JPH04355928A - Hetero-junction bipolar transistor - Google Patents

Hetero-junction bipolar transistor

Info

Publication number
JPH04355928A
JPH04355928A JP19398091A JP19398091A JPH04355928A JP H04355928 A JPH04355928 A JP H04355928A JP 19398091 A JP19398091 A JP 19398091A JP 19398091 A JP19398091 A JP 19398091A JP H04355928 A JPH04355928 A JP H04355928A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
emitter
film
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19398091A
Other languages
Japanese (ja)
Other versions
JP2742340B2 (en
Inventor
Hiroya Sato
浩哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19398091A priority Critical patent/JP2742340B2/en
Publication of JPH04355928A publication Critical patent/JPH04355928A/en
Application granted granted Critical
Publication of JP2742340B2 publication Critical patent/JP2742340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the surface re-coupling on the exposed base emitter junction interface peripheray thereby enabling a HBW to be miniaturized. CONSTITUTION:The title hetero-junction bipolar transistor composed of an emitter layer 3 comprising the first conductivity type the first semiconductor, a base layer 2 comprising the second conductivity type the second semiconductor in contact with the emitter layer 3 and in narrower band gap than that of the first semiconductor and a collector layer 1 comprising the first conductivity type the third semiconductor in contact with the base layer 2 and in wider band gap than that of the second semiconductor is provided with a sulfur single crystal film formed covering the exposed part of the junction interface periphery between the emitter layer 3 and the base layer 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はヘテロ接合バイポーラト
ランジスタ(HBT)に係り、特にエミッタの微細な高
性能化合物半導体HBTに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heterojunction bipolar transistor (HBT), and more particularly to a high-performance compound semiconductor HBT with a fine emitter.

【0002】0002

【従来の技術】HBTの昨今の進展につれ、高密度化の
ためにいわゆるエミッタアップ型ではエミッタサイズを
小さくする必要が生じている。素子が小さくなるに従っ
て、例えばメサエッチングによって露出するベースエミ
ッタ接合界面周縁でのキャリア再結合電流が無視できな
くなり、これがHBTの電流増幅率を制限するため、前
述のメサエッチングによって露出するベースエミッタ接
合界面周縁のパシベーションが必要となる。今までのと
ころ、このような接合界面周縁露出部のパシベーション
技術としては、Applied  Physics  
Letters,52(3)218(1988)に示さ
れるようなNa2S・9H2Oによる素子表面への膜形
成がある。
2. Description of the Related Art With the recent progress in HBTs, it has become necessary to reduce the emitter size in so-called emitter-up type devices in order to achieve higher density. As the device becomes smaller, carrier recombination current at the periphery of the base-emitter junction interface exposed by mesa etching cannot be ignored, and this limits the current amplification factor of HBT. Peripheral passivation is required. Up to now, as a passivation technology for the exposed peripheral part of the bonding interface, Applied Physics
There is a method of forming a film on the surface of an element using Na2S.9H2O as shown in Letters, 52(3) 218 (1988).

【0003】0003

【発明が解決しようとする課題】しかしながら、上述の
Na2S・9H2Oによる表面パシベーションは、(1
)吸水性が高く、特性が雰囲気中の水分に敏感である、
(2)Na2S・9H2O薄膜自体がイオン導電性をも
つ、(3)空気中では短時間しかその効果が持続しない
、等の問題点を持ち、実用化に際し、著しい障害となっ
ている。
[Problems to be Solved by the Invention] However, the above-mentioned surface passivation using Na2S.9H2O
) has high water absorption and properties are sensitive to moisture in the atmosphere,
(2) The Na2S.9H2O thin film itself has ionic conductivity, and (3) its effect lasts only for a short time in air. These problems pose significant obstacles to practical application.

【0004】本発明は、HBTの微細化を可能とするた
めに上記の問題点を解決した露出するベースエミッタ接
合界面周縁のパシベーション構造を有するHBTを提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an HBT having a passivation structure around the exposed base-emitter junction interface that solves the above-mentioned problems in order to enable miniaturization of the HBT.

【0005】[0005]

【課題を解決するための手段】本発明は、第1導電型の
第1半導体からなるエミッタ層と、該エミッタ層に接し
、前記第1半導体よりバンドギャップの狭い第2導電型
の第2半導体からなるベース層と、該ベース層に接し、
前記第2半導体よりバンドギャップの広い第1導電型の
第3半導体からなるコレクタ層とからなり、前記エミッ
タ層とベース層との接合界面周縁露出部を覆うように形
成された硫黄単層膜と、を具備してなるヘテロ接合バイ
ポーラトランジスタを提供してなるものである。
Means for Solving the Problems The present invention provides an emitter layer made of a first semiconductor of a first conductivity type, and a second semiconductor of a second conductivity type that is in contact with the emitter layer and has a narrower bandgap than the first semiconductor. a base layer consisting of; in contact with the base layer;
a collector layer made of a third semiconductor of a first conductivity type having a wider bandgap than the second semiconductor; The present invention provides a heterojunction bipolar transistor comprising the following.

