JPH0436561A - Deaerating process for refrigerant - Google Patents

Deaerating process for refrigerant

Info

Publication number
JPH0436561A
JPH0436561A JP14348590A JP14348590A JPH0436561A JP H0436561 A JPH0436561 A JP H0436561A JP 14348590 A JP14348590 A JP 14348590A JP 14348590 A JP14348590 A JP 14348590A JP H0436561 A JPH0436561 A JP H0436561A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
radiation part
condensable gas
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14348590A
Other languages
Japanese (ja)
Other versions
JP2697253B2 (en
Inventor
Izumi Azuma
東 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2143485A priority Critical patent/JP2697253B2/en
Publication of JPH0436561A publication Critical patent/JPH0436561A/en
Application granted granted Critical
Publication of JP2697253B2 publication Critical patent/JP2697253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enable a positive judgment for the completion of deaeration process for refrigerant in an on-line basis by a method wherein a temperature of refrigerant near its surface liquefied by heating or boiling and another temperature at an upper end of a radiation part are measured and a difference between these temperature is calculated. CONSTITUTION:As liquid refrigerant 2A is heated and boiled by a heating part 9 arranged at a lower part of a hermetic container 1, the refrigerant ascends in its gaseous refrigerant 2B. It is cooled by a radiation part 10. This is condensed and liquefied, and descends. Noncondensed gas in the refrigerant 2 is accumulated at the upper end of the radiation part 10. In this case, a thermometer 7 indicates a temper ature of the gaseous refrigerant 2B. A thermometer 8 indicates a temperature of non-condensed gas 3, so that there occurs a substantial difference between these temperatures. Then, a valve 5A is opened, and non-condensed gas 3 is sucked by a vacuum pump through a discharging pipe 5. The non-condensed gas 3 is dehydrated and the gaseous refrigerant 2B ascends up to the upper end of the radiation part 10 and finally a difference in temperature of the thermometers 7 and 8 becomes zero. With such as arrangement, the completion of the dehydration process can be judged. As the thermometer 8 is placed at a part 8A of the discharging pipe 5, it becomes the upper-most end of the radiation part 10 and this is more effective.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒートパイプあるいは電子機器などの冷却に用
いられる沸騰冷却装置に使用される冷媒の脱気プロセス
、特にそのプロセスの完了を判定する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a deaeration process of a refrigerant used in a boiling cooling device used for cooling heat pipes or electronic equipment, etc., and particularly a method for determining the completion of the process. Regarding.

〔従来の技術〕[Conventional technology]

ヒートパイプあるいは電子機器などの冷却に用いられる
沸騰冷却装置においては、密閉容器内に封入されたフロ
ンなどの液状の冷媒が被冷却体によって加熱・沸騰され
、ガス状の冷媒となって容器内の上部に上昇し、ここで
容器自体あるいは容器に取り付けられている放熱部によ
って冷却され、このガス状の冷媒は凝縮・液化して液状
の冷媒となって降下し、再び被冷却体によって加熱され
る。
In boiling cooling devices used to cool heat pipes or electronic equipment, a liquid refrigerant such as fluorocarbon sealed in a sealed container is heated and boiled by the object to be cooled, and becomes a gaseous refrigerant that flows inside the container. The gaseous refrigerant rises to the top, where it is cooled by the container itself or a heat radiator attached to the container, and this gaseous refrigerant condenses and liquefies to become a liquid refrigerant that descends and is heated again by the object to be cooled. .

このようにして被冷却体の熱を放熱部に伝達し、被冷却
体の冷却が行われる。冷媒に、例えば、空気などの非凝
縮性ガス(厳密には、通常、電子機器等の冷却に用いら
れる温度の範囲で)が混入していると、放熱部における
伝熱面積が減少し冷却性能が低下する、あるいは、非凝
縮性ガスが、例えば、空気の場合、この中に含まれる酸
素によって容器が腐食される問題が生じる。
In this way, the heat of the object to be cooled is transferred to the heat radiation section, and the object to be cooled is cooled. For example, if a non-condensable gas such as air (strictly speaking, within the temperature range normally used for cooling electronic equipment, etc.) is mixed into the refrigerant, the heat transfer area in the heat dissipation section will decrease and the cooling performance will decrease. If the non-condensable gas is air, for example, the container may be corroded by the oxygen contained therein.

