JPH0447932A - Production of thermal spraying member based on synthetic resin material - Google Patents

Production of thermal spraying member based on synthetic resin material

Info

Publication number
JPH0447932A
JPH0447932A JP15548690A JP15548690A JPH0447932A JP H0447932 A JPH0447932 A JP H0447932A JP 15548690 A JP15548690 A JP 15548690A JP 15548690 A JP15548690 A JP 15548690A JP H0447932 A JPH0447932 A JP H0447932A
Authority
JP
Japan
Prior art keywords
thermal spraying
synthetic resin
thermally sprayed
copper
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15548690A
Other languages
Japanese (ja)
Inventor
Katsuji Sudo
須藤 克二
Yoshihiro Jitsumatsu
實松 嘉浩
Hiroshi Takigawa
浩 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15548690A priority Critical patent/JPH0447932A/en
Publication of JPH0447932A publication Critical patent/JPH0447932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To reduce qualitative irregularity, to enhance working efficiency, to reduce cost and to perform atmospheric pressure thermal spraying by applying a metal material having a low m.p. and rich in ductility to a synthetic resin material by thermal spraying and further applying a desired to the metal layer by thermal spraying. CONSTITUTION:First, bond coat 8 is applied to a material to be subjected to thermal spraying composed of a synthetic resin 9. In many cases, copper is thermally sprayed but a material composed of silver, alminum or an alloy is also thermally sprayed. Thereafter, a desired material is thermally sprayed. When an electrical material is simply subjected to thermal spraying, for example, a powder of ceramics such as alumina or alumina titanic is used and thermal spraying is carried out under reduced pressure or atmospheric pressure. When abrasion resistance is imparted, for example, the thermal spraying of a tungsten carbide cermet is performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、合成樹脂材料又はカーホン・カーボン複合材
料(以下、合成樹脂材料等と記す)を基材とした電気的
絶縁材料や耐摩耗材料等の溶射部材の製造方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to electrically insulating materials and wear-resistant materials based on synthetic resin materials or carphone-carbon composite materials (hereinafter referred to as synthetic resin materials, etc.). The present invention relates to a method of manufacturing a thermal sprayed member such as the following.

[従来の技術] 一般に電気的回路を担持する絶縁性基板には、ヘークラ
イト、カラスエポキシ樹脂や、ポリエステル等の合成樹
脂か使用されている。
[Prior Art] Generally, synthetic resins such as hakelite, glass epoxy resin, and polyester are used for insulating substrates carrying electrical circuits.

しかしながら、近年の電気的回路の高密度化の傾向は著
しく伸びつつあり、それに伴い、部分的な回路からの発
熱も犬きくなり、寿命の点で問題か発生し、現状の大き
な課題となっている。
However, in recent years, there has been a remarkable trend toward higher density electrical circuits, and as a result, heat generation from local circuits has become more intense, causing problems in terms of service life, which is currently a major issue. There is.

即ち、例えば上記のガラスエポキシ樹脂等の合金樹脂て
は、200〜300℃程度で黄変か始まり、300〜3
60℃程度で黒変(炭化)するに至る。基板の表面か炭
化すれば、回路かショートし寿命に至る。
That is, for example, alloy resins such as the above-mentioned glass epoxy resins start to yellow at about 200 to 300°C, and at about 300 to 300°C.
It turns black (carbonized) at about 60°C. If the surface of the board becomes carbonized, the circuit will short out and its life will end.

そこで、合成樹脂板上に直接、セラミックスを溶射する
ことが考えられるが、この場合、プラズマの高温の熱に
より、合成樹脂の表面から昇華(ガス化)が起こるため
、合成樹脂上にセラミックスの溶射膜の形成することは
通常の溶射方法では困難ないしは不可能である。
Therefore, it is possible to thermally spray ceramics directly onto the synthetic resin plate, but in this case, sublimation (gasification) occurs from the surface of the synthetic resin due to the high temperature heat of the plasma. It is difficult or impossible to form a film using normal thermal spraying methods.

