6トナーは帯電量が
やや少ないため画像濃度は多少低下し、No.7トナ
ーは帯電量がやや多いため多少のチリは生ずる
が、いずれも実用上問題はない。 実施例 4 スチレンアクリル系共重合体(三洋化成製
SBM−600)重量部とマグネタイト(戸田工業製
EPT500)重量部と正の荷電制御剤(オリエント
化学製ボントロンN.01)重量部とを用いた以外
は実施例1と同様の条件で磁性トナー(No.8)を
製造した。この磁性トナーのTECは+5μc/g、
表面電位は+20Vであつた。 上記の磁性トナーを用いて、Seドラムのかわ
りに負の帯電特性を有するOPCドラムを用い、
その表面を−800Vに帯電し、バイアス電圧を−
600V、転写電圧を+5KVとした以外は実施例1
と同様の条件で作像した。 その結果、画像濃度1.3、解像度10本/mmで、
チリのない良好な画像が得られた。 実施例 5 原料の配合比を変えた以外は実施例4と同様の
条件で帯電特性の異なる3種類(No.9〜11)の磁
性トナーを製造した。No.9トナーは、TECが+
8μc/g、表面電位が+40V、No.10トナーは、
TECが+16μc/g、表面電位が+65V、No.11ト
ナーは、TECが+19μc/g、表面電位が+80V
であつた。 これらの磁性トナーを用いて、実施例5と同様
の条件で作像した。 比較例 2 荷電制御剤として負の荷電制御剤(オリエント
化学製ボントロンE84)を用いた以外は実施例4
と同様の条件で磁性トナー(No.12)を製造した。
この磁性トナーは、TECが−3μc/g、表面電位
が−30Vであつた。 この磁性トナーを用いて実施例4と同様の条件
で作像した。 実施例 6 原料の配合比を変えた以外は実施例4と同様の
条件で帯電特性の異なる2種類の磁性トナー(No.
13,14)を製造した。No.13トナーは、TECが+
2μc/g、表面電位が+6V、No.14トナーは、
TECが+27μc/g、表面電位が+97Vであつた。 これらの磁性トナーを用いて実施例4と同様の
条件で作像した。 上記実施例4〜6及び比較例2のトナーの組成
と帯電特性及び画像評価結果を表2に示す。
[Table] From Table 1, compared to the case where positively charged magnetic toner (No. 5) was used, negatively charged magnetic toner (No. 1 to No. 5) was used.
4, 6, and 7), the image quality is improved. However, since the No. 6 toner has a slightly lower charge amount, the image density is somewhat lowered, and the No. 7 toner has a slightly higher charge amount, so some dusting occurs, but neither of them poses any practical problems. Example 4 Styrene acrylic copolymer (manufactured by Sanyo Chemical Co., Ltd.)
SBM-600) weight part and magnetite (manufactured by Toda Kogyo)
Magnetic toner (No. 8) was produced under the same conditions as in Example 1 except that parts by weight of EPT500) and parts by weight of a positive charge control agent (Bontron N.01 manufactured by Orient Chemical Co., Ltd.) were used. The TEC of this magnetic toner is +5μc/g,
The surface potential was +20V. Using the above magnetic toner, an OPC drum with negative charging characteristics was used instead of the Se drum,
Charge the surface to -800V and set the bias voltage to -
Example 1 except that the transfer voltage was 600V and +5KV.
Images were created under the same conditions as . As a result, the image density was 1.3 and the resolution was 10 lines/mm.
A good image without dust was obtained. Example 5 Three types of magnetic toners (Nos. 9 to 11) having different charging characteristics were manufactured under the same conditions as in Example 4 except that the blending ratio of raw materials was changed. No.9 toner has +TEC
8μc/g, surface potential +40V, No.10 toner:
TEC is +16μc/g, surface potential is +65V, No.11 toner has TEC +19μc/g, surface potential is +80V
It was hot. Images were formed using these magnetic toners under the same conditions as in Example 5. Comparative Example 2 Example 4 except that a negative charge control agent (Bontron E84 manufactured by Orient Chemical Co., Ltd.) was used as the charge control agent.
A magnetic toner (No. 12) was produced under the same conditions as above.
This magnetic toner had a TEC of -3 μc/g and a surface potential of -30V. An image was formed using this magnetic toner under the same conditions as in Example 4. Example 6 Two types of magnetic toners (No.
13, 14) were manufactured. No.13 toner has a TEC of +
2μc/g, surface potential +6V, No.14 toner:
The TEC was +27μc/g and the surface potential was +97V. Images were formed using these magnetic toners under the same conditions as in Example 4. The compositions, charging characteristics, and image evaluation results of the toners of Examples 4 to 6 and Comparative Example 2 are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上に記述の如く、本発明によれば、静電潜像
とは逆極性の帯電特性を有する荷電型磁性トナー
を用いることにより、高品質、特に解像度が高く
しかもチリのない反転画像を得ることができる。
As described above, according to the present invention, by using a charged magnetic toner having a charging characteristic with a polarity opposite to that of an electrostatic latent image, it is possible to obtain a reversed image of high quality, particularly high resolution, and without dust. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための現像装置の一
例を示す断面図、第2図はトナーの表面電位測定
装置の断面図である。 1……感光体ドラム、3……スリーブ、4……
永久磁石部材、6……磁性トナー。
FIG. 1 is a sectional view showing an example of a developing device for carrying out the present invention, and FIG. 2 is a sectional view of a toner surface potential measuring device. 1... Photosensitive drum, 3... Sleeve, 4...
Permanent magnet member, 6...Magnetic toner.

