JPH0443384B2 - - Google Patents

Info

Publication number
JPH0443384B2
JPH0443384B2 JP58219592A JP21959283A JPH0443384B2 JP H0443384 B2 JPH0443384 B2 JP H0443384B2 JP 58219592 A JP58219592 A JP 58219592A JP 21959283 A JP21959283 A JP 21959283A JP H0443384 B2 JPH0443384 B2 JP H0443384B2
Authority
JP
Japan
Prior art keywords
retainer
electrolyte
battery
liquid guiding
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58219592A
Other languages
Japanese (ja)
Other versions
JPS60112250A (en
Inventor
Yoshinari Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP58219592A priority Critical patent/JPS60112250A/en
Publication of JPS60112250A publication Critical patent/JPS60112250A/en
Publication of JPH0443384B2 publication Critical patent/JPH0443384B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、密閉型鉛蓄電池に関するものであ
る。 〔従来技術〕 一般にこの種の電池では、実質的に電解液の非
流動化が図られており、充電時に陽極板から発生
するO2ガスは下式に示す反応で陰極板活物質の
海綿状鉛に吸収される。 Pb+1/202+H2SO4 →PbSO4+H2O この種の電池では、上記の式に従つて陽極板で
分解された電解液が陰極板でH2Oを生成するた
め、電池使用時に保水などは不要であり、しかも
いかなる方向に傾けても電解液の漏液の心配はな
い。 この種の電池において、例えば微細なガラス繊
維をマツト状に形成したリテーナへの電解液の含
浸は、リテーナを極板間に配置して電槽内に収納
した後に、電槽の上部から電解液を注入すること
により行なわれる。したがつて電槽内に配置され
た極板間に位置するリテーナに電解液を注入する
場合、電解液は極板と接触していないリテーナの
端部から徐々に含浸していくため、リテーナに電
解液を含浸させるのに要する時間が極めて多くか
かるという欠点があつた。 そこで特開昭56−52865号公報に示されるよう
に、電解液を含浸させる際にガラス繊維からなる
リテーナからのガス抜きを容易にするための空間
をリテーナに沿つて配置するために、上下方向に
延びる凹凸部を備えたプラスチツク製の微孔シー
トからなる導液部材をリテーナに添つて配置する
技術が提案された。 〔発明が解決しようとする課題〕 上記公報に示された導液部材を用いると、リテ
ーナに沿つてガス抜けを良好にする複数の大きな
空間を形成できるため、電解液の含浸速度を大幅
に速めることができる。しかしながらこの空間が
大きくなればなるほど、この空間内に位置する電
解液の移動すなわち硫酸の移動が容易になり、こ
の空間内に充填された電解液では上下方向で濃度
差が生じる。このような濃度差は、充放電性能を
低下させる原因となる。また従来の導液部材で
は、導液部材それ自体がほとんど吸水性を有して
いないため、電解液の保液量を増大させることが
できない上、導液部材がイオンの伝導を妨げて、
充放電性能を低下させる。 本発明の目的は、ガラス繊維からなるリテーナ
に迅速に電解液を注液することができ、しかも急
速放電性能の向上を図ることができる密閉型鉛蓄
電池を提供することにある。 〔課題を解決するための手段〕 本発明は上記課題を解決するために、ガラス繊
維からなるリテーナが極板間に配置されてなる密
閉型鉛蓄電池において、セルロースからなる吸水
性を有する複数枚の薄葉紙が重ね合せられて間隔
をあけた多数の箇所で積層方向に相互に接合され
てなる導液部材を、リテーナに添つて配置する。 〔作 用〕 セルロースからなる吸水性を有する複数枚の薄
葉紙を重ね合せ間隔をあけて多数の箇所で積層方
向に相互に接合してなる導液部材を用いると、接
合された薄葉紙間にはガス抜け通路となる多数の
間〓が形成される。電解液をリテーナに注液する
際には、薄葉紙間に形成された多数の間〓がガス
抜け通路になるとともに、吸水性を有する薄葉紙
を通して側面からも電解液がリテーナに注液され
るため、電解液の注液時間を短縮することができ
る。また電解液は、リテーナだけでなく薄葉紙間
に形成された多数の間〓内及び薄葉紙にも保液さ
れる。その結果、電解液の注液量を増大させるこ
とができる上、導液部材がイオンの伝導を妨げる
ことはない。更に各薄葉紙間に形成される間〓の
厚み寸法は小さく且つ各薄葉紙が吸水性を有して
いるため導液部材に含浸された電解液は移動しに
くく、導液部材に含浸された電解液中に大きな濃
度差が発生することがない。以上の理由から、本
発明によれば、迅速にリテーナに電解液を含浸さ
せることができる上、電解液を確実に保持して充
放電性能の向上を図ることができる。 〔実施例〕 以下図示の実施例により本発明の実施例を詳細
に説明する。 第1図及び第3図において、1は電槽、2は陰
極板、3は陽極板である。陰極板2と陽極板3と
の間には微細なガラス繊維からなるリテーナ4が
配置され、該リテーナ4と陰極板2との間及びリ
テーナ4と陽極板3との間にはそれぞれ100%セ
ルロースからなる板状の導液部材5が配置されて
いる。この導液部材5は第2図に示すようにセル
ロースからなる2枚の吸水性を有する薄葉紙6,
6を重ね合せて間隔をおいて多数の箇所(イ部)
で接合することにより内部に多数の間〓部7,7
…を形成したものである。なお第2図及び第3図
では、理解を容易にするために、間〓部7,7…
を極めて誇張して描いてある。実施例では上記薄
葉紙として10分の数mmの厚さのものを用い、接合
部(イ部)を直径が約2mmの大きさとして、第3
図に示すように各接合部(イ部)間の距離dを約
10mmとして導液部材5を構成している。したがつ
て実際に形成される間〓部7,7…の厚み寸法、
すなわち積層方向の寸法は非常に小さい。 本発明の効果を確認するために、導液部材の枚
数を変えて5時間率容量が32Ahの密閉型鉛蓄電
池を2種類製作し、導液部材5を有しない従来の
同種の電池と電解液の注液に要する時間を比較し
た。無荷重時の厚さが0.4mmの導液部材8枚を極
板とリテーナとの間に介在させた電池Aと、同一
寸法の導液部材16枚を極板とリテーナとの間に介
在させた電池Bと、導液部材を用いない従来の電
池Cとについて電解液の注液に要する時間を測定
したところ下表の結果を得た。この場合リテーナ
は直径約0.7μの100%ガラス繊維からなる、厚さ
×幅×高さが1.6mm×120mm×115mmのものを使用
し、電解液としては比重1.310の希硫酸を用いて
25℃の温度下で注液した。
[Industrial Field of Application] The present invention relates to a sealed lead acid battery. [Prior art] In general, in this type of battery, the electrolyte is made substantially non-fluid, and the O 2 gas generated from the anode plate during charging is absorbed into the spongy form of the cathode plate active material by the reaction shown in the equation below. Absorbed by lead. Pb+1/20 2 +H 2 SO 4 →PbSO 4 +H 2 O In this type of battery, the electrolyte decomposed on the anode plate generates H 2 O on the cathode plate according to the above formula, so water retention is required when the battery is in use. There is no need to do this, and there is no need to worry about electrolyte leakage no matter what direction you tilt it. In this type of battery, for example, the retainer, which is made of fine glass fibers formed into a mat shape, is impregnated with electrolyte. After the retainer is placed between the electrode plates and stored in the battery case, the electrolyte is poured from the top of the battery case. This is done by injecting. Therefore, when injecting electrolyte into the retainer located between the electrode plates arranged in