JPH04447B2 - - Google Patents

Info

Publication number
JPH04447B2
JPH04447B2 JP59275718A JP27571884A JPH04447B2 JP H04447 B2 JPH04447 B2 JP H04447B2 JP 59275718 A JP59275718 A JP 59275718A JP 27571884 A JP27571884 A JP 27571884A JP H04447 B2 JPH04447 B2 JP H04447B2
Authority
JP
Japan
Prior art keywords
plate
pressure
pressure medium
laminated material
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59275718A
Other languages
Japanese (ja)
Other versions
JPS61154932A (en
Inventor
Kazuyoshi Tsunoda
Takeyuki Sotoki
Haruki Yokono
Ryoji Yokoyama
Hisao Kono
Kazuo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP59275718A priority Critical patent/JPS61154932A/en
Publication of JPS61154932A publication Critical patent/JPS61154932A/en
Publication of JPH04447B2 publication Critical patent/JPH04447B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、電気絶縁材料等として広く用いられ
る積層板の製造法に関する。 (従来の技術) 従来、合成樹脂積層板等の積層板は、第2図に
示すようにフエノール樹脂、エポキシ樹脂、ポリ
イミド樹脂などを紙、ガラス布などの基材に含浸
乾燥させたプリプレグ1を積層板の必要板厚に応
じた枚数を積み重ね、必要に応じて表面に銅箔を
更に積み重ねステンレスなどの板厚1〜3mmの金
属板(以下鏡板という)2に挟み、その1〜数10
組を、クラフト紙、ゴム板と布との複合体、ゴム
板等のクツシヨン3を介して、金属製の板である
キヤリヤー板4に載せて搬送し、第2図に示すよ
うに、積層板成形用圧縮プレスの熱盤間に入れ加
熱加圧して製造している。 第3図に於て、5は上板、6は支柱、7は可動
板、8は固定部、9はシリンダー、10は油室、
11は油槽、12はバイブ、13はポンプ、14
は熱盤である。 積層材料1はキヤリヤー板4に載せられたまま
熱盤14の間に入れられる。15はキヤリヤー板
と同じ材質、例えば鉄、銅でつくられた当て板、
16はクツシヨンで、熱盤14内で上下対称にな
るように構成される。上板4は固定部8に支柱6
により支持・固定されており、熱板14、可動板
7は支柱に上下可動に支持されており、可動板7
はポンプ13により、油を油室10に圧入するこ
とにより、シリンダー9の動きと共に上方に押上
げられる。可動板の動きに応じて、熱板14も上
方に押し上げられ、固定されている上板4と可動
板7との間で、積層材料は圧縮成形される。圧縮
成形時に必要な熱は、熱盤内部に埋込まれている
パイプ(図示せず)に蒸気を流入し、これにより
供給される。 (発明が解決しようとする問題点) クツシヨン3は、圧力、温度を均一にするため
に使用されるが、鏡板のエツジによる繰返し応力
から疲労し寿命は長いもので500サイクルとなつ
ている。また時には、クツシヨンの板厚分布が不
均一であるために、積層板の板厚精度の低下、か
すれ不良が発生している。また、クツシヨン材を
使用していることから熱伝導率を下げている。 本発明はこのような点に鑑みてなされたもの
で、プリプレグ等の積層材料に圧力が均一にかか
り、不均一な圧力がかかるために発生する積層板
の板厚精度の低下、かすれによる不良、等の発生
しない積層板の製造法を提供するものである。 (問題点を解決するための手段) 本発明は、第1図aに示すように、加圧板20
と、積層材料21を挟む鏡板22との間に一面に
弾性体膜23で覆われた圧力媒体層24を有する
キヤリヤー板25を介在させて圧力媒体層に加圧
を加えて圧縮成形するものである。 26は当て板で、キヤリヤー板と同じ材質で、
積層材料に上下からの熱が同時に伝わるようにす
るために使用される。 キヤリヤー板の構造を第1図bに示す。キヤリ
ヤー板は、表面に浅い凹部を有すベース板27、
ベース板の凹部に収納された圧力媒体層24、シ
ール板28、弾性体膜23、シール材と弾性体膜
とを押えるクランプ29、クランプ押えのボルト
30から成つている。ベース板は一般構造用圧延
鋼材で良く、板厚は一般的には4〜12mmである
が、搬出入の便利なように、又繰返しの熱応力か
らのベース板のそりから考え5〜9mmが良い。 凹部の深さは、0.5〜5mm、好ましくは1〜2
mmである。 凹部に入れられる圧力媒体として、鉱物油、
水、磁性流体、耐熱性液状合成樹脂、液状ハロゲ
ン化炭化水素等が使用される。 炭化水素系潤滑油で高温における熱安定性が良
く、金属に対する腐蝕性がなくて伝熱に優れてい
る油が望ましい市販名として例えばNeo SKoil
#170、#240、#L−400(綜研化学社製商品名)
がある。 凹部には、圧力媒体を圧入する注入口、及び排
出する排出口が設けられている(図示せず)。注
入口、排出口を設けなくとも、凹部に圧力媒体を
封入し、加熱による体積膨張で圧縮成形に必要な
圧力を得ることができる。シール材としては、加
熱温度が100〜200℃のときは、シリコンゴム、フ
ツ素ゴムのOリングが良く、それ以上の高温な
ら、グラフアイト製の成形品が良い。圧力媒体層
に加える圧力が100Kg/cm2を越える場合は、Oリ
ング面に、バツクアツプシール(Oリングに面す
る弾性体膜面を、Oリングの外形に従う形状に加
工する。)を施す。 弾性体膜としては、耐熱、耐油性に優れたゴム
シート例えばフツ素ゴム製がよく市販名としてバ
イトン(昭和ネオプレン製商品名)、フロレール
(住友3M社製、商品名)、ダイエル(ダイキン製
商品名)、アフラス(旭硝子社製商品名)等があ
り、必要によつてはゴムシートを中心とし下面及
び上面に薄い金属はく、例えば銅、ステンレス
等、又ガラス繊維布層、テフロンガラス繊維布層
等を形成組合せた構造のものを使用することによ
り使用ライフが長くなる。 又金層薄板も使用出来るが金属薄板は弾性及び
熱伝導性の良いものがよく、材質としては、一般
構造用圧延材、ステンレスが用いられる。板厚は
1〜4mmが良く、1.6〜2.2mmが最適である。クラ
ンプの材質は一般構造用圧延材で良いが機械構造
用炭素鋼のように引張り強度、降伏点の高いもの
ならさらに良い。板厚は材質、圧力媒体圧力より
決まる。例えば、SS41材で、圧力媒体圧力140
Kg/cm2の時9mm、S45なら6mmとなる。 圧力媒体は積層材料の全面にわたり介在させ
る。 しかし積層材料の端部には、圧力媒体が介在さ
れなくても良い。圧力媒体が介在されなくても良
い部分は最終製品の端部5cm以内好ましくは2〜
3cm程度である。 圧力媒体は鏡板の下面のみでなく、上面にも介
在させることも出来る。 鏡板で挟んだ積層材料を加圧板である熱盤20
の上に載せた構成体を第4図に示すように多段、
例えば10〜100段もしくは数100段積み重ねて圧縮
成形を行う。 第4図に於て、20は熱盤、31は上板、32
は可動板で、上板31は支柱33で固定部34に
固定されているが、可動板32は上方に移動す
る。熱盤20は可動板32が上方に移動するに従
つて上方に可動となつているが、可動板32が最
下位位置にある時に、各熱盤20の一定位置より
下方に落ちないようにストツパーが支柱33に取
付けられている(図示せず)。熱盤20の間には、
第1図に示すような構成で鏡板積層材料、加圧媒
体等が入れられており、熱盤20が可動板32に
より押し上げられて、熱盤、鏡板、積層材料が密
着される。この時積層材料にかかる圧力は接触圧
(0)〜10Kg/cm2である。熱盤、鏡板、積層材料
を密着させるには歯車、カム、トグル、油圧シリ
ンダー等により可動板32を移動することにより
行う。又、上型、下型の間に熱盤、積層材料、鏡
板をサンドイツチし、自重により密着させること
も出来る。この段階で上板、可動板の間隔が固定
される。その後第1図に示すように熱盤と鏡板の
間に介在する圧力媒体中に連通するパイプにより
圧力媒体を圧入することにより圧縮成形に必要な