この様な問題を克服するために、例えば、特開昭60−
11353等(第5図)に見られるように、セラミック
ス粉末と樹脂系接着剤とを混入した材料を塗布し、接着
層(中間層)を設け、その上に溶射する方法等も提案さ
れている。
In order to overcome such problems, for example,
11353 (Figure 5), a method has also been proposed in which a material mixed with ceramic powder and resin adhesive is applied, an adhesive layer (intermediate layer) is provided, and then thermal spraying is performed on top of the adhesive layer (intermediate layer). .

[発明が解決しようとする課題] しかしながら、合成樹脂板上に、セラミックス粉末と樹
脂系接着剤とを混入した材料を塗布し、接着層(中間層
)を設け、その上より溶射する方法に関しては、このセ
ラミックス粉末と樹脂系接着剤とを混入した材料は非常
に粘度の高いものであり、均一に薄く塗布するのが困難
なため、自動化した場合には、その設備投資が大き過ぎ
、実際的に、即ちコスト的に成り立たない。そのため、
その塗布作業は多くの場合、手作業に頼らざるを得す、
作業者の技能によるところが大きく、製品のバラツキも
大きいし又、作業能率も良くない。
[Problems to be Solved by the Invention] However, there is no method of coating a synthetic resin plate with a material containing ceramic powder and resin adhesive, providing an adhesive layer (intermediate layer), and then thermally spraying the adhesive layer. This material, which is a mixture of ceramic powder and resin adhesive, has a very high viscosity and is difficult to apply evenly and thinly. In other words, it is not viable in terms of cost. Therefore,
In many cases, the application process must be done manually,
It largely depends on the skill of the worker, there is large variation in the product, and the work efficiency is not good.

更に、減圧溶射を行う場合には、大気溶射に比し、プラ
ズマ・フレームが数倍長く伸びることもあって、被溶射
材料が格段の高温に晒されるため、上記セラミックス粉
末と樹脂系接着剤とを混入した材料のうちの樹脂分が昇
華するため、目的とする材料の溶射膜の形成は事実上不
可能である。
Furthermore, when performing low-pressure thermal spraying, the plasma flame may extend several times longer than in atmospheric thermal spraying, and the material to be thermally sprayed is exposed to much higher temperatures. Since the resin component of the mixed material sublimates, it is virtually impossible to form a sprayed film of the desired material.

又、そのため軽いという特性を生かし合成樹脂材料表面
に耐摩耗材料を溶射して、機械部品等として使用する場
合や、高絶縁性を要求される緻密質膜による絶縁基板を
製造する場合等も、減圧溶射が採用できないこともあり
、実用的とは言えなかった。
In addition, taking advantage of its lightness, wear-resistant materials can be thermally sprayed onto the surface of synthetic resin materials to be used as mechanical parts, or to manufacture insulating substrates using dense films that require high insulation properties. It was not practical because low-pressure thermal spraying could not be used.

そこで本発明は、上記の問題ある現状の樹脂系接着剤を
使用せず、特に設備投資も必要としない方法を提供し、
電気的絶縁材料や耐摩耗材料等の溶射方法に関し、実際
的に密着強度が高く又、品質的にバラツキが小さく、作
業能率が良く更に、大気溶射は勿論、数々の特徴を有す
る減圧溶射にも適用できる等、従来技術の問題点を解決
した溶射技術を提供することを目的とする。
Therefore, the present invention provides a method that does not use the current problematic resin adhesives mentioned above and does not require any equipment investment.
Regarding the thermal spraying method of electrically insulating materials and wear-resistant materials, it actually has high adhesion strength, little variation in quality, good work efficiency, and is applicable not only to atmospheric thermal spraying but also to low-pressure thermal spraying, which has many characteristics. The purpose is to provide thermal spraying technology that solves the problems of conventional technology.

[課題を解決するための手段] 上記目的を達成するため、本発明の合成樹脂材料への溶
射方法は、基材である合成樹脂材料等に対し、低融点で
且つ延性に富んだ材料である金属、銅、銀、或いは、ア
ルミニウム又はその合金からなる材料等を先ず溶射し、
これをボンド・コートとして、その上に所望の材料を溶
射することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for thermal spraying onto synthetic resin materials of the present invention provides a method for thermal spraying onto synthetic resin materials, which is a base material, such as a material having a low melting point and high ductility. First, a material made of metal, copper, silver, aluminum or an alloy thereof is thermally sprayed,
This is used as a bond coat, and a desired material is thermally sprayed onto it.