the battery case, the electrolyte gradually impregnates from the end of the retainer that is not in contact with the electrode plates, so that the retainer becomes The drawback was that it took an extremely long time to impregnate the electrolyte. Therefore, as shown in Japanese Unexamined Patent Publication No. 56-52865, in order to arrange a space along the retainer to facilitate degassing from the retainer made of glass fiber when impregnating with an electrolytic solution, a space was created in the vertical direction. A technique has been proposed in which a liquid guide member made of a plastic microporous sheet with a concavo-convex portion extending along the retainer is disposed. [Problems to be Solved by the Invention] By using the liquid guiding member disclosed in the above publication, it is possible to form multiple large spaces along the retainer that allow for good gas release, thereby greatly increasing the impregnation speed of the electrolytic solution. be able to. However, as this space becomes larger, the movement of the electrolytic solution located within this space, that is, the movement of sulfuric acid becomes easier, and a concentration difference occurs in the vertical direction in the electrolytic solution filled in this space. Such a concentration difference causes deterioration of charge/discharge performance. In addition, in conventional liquid guiding members, the liquid guiding member itself has almost no water absorbency, so it is not possible to increase the amount of electrolyte solution retained, and the liquid guiding member prevents ion conduction.
Decrease charge/discharge performance. An object of the present invention is to provide a sealed lead-acid battery that can quickly inject an electrolyte into a retainer made of glass fiber and that can improve rapid discharge performance. [Means for Solving the Problems] In order to solve the above problems, the present invention provides a sealed lead-acid battery in which a retainer made of glass fiber is arranged between electrode plates, and a plurality of water-absorbing sheets made of cellulose. A liquid guide member formed by stacking thin papers and joining each other in the stacking direction at a number of spaced locations is arranged along the retainer. [Function] When using a liquid guiding member made by stacking multiple sheets of water-absorbing thin paper made of cellulose and joining them to each other in the stacking direction at numerous locations at intervals, gas will flow between the joined thin papers. A large number of gaps are formed that serve as escape passages. When injecting the electrolyte into the retainer, the numerous gaps formed between the thin sheets serve as degassing passages, and the electrolyte is also injected into the retainer from the side through the water-absorbing thin paper. The electrolyte injection time can be shortened. Further, the electrolytic solution is retained not only in the retainer but also in the thin paper and in the numerous gaps formed between the thin sheets. As a result, the amount of electrolyte injected can be increased, and the liquid guiding member does not interfere with ion conduction. Furthermore, since the thickness of the gap formed between each thin paper is small and each thin paper has water absorption properties, the electrolytic solution impregnated in the liquid guiding member is difficult to move. A large concentration difference does not occur between the two. For the above reasons, according to the present invention, the retainer can be quickly impregnated with the electrolytic solution, and the electrolytic solution can be reliably retained to improve charging and discharging performance. [Examples] Examples of the present invention will be described in detail below with reference to illustrated examples. In FIGS. 1 and 3, 1 is a battery case, 2 is a cathode plate, and 3 is an anode plate. A retainer 4 made of fine glass fiber is placed between the cathode plate 2 and anode plate 3, and 100% cellulose is placed between the retainer 4 and the cathode plate 2 and between the retainer 4 and the anode plate 3. A plate-shaped liquid guide member 5 made of is arranged. As shown in FIG.
6 on top of each other at intervals (part A)
By joining with the inner part 7, 7
...is formed. Note that in FIGS. 2 and 3, in order to facilitate understanding, the intermediate portions 7, 7...
