JPH0436229B2 - - Google Patents

Info

Publication number
JPH0436229B2
JPH0436229B2 JP15838286A JP15838286A JPH0436229B2 JP H0436229 B2 JPH0436229 B2 JP H0436229B2 JP 15838286 A JP15838286 A JP 15838286A JP 15838286 A JP15838286 A JP 15838286A JP H0436229 B2 JPH0436229 B2 JP H0436229B2
Authority
JP
Japan
Prior art keywords
glaze
inorganic powder
resistance
silicate glass
semiconductive inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15838286A
Other languages
Japanese (ja)
Other versions
JPS6314952A (en
Inventor
Toshio Nagano
Shigetoshi Imamura
Masahiko Shibatsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daitoo Kk
SHINO TOSEKI KK
Original Assignee
Daitoo Kk
SHINO TOSEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daitoo Kk, SHINO TOSEKI KK filed Critical Daitoo Kk
Priority to JP15838286A priority Critical patent/JPS6314952A/en
Publication of JPS6314952A publication Critical patent/JPS6314952A/en
Publication of JPH0436229B2 publication Critical patent/JPH0436229B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Finishing Walls (AREA)
  • Floor Finish (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、静電気の蓄積によるスパーク、電
撃、ゴミやホコリの付着を防止しなければならな
い空間の床や壁等に使用する導電性タイルに関す
る。 〔従来の技術〕 従来、例えばビニル系等の有機高分子系材料で
導電性タイルを形成していた。 〔発明が解決しようとする問題点〕 しかし、有機高分子系材料は耐火性、耐化学薬
品性、耐摩耗性に劣るため、例えば高温環境や有
機溶剤を使用する場所などでは使用できず、汎用
性において欠点があつた。 本発明の目的は、耐火性、耐化学薬品性、耐摩
耗性の全てにおいて優れた特性を有し、しかも、
静電気の蓄積防止に好適な導電性を、たとえ水な
どの液で濡れても確実に維持できる特性を有し、
極めて広範に使用できる導電性タイルを提供する
ことにある。 〔問題点を解決するための手段〕 本発明の特徴構成は、磁器質の板状本体の表面
に、ケイ酸塩ガラス質の釉を備えさせ、前記板状
本体及び釉を非吸水性に形成し、前記釉に半導電
性無機粉体を、一部が加熱溶解すると共に残部が
未溶解の状態で混入したことにあり、その作用効
果は次の通りである。 〔作用〕 つまり、板状本体が磁器質で釉がケイ酸塩ガラ
ス質であり、材料の全てがセラミツクスから成つ
ているから、耐火性、耐化学薬品性及び耐摩耗性
の全てにおいて前述の従来技術よりもはるかに優
れている。 半導電性無機粉体を一部が溶解すると共に残部
が未溶解の状態で釉に混入すると、ケイ酸塩ガラ
ス質の釉でありながら、静電気の蓄積防止に好適
な表面抵抗、例えば、104〜107Ωの表面抵抗を釉
に備えさせることができる。 磁器質の板状本体及びケイ酸塩ガラス質の釉を
いずれも非吸水性にしてあるから、たとえ水など
の液で導電性タイルの表面が濡れても導電性が変
化せず、静電気の蓄積防止に適切な導電性を確実
に維持できる。 〔発明の効果〕 その結果、耐火性、耐化学薬品性、耐摩耗性あ
るいは耐水性などが要求される場所においても、
良好な静電気の蓄積防止を確実に発揮させること
ができ、従来技術では適用できなかつた分野を含
めて広範囲に利用できる、汎用性において極めて
優れた導電性タイルを提供できるようになつた。 〔実施例〕 次に実施例を示す。 第1図に示すように、高温焼成により非吸水性
となる磁器質の材料で形成した板状本体1の表面
に、ケイ酸塩ガラス質の材料で加熱溶融により非
吸水性に形成した釉2を一体的に備えさせ、静電
気の蓄積を防止するためのセラミツク製の導電性
タイルを形成してある。 板状本体1の化学組成を次に例示する。
[Industrial Application Field] The present invention relates to conductive tiles used for floors, walls, etc. of spaces where sparks, electric shocks, and dirt and dust adhesion due to accumulation of static electricity must be prevented. [Prior Art] Conventionally, conductive tiles have been formed from organic polymeric materials such as vinyl. [Problems to be solved by the invention] However, organic polymer materials have poor fire resistance, chemical resistance, and abrasion resistance, so they cannot be used in high-temperature environments or places where organic solvents are used, and are not suitable for general-purpose use. I had a flaw in my sexuality. The purpose of the present invention is to have excellent properties in terms of fire resistance, chemical resistance, and wear resistance, and
It has the property of being able to reliably maintain its conductivity, which is suitable for preventing the accumulation of static electricity, even when wet with liquids such as water.
The object of the present invention is to provide a conductive tile that can be used in a very wide range of applications. [Means for Solving the Problems] The characteristic configuration of the present invention is that a silicate glass glaze is provided on the surface of a porcelain plate-like body, and the plate-like body and the glaze are made non-water absorbent. However, the semiconductive inorganic powder is mixed into the glaze in a state in which a part of the powder is heated and melted while the remaining part remains undissolved, and its effects are as follows. [Function] In other words, since the plate-like body is made of porcelain and the glaze is made of silicate glass, and all the materials are made of ceramics, they are superior to the conventional ones in terms of fire resistance, chemical resistance, and abrasion resistance. Much better than technology. When a part of the semiconductive inorganic powder is dissolved and the rest is mixed into the glaze in an undissolved state, although the glaze is made of silicate glass, it has a surface resistance suitable for preventing the accumulation of static electricity, e.g. 10 4 The glaze can be provided with a surface resistance of ˜10 7 Ω. Both the porcelain plate-like body and the silicate glass glaze are non-water-absorbing, so even if the surface of the conductive tile gets wet with liquid such as water, the conductivity will not change and static electricity will not accumulate. It is possible to reliably maintain appropriate conductivity for prevention. [Effects of the invention] As a result, even in places where fire resistance, chemical resistance, abrasion resistance, water resistance, etc. are required,
It has now become possible to provide an extremely versatile conductive tile that can reliably exhibit good static electricity accumulation prevention and can be used in a wide range of fields, including areas where conventional techniques could not be applied. [Example] Next, an example will be shown. As shown in FIG. 1, a glaze 2 made of a silicate glass material made of a silicate glass material to make it non-water absorbent by heating and melting is formed on the surface of a plate-like body 1 made of a porcelain material that becomes non-water absorbent by high-temperature firing. A ceramic conductive tile is formed to prevent the accumulation of static electricity. The chemical composition of the plate-like main body 1 is illustrated below.