このため、冷媒に含まれる非凝縮性ガスを極力除くこと
が重要で、一般には、まず、液状の冷媒を脱気用容器に
入れ真空脱気し、この脱気された液状の冷媒をあらかじ
め真空引きした冷却装置の容器に入れ、更に、冷却装置
の容器を真空脱気するようにする。
For this reason, it is important to remove as much non-condensable gas as possible from the refrigerant.Generally, first, the liquid refrigerant is placed in a deaeration container and vacuum degassed, and the degassed liquid refrigerant is vacuumed in advance. Place it in the container of the cooling device, and then evacuate the container of the cooling device under vacuum.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のように、冷媒はまず冷媒自体を真空脱気し、更に
、冷却装置の容器に入れてから再度真空脱気をする脱気
プロセスにより、冷媒に含まれる非凝縮性ガスを除くよ
うにしているが、脱気プロセスの完了を判定する方法と
しては、通常、脱気プロセスで排出される脱気ガスをサ
ンプリングして成分分析を行い、脱気ガス中の非凝縮性
ガスの量により判定するようにしている。この方法はオ
フラインであり、分析に時間がか−るため、実際には必
要以上に長時間の真空脱気を行うことにより対応してい
るのが現状である。このため、脱気プロセスにおいて、
ガス状となって排気される冷媒の損失が増加し、更に、
製品の品質管理上脱気プロセスの完了が確認できていな
い問題が生じている。
As mentioned above, the refrigerant is first vacuum degassed, and then the refrigerant is placed in a container of a cooling device and then vacuum degassed again to remove non-condensable gases contained in the refrigerant. However, the method of determining the completion of the degassing process is usually to sample the degassing gas emitted during the degassing process, perform a component analysis, and judge based on the amount of non-condensable gas in the degassing gas. That's what I do. Since this method is off-line and requires time for analysis, the current situation is to perform vacuum degassing for a longer time than necessary. Therefore, in the degassing process,
The loss of refrigerant that is exhausted in gaseous form increases, and
Due to product quality control, there is a problem in which the completion of the degassing process cannot be confirmed.

本発明の課題は前述の問題点を解決し、オンラインで冷
媒の脱気プロセスの完了を的確に判定できる脱気プロセ
スを提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide a degassing process that can accurately determine the completion of the refrigerant degassing process online.

〔課題を解決するための手段〕[Means to solve the problem]

前述の課題を解決するために、本発明の冷媒の脱気プロ
セスにおいては、上部に放熱部を備えた密閉容器に液状
の冷媒を封入し、この冷媒を加熱・沸騰させてガス状化
し、このガス状化した冷媒が前記放熱部において冷却さ
れて凝縮・液化する際、残留した非凝縮性ガスを前記密
閉容器から排気することにより冷媒から非凝縮性ガスを
脱気する冷媒の脱気プロセスにおいて、加熱・沸騰によ
り液状化した冷媒の液面上近傍の温度と放熱部の上端の
温度を測定し、これらの温度の差がほゞ零になったこと
で前記冷媒の非凝縮性ガスの脱気プロセスが完了したこ
とを判定するようにする。
In order to solve the above-mentioned problems, in the refrigerant degassing process of the present invention, a liquid refrigerant is sealed in a closed container equipped with a heat dissipation section at the top, and this refrigerant is heated and boiled to gasify it. When the gasified refrigerant is cooled and condensed and liquefied in the heat dissipation section, the remaining non-condensable gas is exhausted from the closed container in a refrigerant deaeration process in which non-condensable gas is removed from the refrigerant. The temperature near the top of the liquid surface of the refrigerant liquefied by heating and boiling and the temperature at the upper end of the heat dissipation section were measured, and when the difference between these temperatures became almost zero, it was determined that the non-condensable gas in the refrigerant had been removed. The process is determined to be complete.