Claims (1)

【特許請求の範囲】[Claims] 1 所定の帯電特性を有する画像担体表面に静電
潜像を形成し、前記画像担体表面に対向して配置
され、内部に磁界発生部材を備えた非磁性導電性
スリーブ上に樹脂と磁性粉を主体とする絶縁性磁
性トナーを供給し、前記スリーブと前記磁界発生
部材との相対的回転により、所定極性に帯電した
前記磁性トナーを前記画像担体表面と前記スリー
ブとの間隙に搬送し、前記スリーブに前記静電潜
像と同極性の直流電圧を印加して前記静電潜像の
非帯電部に前記磁性トナーを付着させる反転現像
法において、前記磁性トナーとして前記静電潜像
と逆極性の帯電特性を有すると共に、ブローオフ
法による摩擦帯電量が絶対値で1〜20μc/gの
範囲にあり、かつ内部に永久磁石部材を有する非
磁性スリーブ上でのトナー粒子の自転による発生
電圧が絶対値で10〜90Vの範囲にある磁性トナー
を用いることを特徴とする反転現像法。
1. An electrostatic latent image is formed on the surface of an image carrier having predetermined charging characteristics, and resin and magnetic powder are placed on a nonmagnetic conductive sleeve that is disposed opposite to the surface of the image carrier and has a magnetic field generating member inside. Insulating magnetic toner is supplied as a main component, and by relative rotation between the sleeve and the magnetic field generating member, the magnetic toner charged to a predetermined polarity is conveyed to the gap between the image carrier surface and the sleeve, and the sleeve In a reversal development method in which a DC voltage of the same polarity as that of the electrostatic latent image is applied to cause the magnetic toner to adhere to an uncharged portion of the electrostatic latent image, the magnetic toner is a DC voltage of opposite polarity to that of the electrostatic latent image. In addition to having charging characteristics, the amount of frictional charging determined by the blow-off method is in the range of 1 to 20 μc/g in absolute value, and the absolute value of the voltage generated by the rotation of toner particles on a non-magnetic sleeve that has a permanent magnet member inside is A reversal development method characterized by using magnetic toner in the range of 10 to 90V.
JP26878785A 1985-11-29 1985-11-29 Reversal developing method Granted JPS62127848A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26878785A JPS62127848A (en) 1985-11-29 1985-11-29 Reversal developing method
DE19863640642 DE3640642A1 (en) 1985-11-29 1986-11-28 REVERSE DEVELOPMENT PROCEDURE
US07/185,242 US4865936A (en) 1985-11-29 1988-04-18 Electrophotographic reversal development method using magnetic field and specified development gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26878785A JPS62127848A (en) 1985-11-29 1985-11-29 Reversal developing method