【表】 板状本体1の焼成温度は1200〜1350℃程度であ
る。 釉2の化学組成を次にゼーゲル式で例示する。
[Table] The firing temperature of the plate-shaped main body 1 is about 1200 to 1350°C. The chemical composition of glaze 2 will be illustrated next using the Seegel formula.

【表】 尚、上記No.3及び5の釉は、釉表面を艶消しし
たマツト釉にでき、床タイルの場合のスリツプ防
止、又は、照明光の反射防止等に有効である。 釉2の加熱温度は1200〜1350℃程度である。 釉2の厚さは0.2〜0.7mmが、表面抵抗を適切に
し、かつ、不必要に厚くしない上で望ましい。 板状本体1及び釉2は、空気−水置換法による
吸水率測定で吸水率が0%であることが望まし
い。 釉2に半導電性無機粉体を、一部が加熱溶解す
ると共に残部が未溶解の状態で混入し、釉2の表
面抵抗を104〜107Ωにしてある。 半導電性無機粉体は、酸化スズ系や酸化鉄系の
群から選択された一種又は複数種であり、具体例
を次に示す。尚、酸化スズ系では、通常半導電性
無機粉体の混合物を予め仮焼して固溶体とする
が、仮焼を省略してもよい。
[Table] The above glazes No. 3 and 5 can be made into a matte glaze with a matte glaze surface, and are effective for preventing slips on floor tiles or preventing reflection of illumination light. The heating temperature of the glaze 2 is about 1200 to 1350°C. The thickness of the glaze 2 is desirably 0.2 to 0.7 mm in order to provide appropriate surface resistance and not make it unnecessarily thick. It is desirable that the plate-like main body 1 and the glaze 2 have a water absorption rate of 0% when measured by an air-water displacement method. A semiconductive inorganic powder is mixed into the glaze 2, with a part of the powder melted by heating and the rest remaining undissolved, so that the surface resistance of the glaze 2 is 10 4 to 10 7 Ω. The semiconductive inorganic powder is one or more types selected from the group of tin oxide and iron oxide, and specific examples thereof are shown below. In the case of tin oxide, a mixture of semiconductive inorganic powders is usually calcined in advance to form a solid solution, but the calcining may be omitted.