〔作 用〕[For production]

本発明の冷媒の脱気プロセスにおいては、上部に放熱部
を備えた密閉容器に封入された液状の冷媒を加熱・沸騰
させる。この加熱・沸騰によりガス状になった冷媒は上
昇して放熱部に達し、ここで冷却されて凝縮・液化して
再び液状の冷媒となって降下するが、冷媒中に非凝縮性
ガスが含まれていると、この非凝縮性ガスは放熱部の上
端に溜まる。この非凝縮性ガスは熱伝導が悪いため、加
熱・沸騰して上昇した温度の高いガス状の冷媒から熱量
は充分伝えられないので、この非凝縮性ガスの温度は低
下する。冷媒から非凝縮性ガスを脱気すると、放熱部の
上端まで純度の高いガス状の冷媒で満たされるようにな
り、放熱部の上端は加熱・沸騰したガス状の冷媒の温度
まで上昇する。
In the refrigerant degassing process of the present invention, a liquid refrigerant sealed in an airtight container having a heat dissipation section at the top is heated and boiled. The refrigerant, which becomes gaseous due to this heating and boiling, rises and reaches the heat radiation section, where it is cooled, condenses and liquefies, and descends again as a liquid refrigerant, but the refrigerant contains non-condensable gases. If this happens, this non-condensable gas will accumulate at the top of the heat sink. Since this non-condensable gas has poor thermal conductivity, heat cannot be sufficiently transferred from the high temperature gaseous refrigerant that has been heated and boiled, so the temperature of this non-condensable gas decreases. When the non-condensable gas is removed from the refrigerant, the upper end of the heat radiating section is filled with highly pure gaseous refrigerant, and the temperature of the upper end of the heat radiating section rises to the temperature of the heated and boiled gaseous refrigerant.

したがって加熱・沸騰したガス状の冷媒の温度として液
面近傍の冷媒温度と放熱部の上端の温度とを測定し、こ
れらの温度の差がほゞ零になったことで非凝縮性ガスの
脱気、すなわち冷媒の脱気プロセスが完了したことが、
オンラインでかつ的確に判定できる。
Therefore, as the temperature of the heated and boiled gaseous refrigerant, the refrigerant temperature near the liquid level and the temperature at the upper end of the heat radiation part are measured, and when the difference between these temperatures becomes almost zero, non-condensable gas is removed. The process of degassing the refrigerant is complete.
Can be accurately determined online.

〔実施例〕〔Example〕

第1図は本発明の冷媒の脱気プロセスを行う冷媒脱気装
置の断面図である。
FIG. 1 is a cross-sectional view of a refrigerant deaerator that performs the refrigerant deaeration process of the present invention.

密閉容器1は上部に放熱部10が設けられており、この
中に脱気処理用の冷媒2を封入する。この冷媒2は常温
では液状で2Aとなっている。密閉容器上端に脱気用の
排気管5が設けられる。この排気管5はバルブ5Aを介
して、図示しない真空ポンプに接続されるか、場合によ
っては大気開放とする。密閉容器1の下部に設けられた
加熱部9により、液状の冷媒2Aを加熱・沸騰させる。
The airtight container 1 is provided with a heat radiating part 10 at the upper part, and a refrigerant 2 for degassing treatment is sealed in the heat radiating part 10. This refrigerant 2 is in a liquid state and has a current of 2A at room temperature. An exhaust pipe 5 for degassing is provided at the upper end of the closed container. This exhaust pipe 5 is connected to a vacuum pump (not shown) via a valve 5A, or is opened to the atmosphere as the case may be. A heating section 9 provided at the bottom of the closed container 1 heats and boils the liquid refrigerant 2A.

液状冷媒2Aは加熱・沸騰によりガス状の冷媒2Bとな
り密閉容器1の上部に上昇する。放熱部10で、このガ
ス状冷媒2Bは冷却され、iI縮・液化して液状の冷媒
となって降下する。2Cは液化して密閉容器の内壁を伝
わり降下している冷媒を示す。
The liquid refrigerant 2A becomes a gaseous refrigerant 2B by heating and boiling and rises to the upper part of the closed container 1. In the heat radiation section 10, this gaseous refrigerant 2B is cooled, condensed and liquefied, and descends as a liquid refrigerant. 2C shows the refrigerant that has liquefied and descended along the inner wall of the closed container.