[作用および実施例] 第2図に示す様に製造しようとする合成樹脂9の被溶射
材料に対し、先ず、ボンド・コート8を施工する。多く
の場合、銅を溶射する。その他、アルミニウム又はその
合金からなる材料等を溶射しても構わない。その後、所
望の材料の溶射を行う。単純に電気的絶縁材料を溶射す
るのであれば、例えば、アルミナ又はアルミナ・チタニ
ア等のセラミックスのパウダーを使用し、減圧又は大気
圧溶射を行う。又、耐摩耗性を付与する場合には、例え
ばWC(タングステン・カーバイド)系等のサーメット
等の溶射を行う。
[Operations and Examples] As shown in FIG. 2, a bond coat 8 is first applied to a thermally sprayed material of synthetic resin 9 to be manufactured. Often sprayed with copper. In addition, a material made of aluminum or an alloy thereof may be thermally sprayed. Thereafter, the desired material is thermally sprayed. To simply spray an electrically insulating material, for example, ceramic powder such as alumina or alumina/titania is used and sprayed under reduced pressure or atmospheric pressure. In addition, in order to impart wear resistance, thermal spraying of a cermet such as WC (tungsten carbide) is performed, for example.

本発明者は、ボンド・コート8として銅又はアルミニウ
ム等の溶射を行えば、その材料の融点は、各々1080
℃、640℃で低温であり、更に比熱も低いため、プラ
ズマの投入パワーを低く抑えることができ、合成樹脂9
の昇華等が発生しないことを知見した。更に、上記の系
列の材料は、延性も富むため、粒子を半溶融の状態にし
て合成樹脂9にぶつけても塑性加工的に付着し、幾層に
も積層させることか可能であり、この点からもプラズマ
の投入パワーを低く抑えることかできる。
The inventor has found that if copper or aluminum is thermally sprayed as the bond coat 8, the melting point of each material will be 1080°C.
℃, 640℃, and the specific heat is also low, so the plasma input power can be kept low, and the synthetic resin 9
It was found that sublimation etc. did not occur. Furthermore, since the materials of the above series have high ductility, even if the particles are in a semi-molten state and are bombarded with the synthetic resin 9, they will stick by plastic processing and it is possible to stack them in many layers. It is also possible to keep the plasma input power low.

又、第3図に示すように、最初にぶつかり、衝突した銅
11等の粒子は、合成樹脂9にめり込み、強力に密着す
ることができる。その第1層目は、次の第2バス目のプ
ラズマ・フレームに対し、熱遮蔽ともなり得るため、こ
の様にして、複数層の銅11又はアルミニウム等の溶射
を行いボンド・コート8ができ上がる。
Further, as shown in FIG. 3, the particles of copper 11 and the like that collided first can sink into the synthetic resin 9 and adhere strongly to it. The first layer can serve as a heat shield for the plasma flame of the next second bus, so multiple layers of copper 11 or aluminum, etc. are sprayed in this way to create the bond coat 8. .

その後、引き続き溶射パウダーの供給系を切り替え、目
的に応じセラミックス又はWC系のサーメット12等の
トップ・コート7の溶射を行う。この時、銅11又はア
ルミニウム等のボンド・コート8が合成樹脂9に対し熱
遮蔽の効果を果たすため、合成樹脂9の昇華は起こらず
、セラミックス又はWC系のサーメット12等の溶射を
幾層にも積層させることが可能であり、目的の電気的絶
縁性や、耐摩耗性等を付与できる。
Thereafter, the supply system of the thermal spray powder is continuously switched, and a top coat 7 of ceramic or WC-based cermet 12 or the like is thermally sprayed depending on the purpose. At this time, since the bond coat 8 made of copper 11 or aluminum has a heat shielding effect on the synthetic resin 9, sublimation of the synthetic resin 9 does not occur, and several layers of thermally sprayed ceramics or WC-based cermet 12 are applied. It is also possible to laminate layers to provide desired electrical insulation properties, abrasion resistance, etc.

電気的絶縁性を付与する場合、減圧溶射で行えば膜質か
緻密となり、耐電圧性等が向上し、絶縁性も向上する。
When imparting electrical insulation, low-pressure thermal spraying provides a dense film, improves voltage resistance, and improves insulation.