【0006】上記硫黄単層膜は硫黄分子または硫黄原子
が一層だけ形成されてなる膜であり、好ましくは硫黄原
子が一層だけ形成されているものが良い。そして、硫黄
単層膜は露出した接合界面周縁の空乏層を覆うように形
成し、好ましくは、ベース・エミッタ・バイアスが0V
のときの空乏層幅以上の幅として空乏層領域を覆うよう
にするのが良い。
[0006] The above-mentioned sulfur monolayer film is a film in which only one layer of sulfur molecules or sulfur atoms is formed, preferably one in which only one layer of sulfur atoms is formed. Then, the sulfur single layer film is formed to cover the depletion layer around the exposed junction interface, and preferably the base emitter bias is 0V.
It is preferable that the width is greater than the depletion layer width when the depletion layer region is covered.

【0007】[0007]

【作用】エミッタ層とべース層との接合界面周縁露出部
を覆うように硫黄単層膜を形成すると、硫黄単層膜はパ
シベーション膜として働き、表面再結合センタを減らし
てキャリアの表面再結合電流を抑制する。そして、この
キャリア再結合電流は空乏層領域において問題となるの
で、露出した接合界面周縁の空乏層を覆う硫黄単層膜が
実質的にパッシベーションの効果を奏する。また、分子
または原子が多層形成されてなる多層硫黄膜は不安定で
あり、硫黄原子の離脱による経時変化が生じ易いのに比
べて、硫黄単層膜は安定で、経時変化が少なく、また絶
縁性を悪くすることもない。
[Operation] When a sulfur single layer film is formed to cover the exposed periphery of the bonding interface between the emitter layer and the base layer, the sulfur single layer film acts as a passivation film, reduces the number of surface recombination centers, and promotes the surface recombination of carriers. Suppress current. Since this carrier recombination current becomes a problem in the depletion layer region, a single sulfur film covering the depletion layer around the exposed junction interface substantially has a passivation effect. In addition, a multilayer sulfur film, which is made up of multiple layers of molecules or atoms, is unstable and tends to change over time due to the detachment of sulfur atoms, whereas a single-layer sulfur film is stable, does not change over time, and is an insulating material. It doesn't make you feel bad either.

【0008】[0008]

【実施例】【Example】

実施例1 以下、本発明の実施例を図面を参照しながら説明する。 Example 1 Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1(a)乃至(c)は本発明の一実施例
であるAlGaAs/GaAsのnpn型HBTを製造
するための主要なプロセスを示す図である。
FIGS. 1(a) to 1(c) are diagrams showing the main process for manufacturing an AlGaAs/GaAs npn-type HBT according to an embodiment of the present invention.

【0010】先ず、図1(a)の如く、n+−GaAs
基板4の一主面上に、Siを5×1015cm−3ドー
プしたn+GaAsコレクタ層1、Beを5×1013
cm−3ドープしたpGaAsベース層2、及びSiを
2×1017cm−3ドープしたn−AlGaAsエミ
ッタ層3とをMBE装置を用いて成長させる。次いで、
図1(b)の如く、リン酸系エッチャントによりn−A
lGaAsエミッタ層3をメサ形成し、続いて、エミッ
タ層3上及び基板4裏面上にAuGe/Ni/Auから
なるn層コンタクト電極5を形成し、また前記メサ形成
により露出したベース層2上にAuZn/Auからなる
p層コンタクト電極6を形成した後、水素雰囲気中、4
20℃で2秒間アロイすることによってコンタクトを形
成する。
First, as shown in FIG. 1(a), n+-GaAs
On one main surface of the substrate 4, an n+ GaAs collector layer 1 doped with 5 x 1015 cm-3 of Si and a 5 x 1013 Be doped layer are formed.
A pGaAs base layer 2 doped with cm-3 and an n-AlGaAs emitter layer 3 doped with 2x1017 cm-3 of Si are grown using an MBE apparatus. Then,
As shown in Figure 1(b), n-A is
An lGaAs emitter layer 3 is formed in a mesa, and then an n-layer contact electrode 5 made of AuGe/Ni/Au is formed on the emitter layer 3 and the back surface of the substrate 4, and an n-layer contact electrode 5 made of AuGe/Ni/Au is formed on the base layer 2 exposed by the mesa formation. After forming the p-layer contact electrode 6 made of AuZn/Au, 4
Contacts are formed by alloying for 2 seconds at 20°C.