冷媒2中に非凝縮性ガスが含まれていると、この非凝縮
性ガスは放熱部10の上端に溜まる。3はその状態を示
している。このガスの熱伝導は悪いため、加熱・沸騰し
て上昇した温度の高いガス状の冷媒2Bから熱量は充分
伝えられないので、この非凝縮性ガスの温度は低下する
。7は液状の冷媒の液面4上の近傍に設けた温度針、8
は放熱部の上端に設けた温度針である。この場合、温度
計7は加熱・沸騰したガス状の冷媒2Bの温度を指示し
、温度計8は非凝縮性ガス3の温度を指示する。
If the refrigerant 2 contains non-condensable gas, this non-condensable gas accumulates at the upper end of the heat dissipation section 10. 3 indicates the state. Since the heat conduction of this gas is poor, the amount of heat cannot be sufficiently transferred from the high temperature gaseous refrigerant 2B that has been heated and boiled, so the temperature of this non-condensable gas decreases. 7 is a temperature needle provided near the liquid level 4 of the liquid refrigerant; 8
is a temperature needle provided at the upper end of the heat dissipation section. In this case, the thermometer 7 indicates the temperature of the heated and boiled gaseous refrigerant 2B, and the thermometer 8 indicates the temperature of the non-condensable gas 3.

従って、これら温度の間には大きな差が生している0次
に、パルプ5Aを開き、排気管5より非凝縮性ガス3を
図示しない真空ポンプで排出する。
Therefore, at the zeroth order, where there is a large difference between these temperatures, the pulp 5A is opened and the non-condensable gas 3 is discharged from the exhaust pipe 5 by a vacuum pump (not shown).

密閉容器1の内圧が、例えば、加熱によって大気圧より
高い場合は大気開放で排出も可能である。
If the internal pressure of the closed container 1 is higher than atmospheric pressure due to heating, for example, it can be discharged by opening it to the atmosphere.

非凝縮性ガス3が脱気されると、放熱部lOの上端まで
ガス状の冷媒2Bが上昇し、温度計7と温度計8の温度
の差ははり零となる。これによって、脱気プロセスの完
了を判定できる。なお、温度計8は8Aに示すように排
気管5の部分に取り付けると放熱部lOの最上端となり
、より効果的である。
When the non-condensable gas 3 is degassed, the gaseous refrigerant 2B rises to the upper end of the heat radiation part 1O, and the difference in temperature between the thermometers 7 and 8 becomes zero. This allows determination of completion of the degassing process. It should be noted that if the thermometer 8 is attached to the exhaust pipe 5 as shown in 8A, it will be at the uppermost end of the heat dissipation part 10, which is more effective.

なお、本発明の脱気プロセスでは、冷媒を加熱・沸騰す
るが、従来の脱気プロセスで、単に、真空引きを行って
いるのでは、密閉容器1に封入された液状の冷媒2Aの
下層の冷媒には、上層の冷媒の液圧がか−り、このため
脱気され難い問題があったが加熱・沸騰により、非凝縮
性ガスは直接冷媒から放出されるので、脱気プロセスが
高効率化され、脱気プロセスの処理時間が更に短縮され
る。
Note that in the deaeration process of the present invention, the refrigerant is heated and boiled, but in the conventional deaeration process, if the vacuum is simply drawn, the lower layer of the liquid refrigerant 2A sealed in the airtight container 1 The refrigerant had the problem of being difficult to degas due to the liquid pressure of the refrigerant in the upper layer, but since non-condensable gases are directly released from the refrigerant by heating and boiling, the deaeration process is highly efficient. This further reduces the processing time of the degassing process.