特に真空中等で使用される膜に関しては良好である。そ
うではなく中級〜低級で良いものに関しては、大気圧溶
射により行う。又、断熱性を向上させるためには、故意
に気孔率を向上させることも可能である。
This is particularly good for membranes used in vacuum environments. On the other hand, for intermediate to low grade materials, atmospheric pressure spraying is used. Furthermore, in order to improve the heat insulation properties, it is also possible to intentionally improve the porosity.

溶射の粉末供給速度とプラズマ・ガン5の6動速度を予
め適当に設定しておき、溶射1バス当たり何μm形成さ
れるかを把握しておけば、設計要求通りの膜厚を得るの
は容易である。通常本方法によりば、10〜数100μ
mの間で自在に可能である。
By setting the thermal spraying powder supply speed and the six-motion speed of the plasma gun 5 appropriately in advance and knowing how many micrometers will be formed per thermal spraying bath, it is easy to obtain the film thickness as designed. It's easy. Usually, according to this method, 10 to several 100μ
It is possible freely between m.

勿論、特殊な用途に対しては、lff1m程度以上の膜
厚のものを得ることも可能である。
Of course, for special applications, it is also possible to obtain a film with a thickness of about lff1 m or more.

この様にして、容易に合成樹脂9を基材とする耐熱性電
気的絶縁性部材や、軽量な耐摩耗性部材を得ることがで
きる。
In this way, a heat-resistant electrically insulating member and a lightweight wear-resistant member using the synthetic resin 9 as a base material can be easily obtained.

以下、添付図面を参照しながら、実施例により本発明を
更に詳細に説明する。第1図は、本発明による基材への
溶射の状況を示す側面断面図、第2図は、溶射後の一般
的製品の膜の断面図、第3図は、ボンド・コート8の合
成樹脂9への食い込み状況を示す側面断面図、第4図は
、実施例の合成樹脂耐摩耗ロールの斜視図を示す。
Hereinafter, the present invention will be explained in more detail by way of examples with reference to the accompanying drawings. Fig. 1 is a side cross-sectional view showing the state of thermal spraying on a base material according to the present invention, Fig. 2 is a cross-sectional view of a general product film after thermal spraying, and Fig. 3 is a synthetic resin of bond coat 8. FIG. 4 is a side cross-sectional view showing the state of biting into the groove 9, and FIG. 4 is a perspective view of the synthetic resin wear-resistant roll of the example.

合成樹脂9としてガラスエポキシ樹脂13を使用し、ト
ップ・コート7としてwC系のサーメット12を使用し
た場合の耐摩耗合成樹脂ロール14の製造方法について
説明する。
A method of manufacturing the wear-resistant synthetic resin roll 14 will be described when a glass epoxy resin 13 is used as the synthetic resin 9 and a wC-based cermet 12 is used as the top coat 7.

第1図に示す様に、円柱状のガラスエポキシ樹脂13を
基材として使用し、減圧チャンバー20の中にセットす
る。こわは、スティング(図示せず)と称する回転治具
に取り付けられ回転自在となっている。真空ポンプ22
を回転し、減圧チャンバー20内の空気をフィルター2
1を経て系外へ排出する。
As shown in FIG. 1, a cylindrical glass epoxy resin 13 is used as a base material and set in a vacuum chamber 20. The stiffener is attached to a rotating jig called a sting (not shown) and is rotatable. vacuum pump 22
Rotate the filter 2 to remove the air inside the vacuum chamber 20.
1 and then discharged from the system.

適切な真空度まで下げた後、プラズマに着火する。通常
、50トール(Torr)程度で操業を行う。
After lowering the vacuum to an appropriate level, the plasma is ignited. Normally, it is operated at about 50 Torr.

しかる後、パウダ・フィーター23を作動し、銅11の
粉をチューブ24を経てプラズマ・ガン5中に供給する
。複数バス程、銅11を溶射することにより、20〜数
十μmの銅11の溶射膜を得ることができ、ボンド・コ
ート8が施工される。
Thereafter, the powder feeder 23 is activated to feed the powder of copper 11 into the plasma gun 5 through the tube 24. By thermally spraying the copper 11 over multiple baths, a thermally sprayed film of the copper 11 with a thickness of 20 to several tens of micrometers can be obtained, and the bond coat 8 is applied.