圧力を加える。封入された圧力媒体の熱膨張によ
り圧力を加えることも出来る。圧力媒体に加えら
れる圧力は、積層材料がプリプレグである場合、
フエノール樹脂では40〜150Kg/cm2好ましくは60
〜100Kg/cm2、エポキシ樹脂では5〜100Kg/cm2
ましくは20〜80Kg/cm2、ポリエステル樹脂では5
〜100Kg/cm2、ポリイミド樹脂では10〜100Kg/cm2
が良い。積層材料の種類によつて数100Kg/cm2
圧力が使用しうる。 本発明は、積層材料に与えられる圧縮成形のた
めの圧縮力各段の熱板、鏡板に介在する加圧媒体
に圧力を加える方式であり、熱盤、鏡板、積層材
料は互に密着固定されているため加圧のための油
等の圧力媒体の量は少なくてすむばかりでなく、
多段の各段へ必要な圧力をスピーデイに加える圧
力コントロールがきわめて容易であり、どの段に
も均一な必要圧が加わるようにすることが容易で
ある。 又、圧力媒体に圧力を加えて一定時間(例えば
10秒〜60分程度)積層材料を加熱加圧しその後、
一定時間(例えば10秒〜数分程度)圧力媒体を脱
圧し、又圧力媒体に圧力を加えるという、加圧、
脱圧、解放を繰り返しで積層材料を圧力成形する
ことも出来る。 このように場合に、本発明では、圧力の変化の
スピーデイーに、しかも均一にコントロールして
行うことが出来る。 圧縮成形に必要な温度は、例えばフエノール樹
脂、エポキシ樹脂では150℃〜200℃、ポリイミド
樹脂では180〜250℃が好ましい。 積層材料としては、フエノール樹脂、エポキシ
樹脂、エポエステル樹脂、ポリアミド樹脂、シリ
コーン樹脂等の合成樹脂のワニスを紙、ガラス布
等の基材に含浸、乾燥させたプリプレグ、SMC、
金属板、シート状本質材、グリーンシート、多層
配線板の構成材等が用いられる。多層配線板の構
成材は、絶縁基板の片面又は両面に必要な回路パ
ターンが形成された内層用回路板の1枚以上をプ
リプレグを介して重ね合せ、更にプリプレグを介
して、片面又は両面回路板、片面銅箔張り積層
板、銅箔を重ね合せたものである。外層に配置さ
れる片面回路板、片面銅箔張り積層板は回路が形
成された面、銅箔面が外側になるように配置す
る。 圧縮成形に必要な温度は、熱盤から供給する方
式以外に、例えば、熱風、赤外線等、により与
え、熱盤の代りに単なる加圧板でも良い。 (発明の効果) 以上説明したように本発明に於ては、次の効果
が達成される。 (1) 圧力がクツシヨン材利用より均一である。よ
つて圧力むらのカスレ不良率が低減される。 (2) クツシヨン材を無くせる。 実施例 紙フエノール銅張り積層板製造において、製造
条件は加圧圧力120Kg/cm2、加熱温度180℃、加熱
加圧時間30分、キヤリアプレートはキヤリアベー
ス板(材質SS41、板厚9mm)流体膜(流体熱媒
油、膜厚1.0mm)、シール材(“O”リングシリコ
ンゴム直径7mm)、クランプ(材質SS41、板厚9
mm)、ボルト(M12、穴付六角ボルト、ボルトピ
ツチ50mm)、流体膜カバー(SUS304、2mm)で、
圧力均一化ができ、外観、板厚良好な製品が得ら
れた。 実施例の油膜キヤリアプレートを使用した場合
と、従来のゴムクツシヨンを利用した場合の比較
を表1に示す。
(Industrial Application Field) The present invention relates to a method for manufacturing a laminate that is widely used as an electrically insulating material and the like. (Prior Art) Conventionally, laminates such as synthetic resin laminates have been produced using prepreg 1, which is made by impregnating and drying a base material such as paper or glass cloth with phenol resin, epoxy resin, polyimide resin, etc., as shown in Fig. 2. Stack the number of laminates according to the required thickness, and if necessary, further stack copper foil on the surface and sandwich it between 2 metal plates (hereinafter referred to as mirror plates) made of stainless steel or the like with a thickness of 1 to 3 mm.
The assembly is conveyed via a cushion 3 made of kraft paper, a composite of a rubber plate and cloth, a rubber plate, etc., and placed on a carrier plate 4, which is a metal plate, to form a laminate as shown in FIG. It is manufactured by heating and pressurizing it by placing it between the hot discs of a compression press for molding. In Fig. 3, 5 is the upper plate, 6 is the column, 7 is the movable plate, 8 is the fixed part, 9 is the cylinder, 10 is the oil chamber,
11 is an oil tank, 12 is a vibrator, 13 is a pump, 14
is a hot plate. The laminated material 1 is placed between the hot platens 14 while being placed on the carrier plate 4. 15 is a backing plate made of the same material as the carrier plate, such as iron or copper;
Reference numeral 16 denotes a cushion, which is configured to be vertically symmetrical within the heating plate 14. The upper plate 4 has a support 6 attached to the fixed part 8.
The hot plate 14 and the movable plate 7 are supported and fixed by the pillars so as to be movable up and down, and the movable plate 7
By pressurizing oil into the oil chamber 10 by the pump 13, it is pushed upward along with the movement of the cylinder 9. According to the movement of the movable plate, the hot plate 14 is also pushed upward, and the laminated material is compression-molded between the fixed upper plate 4 and the movable plate 7. The heat required during compression molding is supplied by flowing steam into a pipe (not shown) embedded within the heating platen. (Problems to be Solved by the Invention) The cushion 3 is used to equalize pressure and temperature, but it gets fatigued from repeated stress due to the edge of the end plate, and