第2図は本発明の冷媒の脱気プロセスを適用した電子機
器の沸騰冷却装置の断面図である。被冷却体の電子機器
12は冷却装置を構成する密閉容器1の下部に取り付け
られる。密閉容器lは上部に放熱部10が設けられてお
り、冷媒2を、電子機器が浸漬するよう封入する。この
冷媒2は常温では液状で2Aとなっている。密閉容器1
の上端に脱気用の排気管5が設けられる。この排気管5
はバルブ5Aを介して図示しない真空ポンプに接続され
るか、場合によっては大気開放とする。7は液状の冷媒
の液面4上の近傍に設けた温度針、8は放熱部の上端に
設けた温度針である。8Aは放熱部上端の温度針として
排気管5の部分に取り付けた場合を示している。
FIG. 2 is a sectional view of an evaporative cooling device for electronic equipment to which the refrigerant degassing process of the present invention is applied. The electronic device 12 as a cooled object is attached to the lower part of the closed container 1 constituting the cooling device. The airtight container l is provided with a heat dissipation part 10 at its upper part, and a refrigerant 2 is sealed therein so that the electronic equipment is immersed therein. This refrigerant 2 is in a liquid state and has a current of 2A at room temperature. Airtight container 1
An exhaust pipe 5 for degassing is provided at the upper end. This exhaust pipe 5
is connected to a vacuum pump (not shown) via a valve 5A, or is opened to the atmosphere as the case may be. 7 is a temperature needle provided near the liquid surface 4 of the liquid refrigerant, and 8 is a temperature needle provided at the upper end of the heat radiation section. 8A shows the case where it is attached to the exhaust pipe 5 as a temperature needle at the upper end of the heat radiation section.

本実施例では被冷却体の電子機器によって、液状の冷媒
2Aが加熱・沸騰される他は、その動作・作用は第1図
の実施例と同様である。
In this embodiment, the operation and function are the same as in the embodiment shown in FIG. 1, except that the liquid refrigerant 2A is heated and boiled by the electronic device as the object to be cooled.

〔発明の効果〕〔Effect of the invention〕

本発明の冷媒の脱気プロセスにおいては、上部に放熱部
を備えた密閉容器に封入された液状の被脱気体の冷媒を
加熱・沸騰させ、ガス状になった前記冷媒の液面上近傍
の温度と、放熱部の上端の温度とを測定し、これらの温
度の差かは〜“零になったことで、冷媒の脱気プロセス
の完了を判定するようにした。従って、オンラインで冷
媒の脱気プロセス完了を的確に判定でき、従来、必要以
上に長時間の真空脱気を行い、コスト上昇の要因となっ
ていたが、必要最小限の脱気プロセスの処理時間により
コストが低下した。また、長時間の真空脱気プロセスに
おいて、ガス状となって排気される冷媒の損失の増加も
なくなりコストは更に低下した。また、脱気プロセスの
完了が確認でき、品賀管理上、その効果は大きい、更に
また、本発明の脱気プロセスで、冷媒を加熱・沸騰する
工程によって密閉容器に封入されている下層の冷媒が、
上層の冷媒の液圧により脱気され難い点を、加熱・沸騰
により非凝縮性ガスを直接冷媒から放出させ、脱気プロ
セスが高効率化され、脱気プロセスの処理時間が更に短
縮される効果がある。
In the refrigerant degassing process of the present invention, a liquid refrigerant to be degassed sealed in an airtight container with a heat dissipation section at the top is heated and boiled, and the gaseous refrigerant near the liquid level is heated and boiled. We measured the temperature and the temperature at the top of the heat dissipation section, and when the difference between these temperatures became zero, we determined that the refrigerant degassing process was complete. Completion of the degassing process can be accurately determined. Conventionally, vacuum degassing was performed for a longer time than necessary, which was a factor in increasing costs, but costs have been reduced by reducing the processing time of the degassing process to the minimum necessary. In addition, during the long vacuum degassing process, there is no increase in the loss of the refrigerant that is exhausted in the gaseous state, further reducing costs.In addition, the completion of the degassing process can be confirmed, which has an effect on Shinaga management. Furthermore, in the degassing process of the present invention, the lower refrigerant sealed in the sealed container is heated and boiled.
Non-condensable gases are released directly from the refrigerant by heating and boiling, which is difficult to degas due to the liquid pressure of the upper refrigerant, making the deaeration process more efficient and further shortening the deaeration process time. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冷媒の脱気プロセスを適用した冷媒脱
気装置の断面図、第2図は本発明の冷媒の脱気プロセス
を適用した電子機器の沸騰冷却装置の断面図である。
FIG. 1 is a sectional view of a refrigerant deaerator to which the refrigerant deaeration process of the present invention is applied, and FIG. 2 is a sectional view of an evaporative cooling device for electronic equipment to which the refrigerant deaeration process of the invention is applied.