【0011】次ぎにNH4OH/H2O(1:2)液に
5秒間、HNO3/H2O(1:19)液に2秒間浸し
た後、直ちに約8%の過剰Sを含む(NH4)2SX溶
液に浸し(これは半導体表面の自然酸化膜を除去する働
きをする)、メサ状のエミッタ層3とベース層2との接
合界面周縁露出部を覆うように硫黄膜(図示せず)を形
成する。この硫黄膜はエミッタ層3、ベース層2の露出
部全面を覆っている。続いて徐々に純水を加えて溶液を
希釈した後、基板4を取り出す。次いで、図1(c)の
如く基板4の一主面上に耐水性保護膜としてポリイミド
7をスピンコートする。この後、通常のホトリソグラフ
ィと酸素プラズマを用いたエッチングによって各電極5
、6へのコンタクトホールを開口する。こうして形成し
たHBTを試料Aとする。
Next, it was immersed in a NH4OH/H2O (1:2) solution for 5 seconds and a HNO3/H2O (1:19) solution for 2 seconds, and then immediately immersed in a (NH4)2SX solution containing about 8% excess S. (This serves to remove the natural oxide film on the semiconductor surface.) A sulfur film (not shown) is formed to cover the exposed peripheral edge of the mesa-shaped emitter layer 3 and base layer 2 bonding interface. This sulfur film covers the entire exposed portions of the emitter layer 3 and base layer 2. Subsequently, after diluting the solution by gradually adding pure water, the substrate 4 is taken out. Next, as shown in FIG. 1(c), polyimide 7 is spin-coated on one main surface of the substrate 4 as a water-resistant protective film. After this, each electrode 5 is etched using ordinary photolithography and oxygen plasma.
, 6 are opened. The HBT thus formed is referred to as sample A.

【0012】半導体表面3を(NH4)2SX溶液処理
の際、上述のように徐々に溶液濃度を低下させるか、ま
たは、処理後真空にさらすことによって、最初多層とな
っている硫黄膜の表面の硫黄原子が徐々に除去されてゆ
き、最終的に安定で最も経時変化の少ない硫黄単原子層
膜となる。これは、As−S,Ga−Sの結合がS−S
の結合よりも強いためである。
When the semiconductor surface 3 is treated with the (NH4)2SX solution, the surface of the sulfur film, which is initially multilayered, is gradually reduced as described above or exposed to vacuum after the treatment. The sulfur atoms are gradually removed, and the final result is a monoatomic sulfur layer that is stable and shows the least change over time. This means that the bonds of As-S and Ga-S are S-S
This is because the bond is stronger than that of .

【0013】実施例2 上記同様に電極を形成した後、NH4OH/H2O(1
:2)液に5秒間、HNO3/H2O(1:19)液に
2秒間浸し、直ちに0.1g/molのP2S5を含む
NH4OH溶液に浸してメサ状のエミッタ層3、ベース
層2及び接合界面周縁の露出部に実施例1と同様に硫黄
単原子層膜(図示せず)を形成する。このとき、硫黄単
原子層膜とするには上記同様に徐々に溶液濃度を低下さ
せるか、または、処理後真空にさらせば良い。尚、この
処理の程度により単分子層膜も形成される。続いて基板
4を取り出し、図1(c)の如く、基板4の一主面上に
耐水性保護膜としてポリイミド7をスピンコートする。 この後、通常のホトリソグラフィと酸素プラズマを用い
たエッチングによって各電極5、6へのコンタクトホー
ルを開口する。こうして形成したHBTを試料Bとする
Example 2 After forming electrodes in the same manner as above, NH4OH/H2O (1
:2) immerse the mesa-shaped emitter layer 3, base layer 2, and bonding interface in the mesa-shaped emitter layer 3, base layer 2, and bonding interface. A sulfur monoatomic layer film (not shown) is formed on the exposed peripheral portion in the same manner as in Example 1. At this time, in order to form a sulfur monoatomic layer film, the solution concentration may be gradually lowered as described above, or the solution may be exposed to vacuum after treatment. Note that a monomolecular layer film may also be formed depending on the degree of this treatment. Subsequently, the substrate 4 is taken out, and polyimide 7 is spin-coated as a water-resistant protective film on one main surface of the substrate 4, as shown in FIG. 1(c). Thereafter, contact holes to each of the electrodes 5 and 6 are opened by ordinary photolithography and etching using oxygen plasma. The HBT thus formed is referred to as sample B.