has a long life of 500 cycles. In addition, in some cases, the thickness distribution of the cushion is non-uniform, resulting in a decrease in the thickness accuracy of the laminate and occurrence of scratching defects. Additionally, the use of cushioning material reduces thermal conductivity. The present invention has been made in view of these points, and it is possible to reduce the accuracy of the thickness of the laminate due to uneven pressure being applied to the laminate material such as prepreg, and to reduce defects due to scratches. The present invention provides a method for manufacturing a laminate that does not generate such problems. (Means for Solving the Problems) As shown in FIG.
A carrier plate 25 having a pressure medium layer 24 covered with an elastic membrane 23 is interposed between the laminate material 21 and an end plate 22 that sandwich the laminated material 21, and compression molding is performed by applying pressure to the pressure medium layer. be. 26 is a backing plate, made of the same material as the carrier plate,
It is used to ensure that heat is transferred to the laminated material from above and below at the same time. The structure of the carrier plate is shown in Figure 1b. The carrier plate includes a base plate 27 having a shallow recess on its surface;
It consists of a pressure medium layer 24 housed in a concave portion of the base plate, a seal plate 28, an elastic membrane 23, a clamp 29 for holding down the sealing material and the elastic membrane, and a bolt 30 for holding down the clamp. The base plate may be made of general structural rolled steel, and the plate thickness is generally 4 to 12 mm, but for convenience of loading and unloading, and to prevent warping of the base plate from repeated thermal stress, it is recommended to use a thickness of 5 to 9 mm. good. The depth of the recess is 0.5 to 5 mm, preferably 1 to 2 mm.
mm. Mineral oil, as pressure medium introduced into the recess
Water, magnetic fluid, heat-resistant liquid synthetic resin, liquid halogenated hydrocarbon, etc. are used. Hydrocarbon-based lubricating oils with good thermal stability at high temperatures, non-corrosive to metals, and excellent heat transfer are desirable commercially available oils, such as Neo SKoil.
#170, #240, #L-400 (product name manufactured by Soken Chemical Co., Ltd.)
There is. The recess is provided with an inlet for pressurizing the pressure medium and an outlet for discharging the pressure medium (not shown). Even without providing an injection port or a discharge port, the pressure required for compression molding can be obtained by enclosing a pressure medium in the recess and volume expansion due to heating. As a sealing material, silicone rubber or fluoro rubber O-rings are good when the heating temperature is 100 to 200°C, and if the heating temperature is higher than that, a molded product made of graphite is good. If the pressure applied to the pressure medium layer exceeds 100 kg/cm 2 , apply a back-up seal to the O-ring surface (process the elastic membrane surface facing the O-ring into a shape that follows the outer shape of the O-ring). As the elastic membrane, rubber sheets with excellent heat resistance and oil resistance, such as fluorocarbon rubber sheets, are often used.Commercial names include Viton (trade name, manufactured by Showa Neoprene), Florail (trade name, manufactured by Sumitomo 3M), and Daiel (trade name, manufactured by Daikin). (name), Aflas (product name manufactured by Asahi Glass Co., Ltd.), etc. If necessary, thin metal foils such as copper, stainless steel, etc. may be used on the bottom and top surfaces of the rubber sheet, and glass fiber cloth layers, Teflon glass fiber cloth, etc. By using a structure in which layers are formed and combined, the service life will be