〔実験例〕[Experiment example]

次に実験例を示す。 実験 1 下記組成のケイ酸塩ガラス質の釉に対し、下記
組成の半導電性無機粉体の添加率を変化させ、釉
の表面抵抗の変化を調べ、第3図に示す結果を得
た。尚、釉の厚さは0.5mmである。 釉の組成: (K,Na)2O:0.3,CaO:0.4,MgO:0.3, Al2O3:0.4,SiO2:4.5 半導電性無機粉体の組成: SnO2:96,Sb2O3:4 上記結果から酸化スズ系の半導電性無機粉体の
添加率を20〜40重量%にすると、適切な表面抵抗
を得られることが判る。 実験 2 下記組成のケイ酸塩ガラス質の釉に対し、下記
組成の半導電性無機粉体の添加率を変化させ、釉
の表面抵抗の変化を調べ、第4図に示す結果を得
た。尚、釉の厚さは0.4mmである。 釉の組成: (K,Na)2O:0.4,CaO:0.3,MgO:0.3, Al2O3:0.9,SiO2:4.0 半導電性無機粉体の組成: Fe2O3:55,Cr2O3:35,TiO2:8,MnO2
2 上記結果から酸化鉄系の半導電性無機粉体の添
加率を30〜50重量%にすると、適切な表面抵抗を
得られることが判る。 実験 3 下記組成のケイ酸塩ガラス質の釉に対し、下記
組成の半導電性無機粉体を25重量%添加し、釉の
厚さを変化させ、釉の表面抵抗の変化を調べ、第
5図に示す結果を得た。 釉の組成: (K,Na)2O:0.3,CaO:0.5,MgO:0.2, Al2O3:0.5,SiO2:5.0 半導電性無機粉体の組成: SnO2:98,Sb2O3:2 上記結果から釉の厚さを0.2〜0.7mmにすると、
適切な表面抵抗を得られることが判る。 〔別実施例〕 次に別実施例を示す。 釉2に適当な着色や模様を施してもよく、ま
た、タイルは寸法、形状、その他において適当に
選定できる。 タイルの用途や釉2のアースの仕方等は不問で
あり、例えば手術室、可燃性ガスや溶剤の貯蔵
室、化学工場、紙や有機高分子シート等を巻取る
空間、爆発性微粉末を扱う空間、クリーンルー
ム、コンピユータルーム、半導体を扱う空間にお
いて、床、壁、天井などに使用する。
Next, an experimental example will be shown. Experiment 1 The addition rate of semiconductive inorganic powder having the following composition to a silicate glass glaze having the following composition was varied, and changes in the surface resistance of the glaze were investigated, and the results shown in FIG. 3 were obtained. The thickness of the glaze is 0.5mm. Composition of glaze: (K, Na) 2 O: 0.3, CaO: 0.4, MgO: 0.3, Al 2 O 3 : 0.4, SiO 2 : 4.5 Composition of semiconductive inorganic powder: SnO 2 : 96, Sb 2 O 3 :4 From the above results, it can be seen that an appropriate surface resistance can be obtained when the addition rate of the tin oxide semiconductive inorganic powder is 20 to 40% by weight. Experiment 2 The addition rate of semiconductive inorganic powder having the composition shown below was changed to a silicate glass glaze having the composition shown below, and the change in the surface resistance of the glaze was examined, and the results shown in FIG. 4 were obtained. The thickness of the glaze is 0.4mm. Composition of glaze: (K, Na) 2 O: 0.4, CaO: 0.3, MgO: 0.3, Al 2 O 3 : 0.9, SiO 2 : 4.0 Composition of semiconductive inorganic powder: Fe 2 O 3 : 55, Cr 2 O 3 : 35, TiO 2 : 8, MnO 2 :
2 From the above results, it can be seen that an appropriate surface resistance can be obtained when the addition rate of iron oxide semiconductive inorganic powder is 30 to 50% by weight. Experiment 3 25% by weight of semiconductive inorganic powder with the following composition was added to the silicate glass glaze with the following composition, the thickness of the glaze was changed, and changes in the surface resistance of the glaze were investigated. The results shown in the figure were obtained. Composition of glaze: (K, Na) 2 O: 0.3, CaO: 0.5, MgO: 0.2, Al 2 O 3 : 0.5, SiO 2 : 5.0 Composition of semiconductive inorganic powder: SnO 2 : 98, Sb 2 O 3 :2 From the above results, if the glaze thickness is set to 0.2 to 0.7 mm,
It can be seen that an appropriate surface resistance can be obtained. [Another Example] Next, another example will be shown. The glaze 2 may be appropriately colored or patterned, and the tiles may be appropriately selected in terms of size, shape, etc. The purpose of the tile and the method of grounding the glaze 2 do not matter; for example, operating rooms, storage rooms for flammable gases and solvents, chemical factories, spaces where paper or organic polymer sheets are rolled up, and areas where explosive fine powder is handled. Used on floors, walls, ceilings, etc. in spaces, clean rooms, computer rooms, and spaces where semiconductors are handled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す斜視図、第2図
は表面抵抗測定法の説明図である。第3図ないし
第5図は実験結果を示すグラフである。 1……板状本体、2……釉。
FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a surface resistance measuring method. Figures 3 to 5 are graphs showing experimental results. 1...Plate body, 2...Glaze.