この後、パラター・フィーダー23を別のパウダー・フ
ィーダー25に切り替え、WC系のサーメット12の粉
をチューブ26を軽でプラズマ・ガン5中に供給する。
Thereafter, the paratar feeder 23 is switched to another powder feeder 25, and the powder of the WC-based cermet 12 is fed into the plasma gun 5 through a tube 26.

製品として、所望の膜厚を得るのに必要なバス数の溶射
を行う。
The product is thermally sprayed as many times as necessary to obtain the desired film thickness.

稲ではあるが、もし、所要の膜厚が数百μmを超える様
な程大きい時には、基材の温度が上り過ぎないように、
時々プラズマ・ガン5を遠ざけて、ゆっくり溶射を行う
か、又は、Arガスを吹き付けなから溶射を行うと問題
なく行うことができる。
Although it is rice, if the required film thickness is large enough to exceed several hundred μm, care must be taken to prevent the temperature of the base material from rising too high.
If the plasma gun 5 is moved away from time to time and the thermal spraying is performed slowly, or the thermal spraying is performed without spraying Ar gas, the thermal spraying can be carried out without any problems.

勿論、通常の耐摩耗性では、200〜300μm以下で
あるため、問題なく通常の様に溶射を行うことができる
Of course, since the normal abrasion resistance is 200 to 300 μm or less, thermal spraying can be carried out as usual without any problem.

適正膜厚を得るためには、溶射バス数を種々変更し、適
正膜厚を得るためのデータを予め採っておけば便利であ
る。
In order to obtain an appropriate film thickness, it is convenient to vary the number of thermal spraying baths and to collect data in advance for obtaining an appropriate film thickness.

又、第3図には、ボンド・コート8の銅11が深く確実
に食い込んでいる状況を示す。密着力は、接着剤による
よりも大きく確実である。
Further, FIG. 3 shows a situation where the copper 11 of the bond coat 8 is deeply and reliably dug into. Adhesion is greater and more reliable than with adhesive.

この様にして、上記の様に合成樹脂9の軽さを生かした
、軽量で耐摩耗性に優わるロール14を得ることかでき
る。
In this way, it is possible to obtain a roll 14 that is lightweight and has excellent abrasion resistance, taking advantage of the lightness of the synthetic resin 9 as described above.

この方法によれば、[系のサーメット12以外にも金属
、合金等は十分可能であることは勿論であるか、融点か
高く、更に熱伝導率の低いセラミックスも十分に可能で
あり、セラミックスとして例えば、アルミナの外にアル
ミナ・チタニア、チタニア、ジルコニア、クロミア・・
・・・・等、殆どのセラミックスに対しても全く同様の
方法で得ることができる。
According to this method, it is of course possible to use metals, alloys, etc. other than the cermet 12 of the [system], and it is also possible to use ceramics with a high melting point and low thermal conductivity. For example, in addition to alumina, there are alumina/titania, titania, zirconia, chromia...
..., etc., can be obtained using exactly the same method for most ceramics.

一方、合成樹脂9として、熱可塑性、熱硬化性を問わず
エポキシ、ポリエステル以外にも、ポリエチレン、ポリ
プロピレン、ポリアミド、アクリル、メラミン、酢酸ビ
ニル・・・・・・等、殆ど全てのものに適用可能である
。更に特筆すべきは、軽量さ、寸法安定性、比強度等、
耐熱性・・・等の点で優れるカーボン・カーボン・コン
ポジットへの溶射も可能ならしめたことである。
On the other hand, as the synthetic resin 9, it can be applied to almost all materials such as polyethylene, polypropylene, polyamide, acrylic, melamine, vinyl acetate, etc., in addition to epoxy and polyester, regardless of whether they are thermoplastic or thermosetting. It is. What is also noteworthy is its light weight, dimensional stability, specific strength, etc.
This makes it possible to thermally spray carbon-carbon composites, which have excellent heat resistance.