extended. Although a gold layer thin plate can also be used, it is preferable that the metal thin plate has good elasticity and thermal conductivity, and the material used is general structural rolled material or stainless steel. The plate thickness is preferably 1 to 4 mm, and optimally 1.6 to 2.2 mm. The material of the clamp may be a general structural rolled material, but it is even better if it has high tensile strength and yield point, such as carbon steel for machine structures. The plate thickness is determined by the material and the pressure of the pressure medium. For example, with SS41 material, the pressure medium pressure is 140
For Kg/cm 2 it is 9mm, and for S45 it is 6mm. The pressure medium is interposed over the entire surface of the laminated material. However, no pressure medium may be present at the ends of the laminated material. The area where no pressure medium is required is within 5 cm of the end of the final product, preferably 2 to 2 cm.
It is about 3cm. The pressure medium can be interposed not only on the lower surface of the mirror plate but also on the upper surface. A heating plate 20, which is a pressurizing plate, holds the laminated material sandwiched between mirror plates.
The structure placed on top of is multi-staged as shown in Figure 4.
For example, compression molding is performed by stacking 10 to 100 stages or several hundred stages. In Figure 4, 20 is a heating plate, 31 is an upper plate, 32
is a movable plate, and the upper plate 31 is fixed to a fixed part 34 by a support 33, but the movable plate 32 moves upward. The heating platen 20 is movable upward as the movable plate 32 moves upward, but a stopper is installed to prevent each heating platen 20 from falling below a certain position when the movable plate 32 is at the lowest position. is attached to the support column 33 (not shown). Between the hot plates 20,
In the configuration shown in FIG. 1, a mirror plate laminated material, a pressurizing medium, etc. are placed, and the hot platen 20 is pushed up by the movable plate 32, so that the hot platen, the mirror plate, and the laminated material are brought into close contact with each other. At this time, the pressure applied to the laminated material is a contact pressure (0) to 10 kg/cm 2 . The movable plate 32 is moved by a gear, a cam, a toggle, a hydraulic cylinder, etc. to bring the heating plate, mirror plate, and laminated material into close contact with each other. It is also possible to sandwich a hot plate, a laminated material, and a mirror plate between the upper mold and the lower mold and bring them into close contact by their own weight. At this stage, the distance between the upper plate and the movable plate is fixed. Thereafter, as shown in FIG. 1, pressure required for compression molding is applied by injecting a pressure medium into the pressure medium interposed between the hot platen and the end plate through a communicating pipe. Pressure can also be applied by thermal expansion of an enclosed pressure medium. The pressure applied to the pressure medium is, if the laminated material is prepreg,
For phenolic resin, 40-150Kg/ cm2 preferably 60
~100Kg/cm 2 , 5 to 100Kg/cm 2 for epoxy resin, preferably 20 to 80Kg/cm 2 , 5 for polyester resin
~100Kg/cm 2 , 10-100Kg/cm 2 for polyimide resin
is good. Depending on the type of laminated material, pressures of several 100 kg/cm 2 can be used. The present invention is a method in which the compression force applied to the laminated material for compression molding is applied to the pressurized medium interposed in the hot plates and head plates of each stage, and the hot platen, the head plate, and the laminated material are closely fixed to each other. Because of this, the amount of pressure medium such as oil for pressurization is not only small, but also