Claims (1)

【特許請求の範囲】 1 磁器質の板状本体1の表面に、ケイ酸塩ガラ
ス質の釉2を備えさせ、前記板状本体1及び釉2
を非吸水性に形成し、前記釉2に半導電性無機粉
体を、一部が加熱溶解すると共に残部が未溶解の
状態で混入してある導電性タイル。 2 前記釉2の厚さが0.2〜0.7mmである特許請求
の範囲第1項に記載の導電性タイル。 3 前記半導電性無機粉体が、酸化スズ系及び酸
化鉄系の群から選択された一種又は複数種から成
る特許請求の範囲第1項又は第2項に記載の導電
性タイル。 4 前記釉2の表面抵抗が104〜107Ωである特許
請求の範囲第1項又は第2項に記載の導電性タイ
ル。
[Claims] 1. A glaze 2 made of silicate glass is provided on the surface of a plate-like body 1 made of porcelain, and the plate-like body 1 and the glaze 2 are provided with a glaze 2 made of silicate glass.
A conductive tile in which a semiconductive inorganic powder is mixed into the glaze 2 in a state in which a part of the powder is heated and dissolved and the remaining part is undissolved. 2. The conductive tile according to claim 1, wherein the glaze 2 has a thickness of 0.2 to 0.7 mm. 3. The conductive tile according to claim 1 or 2, wherein the semiconductive inorganic powder is one or more selected from the group consisting of tin oxide and iron oxide. 4. The conductive tile according to claim 1 or 2, wherein the glaze 2 has a surface resistance of 10 4 to 10 7 Ω.
JP15838286A 1986-07-04 1986-07-04 Conductive tile Granted JPS6314952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15838286A JPS6314952A (en) 1986-07-04 1986-07-04 Conductive tile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15838286A JPS6314952A (en) 1986-07-04 1986-07-04 Conductive tile

Publications (2)

Publication Number Publication Date
JPS6314952A JPS6314952A (en) 1988-01-22
JPH0436229B2 true JPH0436229B2 (en) 1992-06-15

Family

ID=15670492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15838286A Granted JPS6314952A (en) 1986-07-04 1986-07-04 Conductive tile

Country Status (1)

Country Link
JP (1) JPS6314952A (en)

Also Published As

Publication number Publication date
JPS6314952A (en) 1988-01-22

Similar Documents

Publication Publication Date Title
HIRASHIMA et al. Electrical Conductivity of TiO2‐V2O5‐P205 Glasses
US3658583A (en) Method for producing semi-conducting glaze compositions for electric insulators
JPH0436229B2 (en)
IE38408B1 (en) Semiconducitve glaze compositions
Johnson et al. Influence of minor additions on color and electrical properties of rutile
CN1693294B (en) Electrostatic-proof ceramics wall floor tile and preparation method thereof
JPS55113641A (en) Insulating glass composition
EP0981154B1 (en) Doping frit appropriate for the production of conductor ceramic enamels
ES2847312A1 (en) ANTI-STATIC PORCELAIN STONEWARE PRODUCT, COMPOSITION AND USE (Machine-translation by Google Translate, not legally binding)
GB1112765A (en) Improvements in or relating to semi-conducting ceramic glaze compositions
EP0530152B1 (en) A process for the manufacture of antistatic ceramic tiles with low water absorption
GB982600A (en) Improvements in and relating to glazes for ceramic articles
PT86741B (en) CERAMIC ELEMENT NOT GLASS ELECTRICAL CONDUCTOR IN PLATE FORM
JPS55126547A (en) Glass for bead
EP0882690A1 (en) Ceramic articles with conductive glaze
JP4473642B2 (en) Lining and lining method
JPS60246282A (en) Manufacture of electroconductive tile
KR940005098B1 (en) Composition of ceramic coating
Sakata et al. Electrical and optical properties of rf-sputtered amorphous V 2 O 5-CaO-MoO 3 films
Biffi et al. Ceramic glazes opacified with CaTiSiO5
JP4820959B2 (en) Functional ceramic
JP3061684B2 (en) Ceramic resistor
JPS6131418B2 (en)
AU597542B2 (en) Unglazed ceramic tile-shaped article
KR900000034B1 (en) Heat-resistance stove of cement compositions