更に、適正な最低必要限度の薄膜の施工が可能であるた
め、孔開け、切断等の機械加工も通常の道具で極めて容
易に可能である。
Furthermore, since it is possible to apply the thin film to an appropriate minimum required level, machining such as drilling and cutting can be performed extremely easily using ordinary tools.

又、本発明によるトップ・コート7の膜は、基本的には
溶射法で形成するため、溶射条件(パラメーター)のう
ち例えば、主として電流値や減圧雰囲気圧力等をコント
ロールすることにより、気孔率を制御することができ、
したがってその熱伝導率の制御も容易である。このこと
からセラミックス・溶射膜の遮熱効果も十分得られ、合
成樹脂9上に希望とする膜を強固にコーティングを施す
ことかできる。
Furthermore, since the film of the top coat 7 according to the present invention is basically formed by a thermal spraying method, the porosity can be adjusted by controlling the thermal spraying conditions (parameters), such as the current value and the pressure of the reduced atmosphere. can be controlled,
Therefore, its thermal conductivity can be easily controlled. Therefore, the heat shielding effect of the ceramic/sprayed film can be sufficiently obtained, and the desired film can be firmly coated on the synthetic resin 9.

[発明の効果] 以上説明したごとく本発明によれば、セラミックス粉末
と樹脂系接着剤とを混入した材料を塗布し、接着層(中
間層)を設け、その上に溶射する方法に比し、簡単な設
備投資で自動化が可能 となるため、品質的にバラツキ
が小さく、作業能率の良い溶射が可能となり、コスト的
にも大きく低減できるばかりでなく、大気溶射は勿論、
数々の特徴を有する減圧溶射の適用も可能とした等本発
明の効果は顕著である。
[Effects of the Invention] As explained above, according to the present invention, compared to a method in which a material containing ceramic powder and a resin adhesive is applied, an adhesive layer (intermediate layer) is provided, and thermal spraying is performed on the adhesive layer, Since automation is possible with a simple investment in equipment, it is possible to perform thermal spraying with less variation in quality and high work efficiency, which not only greatly reduces costs, but also allows for atmospheric thermal spraying.
The effects of the present invention are remarkable, such as making it possible to apply reduced-pressure thermal spraying, which has a number of features.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による基材への溶射の状況を示す側面
断面図、第2図は、溶射後の一般的製品の断面図、第3
図は、ボンド・コートの合成樹脂への食い込み状況を示
す側面断面図、第4図は、実施例の合成樹脂耐摩耗ロー
ルの斜視図を示す。 第5図は、従来法による合成樹脂への溶射部材である。 1・・・合成樹脂板、2・・・焼結セラミックス板、3
・・・接着剤、5−・プラズマ・ガン、6・・・プラズ
マ・フレーム、7−1−ツブ・コート、8・・・ボンド
・コート、9・−合成樹脂、11・−銅、12−WC系
サーメット、13・−ガラスエポキシ樹脂、14・・・
耐摩耗合成樹脂ロール、20・・・減圧チャンバー 2
1・・・フィルタ22・・・真空ポンプ、23・・・バ
ラタ−フィーダーA、24−・・チューブA、25−・
・バラタ−フィーダーB、26・・・チューブB、27
・・・セラミックス又は金属、28・・・樹脂、29−
・・溶射基材、30・・・セラミックス又は金属溶射被
膜。
Figure 1 is a side sectional view showing the situation of thermal spraying on a base material according to the present invention, Figure 2 is a sectional view of a general product after thermal spraying, and Figure 3 is a sectional view of a general product after thermal spraying.
The figure is a side sectional view showing how the bond coat bites into the synthetic resin, and FIG. 4 is a perspective view of the synthetic resin wear-resistant roll of the example. FIG. 5 shows a member thermally sprayed onto synthetic resin by a conventional method. 1...Synthetic resin plate, 2...Sintered ceramic plate, 3
...adhesive, 5--plasma gun, 6--plasma flame, 7-1-bulb coat, 8--bond coat, 9--synthetic resin, 11--copper, 12- WC cermet, 13.-Glass epoxy resin, 14...
Wear-resistant synthetic resin roll, 20...decompression chamber 2
1... Filter 22... Vacuum pump, 23... Balata feeder A, 24-... Tube A, 25-...
・Balata feeder B, 26...Tube B, 27
...ceramics or metal, 28...resin, 29-
... Thermal spray base material, 30... Ceramic or metal spray coating.