It is extremely easy to control the pressure to quickly apply the required pressure to each of the multiple stages, and it is easy to apply uniform required pressure to all stages. Also, pressure is applied to the pressure medium for a certain period of time (for example,
(about 10 seconds to 60 minutes) Heat and pressurize the laminated material, then
Pressurization, which involves depressurizing the pressure medium for a certain period of time (for example, about 10 seconds to several minutes) and then adding pressure to the pressure medium.
It is also possible to pressure-form a laminated material by repeating depressurization and release. In such a case, the present invention allows pressure changes to be controlled quickly and uniformly. The temperature required for compression molding is preferably 150°C to 200°C for phenolic resins and epoxy resins, and 180°C to 250°C for polyimide resins. Laminated materials include prepreg, SMC, which is made by impregnating and drying base materials such as paper and glass cloth with synthetic resin varnish such as phenol resin, epoxy resin, epoxy resin, polyamide resin, and silicone resin.
Metal plates, sheet-like essential materials, green sheets, constituent materials of multilayer wiring boards, etc. are used. The constituent material of a multilayer wiring board is to stack one or more inner layer circuit boards on which a necessary circuit pattern is formed on one or both sides of an insulating substrate via a prepreg, and then to form a single-sided or double-sided circuit board via a prepreg. , single-sided copper foil clad laminate, and copper foil laminated. The single-sided circuit board and single-sided copper foil-clad laminate placed in the outer layer are arranged so that the circuit-formed side and the copper foil side are on the outside. The temperature required for compression molding may be provided by, for example, hot air, infrared rays, etc., in addition to the method of supplying from a heating platen, and a mere pressure plate may be used instead of the heating platen. (Effects of the Invention) As explained above, in the present invention, the following effects are achieved. (1) Pressure is more uniform than when cushioning material is used. As a result, the rate of defects caused by uneven pressure is reduced. (2) Eliminate cushioning material. Example: In the production of paper phenol copper-clad laminates, the manufacturing conditions were a pressure of 120 kg/cm 2 , a heating temperature of 180°C, a heating and pressing time of 30 minutes, and a carrier base plate (material SS41, plate thickness 9 mm) using a fluid film. (Fluid heat transfer oil, film thickness 1.0 mm), sealing material (“O” ring silicone rubber diameter 7 mm), clamp (Material SS41, plate thickness 9
mm), bolt (M12, hexagonal bolt with socket, bolt pitch 50mm), fluid film cover (SUS304, 2mm),
The pressure was equalized and a product with good appearance and thickness was obtained. Table 1 shows a comparison between the case where the oil film carrier plate of the example was used and the case where a conventional rubber cushion was used.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の方法を示す断面図、第1図
bはキヤリアープレートの拡大断面図、第2図、
第3図は従来法を示すもので、それぞれ断面図、
一部切欠側面図、第4図は本発明の方法を示す側
面図である。 符号の説明、20……加圧板、21……積層材
料、22……鏡板、23……弾性体膜、24……
圧力媒体、25……キヤリアー板。
FIG. 1a is a sectional view showing the method of the present invention, FIG. 1b is an enlarged sectional view of the carrier plate, FIG.
Figure 3 shows the conventional method, with a sectional view and a cross-sectional view, respectively.
FIG. 4 is a partially cutaway side view illustrating the method of the present invention. Explanation of symbols, 20... Pressure plate, 21... Laminated material, 22... End plate, 23... Elastic body membrane, 24...
Pressure medium, 25...carrier plate.