【0014】(NH4)2SX溶液  、及びP2S5
を含む溶液は化合物半導体表面に接触すると、表面再結
合センタとして作用する化合物半導体表面上の自然酸化
膜を除去し硫黄の単層膜を形成するものである。この硫
黄単層膜はNaS・9H20による膜に比べて安定であ
るが、上述の如く、更に耐水性保護膜を設けることによ
り、より素子の安定性を向上することができる。
(NH4)2SX solution and P2S5
When the solution containing sulfur comes into contact with the surface of a compound semiconductor, it removes the native oxide film on the surface of the compound semiconductor that acts as a surface recombination center and forms a single layer of sulfur. This sulfur single layer film is more stable than a film made of NaS.9H20, but as described above, by further providing a water-resistant protective film, the stability of the element can be further improved.

【0015】比較例1 上記同様に電極を形成した後、NH4OH/H2O(1
:2)液に5秒間、HNO3/H2O(1:19)液に
2秒間浸し、直ちにNa2S・9H2O水溶液を基板4
の一主面上にスピンコートした後、これを乾燥させて保
護膜としたものを試料Cとした。
Comparative Example 1 After forming an electrode in the same manner as above, NH4OH/H2O (1
:2) Immerse the substrate 4 in the solution for 5 seconds and in the HNO3/H2O (1:19) solution for 2 seconds.
Sample C was obtained by spin coating on one main surface of the film and drying it to form a protective film.

【0016】比較例2 上記同様に電極を形成した後、NH4OH/H2O(1
:2)液に5秒間、HNO3/H2O(1:19)液に
2秒間浸し、直ちに基板4を水洗し、続いて該基板4の
一主面上に耐水性保護膜としてポリイミド7をスピンコ
ートし、通常のホトリソグラフィと酸素プラズマを用い
たエッチングによって各電極5,6へのコンタクトホー
ルを開口して試料Dとした。
Comparative Example 2 After forming an electrode in the same manner as above, NH4OH/H2O (1
:2) Immerse the substrate 4 in the solution for 5 seconds and in the HNO3/H2O (1:19) solution for 2 seconds, immediately wash the substrate 4 with water, and then spin-coat polyimide 7 as a water-resistant protective film on one main surface of the substrate 4. Then, contact holes to each of the electrodes 5 and 6 were opened by ordinary photolithography and etching using oxygen plasma to obtain sample D.

【0017】図2は上記試料A,B,C,Dを作製し、
10日間大気中で保存した後に、HBTの電流増幅率β
のエミッタサイズ依存性を測定した結果を示すものであ
る。同図から明らかなように、試料C,Dではエミッタ
サイズが小さくなると急激に電流増幅率βが低下するの
に対し、試料A,Bでは電流増幅率βの低下はたいへん
少ない。このようにエミッタ層とべース層との接合界面
周縁に硫黄単原子層膜を形成することにより、表面再結
合電流を減らすことができ、よってより微細なHBT構
造においても高い電流増幅率を維持することが可能とな
る。
FIG. 2 shows the above samples A, B, C, and D prepared.
After storing in the atmosphere for 10 days, the current amplification factor β of HBT
This figure shows the results of measuring the emitter size dependence of . As is clear from the figure, in Samples C and D, the current amplification factor β decreases rapidly as the emitter size becomes smaller, whereas in Samples A and B, the decrease in the current amplification factor β is very small. By forming a sulfur monolayer film around the junction interface between the emitter layer and the base layer in this way, it is possible to reduce the surface recombination current, thereby maintaining a high current amplification factor even in a finer HBT structure. It becomes possible to do so.

【0018】上記実施例において、AlGaAs/Ga
As系のHBTを用いて説明したが、InGaAs/I
nAlAs系、InGaAs/InP系等他の格子整合
系のもの、またInGaAs/AlGaAs系等格子不
整合系のものであっても良く、上記実施例に限定されな
い。
In the above embodiment, AlGaAs/Ga
Although the explanation was made using As-based HBT, InGaAs/I
Other lattice-matched systems such as nAlAs and InGaAs/InP systems, or equilattice-mismatched InGaAs/AlGaAs systems may be used, and the present invention is not limited to the above embodiments.

【0019】更に、HBTの構造についても、エミッタ
のみのバンドギャップが大きいシングルヘテロバイポー
ラトランジスタだけでなく、コレクタにもワイドバンド
ギャップ材料を用いたダブルヘテロバイポーラトランジ
スタでも良い。
Furthermore, regarding the structure of the HBT, it is possible to use not only a single hetero bipolar transistor with a large bandgap only for the emitter, but also a double hetero bipolar transistor using a wide bandgap material for the collector as well.