Publications (2)

Publication Number Publication Date
JPS62127848A JPS62127848A (en) 1987-06-10
JPH0448394B2 true JPH0448394B2 (en) 1992-08-06

Family

ID=17463271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26878785A Granted JPS62127848A (en) 1985-11-29 1985-11-29 Reversal developing method

Country Status (1)

Country Link
JP (1) JPS62127848A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538522A (en) * 1978-09-12 1980-03-18 Fujitsu Ltd Electrophotographic type image recording method
JPS56133742A (en) * 1980-03-24 1981-10-20 Minolta Camera Co Ltd Magnetic brush developing method
JPS5713467A (en) * 1980-06-26 1982-01-23 Toshiba Corp Reversal developing device using one-component magnetic toner
JPS57128365A (en) * 1981-01-30 1982-08-09 Minolta Camera Co Ltd Powder image transfer type electronic copier
JPS58107562A (en) * 1981-12-22 1983-06-27 Fuji Photo Film Co Ltd Electrophotographic developing device
JPS58186765A (en) * 1982-04-26 1983-10-31 Hitachi Metals Ltd Developing method
JPS5991452A (en) * 1982-11-18 1984-05-26 Fuji Xerox Co Ltd Magnetic brush developing method
JPS59211050A (en) * 1983-05-17 1984-11-29 Hitachi Metals Ltd Reversal development method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538522A (en) * 1978-09-12 1980-03-18 Fujitsu Ltd Electrophotographic type image recording method
JPS56133742A (en) * 1980-03-24 1981-10-20 Minolta Camera Co Ltd Magnetic brush developing method
JPS5713467A (en) * 1980-06-26 1982-01-23 Toshiba Corp Reversal developing device using one-component magnetic toner
JPS57128365A (en) * 1981-01-30 1982-08-09 Minolta Camera Co Ltd Powder image transfer type electronic copier
JPS58107562A (en) * 1981-12-22 1983-06-27 Fuji Photo Film Co Ltd Electrophotographic developing device
JPS58186765A (en) * 1982-04-26 1983-10-31 Hitachi Metals Ltd Developing method
JPS5991452A (en) * 1982-11-18 1984-05-26 Fuji Xerox Co Ltd Magnetic brush developing method
JPS59211050A (en) * 1983-05-17 1984-11-29 Hitachi Metals Ltd Reversal development method

Also Published As

Publication number Publication date
JPS62127848A (en) 1987-06-10

Similar Documents

Publication Publication Date Title
US4433042A (en) Electrophotographic developing method using magnetic toners
JPS6332180B2 (en)
US5374978A (en) Developing method
US4865936A (en) Electrophotographic reversal development method using magnetic field and specified development gap
US5571987A (en) Developing apparatus using magnetic developing poles having the same polarity
US6134413A (en) Carrier for magnetic developer and method of electrophotographically forming visual image
JPS59143161A (en) Toner particles for developing electrostatic latent image
JP2510156B2 (en) Reverse development method
JP3173321B2 (en) Development method
US4912003A (en) Reverse development method
JPH0448394B2 (en)
JPS59211050A (en) Reversal development method
JP3010917B2 (en) Method for developing one-component insulating magnetic toner
JP4003324B2 (en) Image forming method and image forming apparatus
JPH11149173A (en) Developing method
JPH07113785B2 (en) Dry developer and developing method
JPH0466356B2 (en)
JP2514975B2 (en) Development method
JPS5915260A (en) Developing method
JPS60173557A (en) Pressure-fixable magnetic toner for reversal development
JP3422107B2 (en) Development method
JPS58102950A (en) Reversely developing magnetic toner
JPH0466357B2 (en)
JPH0462667B2 (en)
JP2003029452A (en) Magnetic toner

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term