Claims (1)

【特許請求の範囲】[Claims] 1 積層材料を2枚の鏡板で挟んで、2枚の加圧
板の間に挿入し、加熱下で、鏡板の外側から加圧
する積層板の製造法に於て、鏡板と加圧板との間
に、一面に弾性体膜で覆われた圧力媒体層を有す
るキヤリヤー板を介在させると共に、積層材料、
鏡板、加圧板、キヤリヤー板を密着させ、加圧板
の間隔を固定した後、加圧媒体層に、積層板の圧
縮成形に必要な圧力を加えることを特徴とする積
層板の製造法。
1. In the method of manufacturing a laminate in which a laminated material is sandwiched between two end plates, inserted between two pressure plates, and pressed from the outside of the end plate under heating, there is a A carrier plate having a pressure medium layer covered with an elastic membrane on one side is interposed, and a laminated material,
A method for manufacturing a laminate, which comprises: bringing a mirror plate, a pressure plate, and a carrier plate into close contact with each other, fixing the interval between the pressure plates, and then applying pressure necessary for compression molding the laminate to the pressure medium layer.
JP59275718A 1984-12-28 1984-12-28 Manufacture of laminated sheet Granted JPS61154932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275718A JPS61154932A (en) 1984-12-28 1984-12-28 Manufacture of laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275718A JPS61154932A (en) 1984-12-28 1984-12-28 Manufacture of laminated sheet