is extremely exaggerated. In the example, a thin paper with a thickness of a few tenths of a millimeter was used, the joint part (A part) was made to have a diameter of about 2 mm, and the third
As shown in the figure, the distance d between each joint (part A) is approximately
The liquid guiding member 5 is configured to have a thickness of 10 mm. Therefore, the thickness dimension of the inner portions 7, 7... that are actually formed,
In other words, the dimensions in the stacking direction are very small. In order to confirm the effects of the present invention, two types of sealed lead-acid batteries with a 5-hour rate capacity of 32 Ah were manufactured by changing the number of liquid guiding members, and a conventional similar battery without the liquid guiding member 5 and an electrolyte The time required for injection was compared. Battery A has 8 liquid guide members with a thickness of 0.4 mm when no load is placed between the electrode plate and the retainer, and 16 liquid guide members of the same size are interposed between the electrode plate and the retainer. The time required for injecting the electrolyte was measured for Battery B, which had a conventional battery B, and Battery C, a conventional battery that does not use a liquid guiding member, and the results shown in the table below were obtained. In this case, the retainer is made of 100% glass fiber with a diameter of approximately 0.7 μ, and has a thickness x width x height of 1.6 mm x 120 mm x 115 mm, and dilute sulfuric acid with a specific gravity of 1.310 is used as the electrolyte.
The solution was injected at a temperature of 25°C.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、セルロースから
なる吸水性を有する複数枚の薄葉紙を重ね合せ間
隔をあけて多数の箇所で積層方向に相互に接合し
てなる導液部材を用いるので、電解液をリテーナ
に注液する際には、薄葉紙間に形成された多数の
間〓がガス抜け通路になるとともに、吸水性を有
する薄葉紙を通して側面からも電解液がリテーナ
に注液されて、電解液の注液時間を短縮すること
ができる。また電解液は、リテーナだけでなく薄
葉紙間に形成された多数の間〓内及び薄葉紙にも
保液されるため、電解液の注液量を増大させるこ
とができる上、導液部材がイオンの伝導を妨げる
ことがない。更に各薄葉紙間に形成される間〓の
厚み寸法は小さく且つ各薄葉紙が吸水性を有して
いるため導液部材に含浸された電解液は移動しに
くく、導液部材に含浸された電解液中に大きな濃
度差が発生することがない。したがつて、本発明
によれば、迅速にリテーナに電解液を含浸させる
ことができる上、電解液を確実に保持して充放電
性能の向上を図ることができる。
As described above, according to the present invention, since a liquid guiding member is used, which is formed by stacking a plurality of water-absorbing thin paper sheets made of cellulose and bonding them to each other in the stacking direction at a large number of places at intervals, the electrolyte When injecting the electrolyte into the retainer, the numerous gaps formed between the thin sheets become gas release passages, and the electrolyte is also injected into the retainer from the side through the water-absorbing thin paper. Liquid injection time can be shortened. In addition, the electrolyte is retained not only in the retainer but also in the many gaps formed between the thin sheets and in the thin sheets, so the amount of electrolyte injected can be increased, and the liquid guiding member Does not interfere with conduction. Furthermore, since the thickness of the gap formed between each thin paper is small and each thin paper has water absorption properties, the electrolytic solution impregnated in the liquid guiding member is difficult to move. A large concentration difference does not occur between the two. Therefore, according to the present invention, it is possible to quickly impregnate the retainer with the electrolytic solution, and it is also possible to reliably retain the electrolytic solution and improve charging and discharging performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の密閉型鉛蓄電池の極板群を示
す説明図、第2図は本発明の鉛蓄電池のシート状
導液部材の縦断面図、第3図はシート状導液部材
の一部平面図、第4図は本発明による電池A,B
と従来の電池Cとの急速放電特性の試験結果を示
すグラフである。 2…陰極板、3…陽極板、4…リテーナ、5…
導液部材、6…薄葉紙、7…間〓部、イ部…接合
部。
FIG. 1 is an explanatory view showing the electrode plate group of the sealed lead-acid battery of the present invention, FIG. 2 is a longitudinal cross-sectional view of the sheet-like liquid guiding member of the lead-acid battery of the present invention, and FIG. A partial plan view, FIG. 4 shows batteries A and B according to the present invention.
3 is a graph showing the test results of rapid discharge characteristics between the conventional battery C and the conventional battery C. 2... Cathode plate, 3... Anode plate, 4... Retainer, 5...
Liquid guiding member, 6...thin paper, 7...intermediate section, A section...junction section.