Claims (1)

【特許請求の範囲】[Claims] 1.基材である合成樹脂材料又はカーボン・カーボン複
合材料に対し、低融点で且つ延性に富んだ材料である金
属、銅、銀、或いは、アルミニウム又はその合金からな
る材料等を先ず溶射し、これをボンド・コートとして、
その上に所望の材料を溶射することを特徴とする合成樹
脂材料等を基材とする溶射部材の製造方法
1. First, a low melting point and highly ductile material such as metal, copper, silver, aluminum, or an alloy thereof is sprayed onto the synthetic resin material or carbon-carbon composite material that is the base material. As a bond coat,
A method for producing a thermal sprayed member using a synthetic resin material as a base material, which comprises thermally spraying a desired material thereon.
JP15548690A 1990-06-15 1990-06-15 Production of thermal spraying member based on synthetic resin material Pending JPH0447932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15548690A JPH0447932A (en) 1990-06-15 1990-06-15 Production of thermal spraying member based on synthetic resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15548690A JPH0447932A (en) 1990-06-15 1990-06-15 Production of thermal spraying member based on synthetic resin material

Publications (1)

Publication Number Publication Date
JPH0447932A true JPH0447932A (en) 1992-02-18

Family

ID=15607100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15548690A Pending JPH0447932A (en) 1990-06-15 1990-06-15 Production of thermal spraying member based on synthetic resin material

Country Status (1)

Country Link
JP (1) JPH0447932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676726B2 (en) * 1993-06-04 1997-03-20 Peter Byrne Concepts Pty Ltd Metal coating process
KR100856662B1 (en) * 2005-05-04 2008-09-04 우종구 method for forming metallic coating on plastic substrate
JP2009511751A (en) * 2005-10-19 2009-03-19 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド Material coating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676726B2 (en) * 1993-06-04 1997-03-20 Peter Byrne Concepts Pty Ltd Metal coating process
KR100856662B1 (en) * 2005-05-04 2008-09-04 우종구 method for forming metallic coating on plastic substrate
JP2009511751A (en) * 2005-10-19 2009-03-19 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド Material coating method

Similar Documents

Publication Publication Date Title
JP4637819B2 (en) Method and apparatus for manufacturing a sputtering target
US20030175559A1 (en) Kinetically sprayed aluminum metal matrix composites for thermal management
JP2000096203A (en) Method for thermally spraying polymer material
EP0533105B1 (en) Carbon member having a metal spray coating
JPS5996945A (en) Stratiform work material with function layer executed on substrate and its manufacture
Ulianitsky et al. Fabrication of layered ceramic-metal composites by detonation spraying
US20040065432A1 (en) High performance thermal stack for electrical components
WO2019033839A1 (en) Preparation method for graphite and copper composite heat conduction material
JPH0447932A (en) Production of thermal spraying member based on synthetic resin material
US20050025896A1 (en) Thermal spray metal on low heat resistant substrates
US7390561B2 (en) Method for making a metal surface infused composite and the composite thereof
US20230033984A1 (en) Coating tape
JP2010261069A (en) Spray deposit film and method for manufacturing the same
JP4458911B2 (en) Plastics composite material and manufacturing method thereof
JPH065376Y2 (en) Mold for molding glass products
KR102476810B1 (en) Method of forming a composite including metal and ceramic
JP2007136977A (en) Composite functional film and its manufacturing method
Chakravarthy et al. Development and characterization of single wire-arc-plasma sprayed coatings of nickel on carbon blocks and alumina tube substrates
JP3006938B2 (en) Method of forming titanium nitride-containing composite coating
NO169570B (en) PROCEDURE FOR MANUFACTURING SUBSTRATE FOR APPLICATION OF ELECTRICAL AND / OR ELECTRONIC COMPONENTS.
WO1993008315A1 (en) A method of producing a wear-resistant coating
KR20160108039A (en) Silver containing target-backing plate assembly for raw material reduction and method of preparing the same
JPS6331549B2 (en)
KR970001068B1 (en) Process for the preparation of ceramic film
KR200169320Y1 (en) A plasma coating device of electricity chuck of ceramic type