Publications (2)

Publication Number Publication Date
JPS61154932A JPS61154932A (en) 1986-07-14
JPH04447B2 true JPH04447B2 (en) 1992-01-07

Family

ID=17559405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275718A Granted JPS61154932A (en) 1984-12-28 1984-12-28 Manufacture of laminated sheet

Country Status (1)

Country Link
JP (1) JPS61154932A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021486B2 (en) * 2012-07-17 2016-11-09 サトーホールディングス株式会社 Thermal transfer ink ribbon storage test method and storage test apparatus

Also Published As

Publication number Publication date
JPS61154932A (en) 1986-07-14

Similar Documents

Publication Publication Date Title
US6041840A (en) Vacuum lamination device and a vacuum lamination method
EP0151416B1 (en) Device for manufacturing laminated material
KR100532649B1 (en) Press forming device and control method thereof
US3879251A (en) Apparatus for producing laminates requiring the application of heat
JPH04447B2 (en)
JP4763356B2 (en) Pressurizer and heater unit
JPS61277428A (en) Molding method of laminated plate
JP3243598B2 (en) Vacuum laminating apparatus and vacuum laminating method
JP3204569B2 (en) hot press
TW469213B (en) A vacuum lamination apparatus
JP2008137291A (en) Manufacturing method of laminated plate
JP3234543B2 (en) Plate for forming metal foil-clad laminate, method for producing metal-foil-clad laminate, method for producing metal-foil-clad laminate
JP2801518B2 (en) Manufacturing method and manufacturing apparatus for laminate
JPH09130055A (en) Manufacture of multilayer printed wiring board
JP2003145300A (en) Press device and press method
JPS59101331A (en) Manufacture of laminated board
JPS62225327A (en) Continuous manufacturing device for laminate sheet
JPS62225330A (en) Continuous manufacturing device for laminate sheet
JPS61206651A (en) Cushion for molding laminated board
JPS61173911A (en) Manufacture of laminated plate
JP2004358937A (en) Forming method and forming device for synthetic resin plate
JPH0618728B2 (en) Hot plate for laminated board manufacturing
JPS60210423A (en) Manufacture of laminated sheet
SU313339A1 (en) GAS PLATE FOR PRESSES
JPH10175229A (en) Vacuum laminating apparatus