Claims (1)

【特許請求の範囲】 1 電解液を含浸させるガラス繊維からなるリテ
ーナが極板間に配置されてなる密閉型鉛蓄電池に
おいて、 セルロースからなる吸水性を有する複数枚の薄
葉紙が重ね合せられて間隔をあけた多数の箇所で
積層方向に相互に接合されてなる導液部材を、前
記リテーナに添つて配置したことを特徴とする密
閉型鉛蓄電池。
[Scope of Claims] 1. In a sealed lead-acid battery in which a retainer made of glass fiber impregnated with an electrolytic solution is arranged between electrode plates, a plurality of water-absorbing thin papers made of cellulose are stacked one on top of the other and spaced apart from each other. 1. A sealed lead-acid battery, characterized in that liquid guiding members are arranged along the retainer and are mutually joined in the stacking direction at a number of open locations.
JP58219592A 1983-11-24 1983-11-24 Sealed lead storage battery Granted JPS60112250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219592A JPS60112250A (en) 1983-11-24 1983-11-24 Sealed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219592A JPS60112250A (en) 1983-11-24 1983-11-24 Sealed lead storage battery

Publications (2)

Publication Number Publication Date
JPS60112250A JPS60112250A (en) 1985-06-18
JPH0443384B2 true JPH0443384B2 (en) 1992-07-16

Family

ID=16737946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219592A Granted JPS60112250A (en) 1983-11-24 1983-11-24 Sealed lead storage battery

Country Status (1)

Country Link
JP (1) JPS60112250A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652865A (en) * 1979-10-03 1981-05-12 Yuasa Battery Co Ltd Lead acid battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652865A (en) * 1979-10-03 1981-05-12 Yuasa Battery Co Ltd Lead acid battery

Also Published As

Publication number Publication date
JPS60112250A (en) 1985-06-18

Similar Documents

Publication Publication Date Title
US20200075968A1 (en) Collector plate and redox flow battery
US4331747A (en) Electric storage batteries
US6153335A (en) Battery cell construction including fiberous mat separator
JPH0443384B2 (en)
CN214542365U (en) Square aluminum-shell battery capable of improving electrode wetting uniformity
WO2018124616A1 (en) Secondary battery having improved lifespan by using electrolyte storage member
JPS607071A (en) Sealed lead-acid battery
EP0024633A2 (en) Non-gassing storage battery
JPH0343966A (en) Sealed lead-acid battery
JP2588631Y2 (en) Sealed lead-acid battery
JPH0531270B2 (en)
JPH0446376Y2 (en)
JPS6266557A (en) Jar of lead-storage battery
JPS58154171A (en) Lead-acid battery
JPS61126764A (en) Enclosed lead battery
JP2023066155A (en) secondary battery
JPS6316130Y2 (en)
JPH0537426Y2 (en)
JPH0530291Y2 (en)
JP2022177646A (en) storage battery
JPH0615409Y2 (en) Sealed cladded lead acid battery
JPH0287483A (en) Separator of zinc-bromine cell
JPH07130391A (en) Manufacture of closed lead acid battery
KR800000417Y1 (en) Insulation panel for storage battery
JPH0537425Y2 (en)