Claims (1)

【特許請求の範囲】[Claims] 1)上部に放熱部を備えた密閉容器に液状の冷媒を封入
し、この冷媒を加熱・沸騰させてガス状化し、このガス
状化した冷媒が前記放熱部において冷却されて凝縮・液
化する際、残留した非凝縮性ガスを前記密閉容器から排
気することにより冷媒から非凝縮性ガスを脱気する冷媒
の脱気プロセスにおいて、加熱・沸騰により液状化した
冷媒の液面上近傍の温度と放熱部の上端の温度を測定し
、これらの温度の差がほゞ零になったことで前記冷媒の
非凝縮性ガスの脱気プロセスが完了したことを判定する
ことを特徴とする冷媒の脱気プロセス。
1) When a liquid refrigerant is sealed in an airtight container equipped with a heat dissipation section at the top, this refrigerant is heated and boiled to gasify it, and this gasified refrigerant is cooled in the heat dissipation section and condensed and liquefied. In the refrigerant degassing process, in which non-condensable gas is degassed from the refrigerant by exhausting the remaining non-condensable gas from the sealed container, the temperature and heat dissipation near the liquid surface of the refrigerant liquefied by heating and boiling. refrigerant degassing, characterized in that the temperature at the upper end of the refrigerant is measured, and it is determined that the degassing process of the non-condensable gas of the refrigerant is completed when the difference between these temperatures becomes almost zero. process.
JP2143485A 1990-06-01 1990-06-01 Refrigerant degassing process Expired - Lifetime JP2697253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143485A JP2697253B2 (en) 1990-06-01 1990-06-01 Refrigerant degassing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143485A JP2697253B2 (en) 1990-06-01 1990-06-01 Refrigerant degassing process

Publications (2)

Publication Number Publication Date
JPH0436561A true JPH0436561A (en) 1992-02-06
JP2697253B2 JP2697253B2 (en) 1998-01-14

Family

ID=15339804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143485A Expired - Lifetime JP2697253B2 (en) 1990-06-01 1990-06-01 Refrigerant degassing process

Country Status (1)

Country Link
JP (1) JP2697253B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940775U (en) * 1982-09-07 1984-03-15 株式会社日阪製作所 Device for removing non-condensable gas in heat pumps
JPS60140076A (en) * 1983-12-27 1985-07-24 富士通株式会社 Method of filling liquid-cooled module with refrigerant liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940775U (en) * 1982-09-07 1984-03-15 株式会社日阪製作所 Device for removing non-condensable gas in heat pumps
JPS60140076A (en) * 1983-12-27 1985-07-24 富士通株式会社 Method of filling liquid-cooled module with refrigerant liquid

Also Published As

Publication number Publication date
JP2697253B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
EP3453235B1 (en) Immersion cooling
US4866570A (en) Apparatus and method for cooling an electronic device
TW201411082A (en) Vacuum filling and degasification system
JPH0436561A (en) Deaerating process for refrigerant
US4971138A (en) Bladder thermosyphon
JP2002280243A (en) Method and device for drying electrical apparatus
JP2804640B2 (en) Apparatus and method for cooling semiconductor device
JP2016121865A (en) Cooling device and electronic apparatus with the same
EP0290212A2 (en) Cooling arrangement and method of monitoring its operation
JPS5965459A (en) Dipped evaporation cooling device
JPH1054680A (en) Operating liquid sealing method and operating liquid sealing device for heat pipe
TWI807318B (en) Electronic apparatus having immersion cooling system and operating method thereof
JPS583358Y2 (en) Boiling cooling device
JPS5627891A (en) Radiator
TWI828565B (en) Two-phase immersion cooling system, working fluid recovery device and method
JPH0423458A (en) Dip cooling apparatus
CN106964240A (en) Gas steam segregator for submerging liquid cooling system
JPS60253790A (en) Heat transfer device
JPS6049251B2 (en) Exhaust gas sampling probe
JPH06177296A (en) Cooling device
JPS606800Y2 (en) Adhering sodium removal equipment
WO2016103655A1 (en) Cooling device
TW201635450A (en) Method for thermal process in packaging assembly of semiconductor
JPS607745A (en) Vapor cooling device
JPS5928291Y2 (en) Safety devices in boiling cooling equipment