【0020】また、耐水性保護膜はポリイミドに限られ
るものではなく、SiN,SiO2等他の保護膜を用い
ても良い。
Furthermore, the water-resistant protective film is not limited to polyimide, and other protective films such as SiN and SiO2 may also be used.

【0021】さらに、上記実施例に示した表面処理以外
に、例えば、図1(b)のHBTをNa2S・9H2O
に浸した後、水洗してNa2Sを除去して硫黄単層膜を
残す方法、また、図1(b)のHBTをNa2S・9H
2Oに浸した後、水洗してNa2Sを除去し、さらによ
り完全な硫黄単原子層膜を形成するために上記実施例の
処理をさらに行う方法等を用いる事も出来る。
Furthermore, in addition to the surface treatment shown in the above embodiment, for example, the HBT shown in FIG. 1(b) may be treated with Na2S.9H2O.
There is also a method in which the HBT in Figure 1(b) is soaked in water and then washed with water to remove Na2S and leave a sulfur monolayer film.
It is also possible to use a method of immersing the film in 2O, washing with water to remove Na2S, and then further performing the treatment of the above embodiment in order to form a more complete sulfur monoatomic layer film.

【0022】[0022]

【発明の効果】本発明に係るパッシベーション構造は、
雰囲気中の水分に対して安定で、かつ大気中での経時変
化が少なくその効果が持続され、さらにパッシベーショ
ン膜自体による漏れ電流の心配のないパッシベーション
構造であるので、電流増幅特性を犠牲にする事なく、H
BTの微細化が可能となる。そして、これにより高周波
、高集積HBTの実用化が可能となる。
[Effect of the invention] The passivation structure according to the present invention has
It is stable against moisture in the atmosphere, has a long-lasting effect with little change over time in the atmosphere, and has a passivation structure that eliminates the risk of leakage current due to the passivation film itself, so there is no need to sacrifice current amplification characteristics. Without, H
It becomes possible to miniaturize BT. This makes it possible to put high frequency, highly integrated HBTs into practical use.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例であるAlGaAs/GaA
sのnpn型HBTを製造するための主要なプロセスを
示す図である。
FIG. 1: AlGaAs/GaA, which is an embodiment of the present invention.
FIG. 2 is a diagram illustrating the main processes for manufacturing an npn-type HBT.

【図2】10日間大気中で保存した後に、HBTの電流
増幅率βのエミッタサイズ依存性を測定した結果を示す
図である。
FIG. 2 is a diagram showing the results of measuring the emitter size dependence of the current amplification factor β of the HBT after being stored in the atmosphere for 10 days.

【符号の説明】[Explanation of symbols]

1...コレクタ層      2...ベース層  
    3...エミッタ層 4...基板            5...n層コ
ンタクト電極6...p層コンタクト電極      
  7...耐水性保護膜
1. .. .. Collector layer 2. .. .. base layer
3. .. .. Emitter layer 4. .. .. Substrate 5. .. .. N-layer contact electrode 6. .. .. p-layer contact electrode
7. .. .. Water resistant protective film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  第1導電型の第1半導体からなるエミ
ッタ層と、該エミッタ層に接し、前記第1半導体よりバ
ンドギャップの狭い第2導電型の第2半導体からなるベ
ース層と、該ベース層に接し、前記第2半導体よりバン
ドギャップの広い第1導電型の第3半導体からなるコレ
クタ層と、前記エミッタ層とベース層との接合界面周縁
露出部を覆うように形成された硫黄単層膜と、を具備し
てなることを特徴とするヘテロ接合バイポーラトランジ
スタ。
1. An emitter layer made of a first semiconductor of a first conductivity type; a base layer made of a second semiconductor of a second conductivity type and in contact with the emitter layer and having a narrower bandgap than the first semiconductor; a collector layer made of a third semiconductor of a first conductivity type having a wider bandgap than the second semiconductor; and a sulfur single layer formed to cover an exposed peripheral edge of the bonding interface between the emitter layer and the base layer. A heterojunction bipolar transistor comprising: a film;
JP19398091A 1990-08-03 1991-08-02 Heterojunction bipolar transistor Expired - Fee Related JP2742340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19398091A JP2742340B2 (en) 1990-08-03 1991-08-02 Heterojunction bipolar transistor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-207002 1990-08-03
JP20700290 1990-08-03
JP19398091A JP2742340B2 (en) 1990-08-03 1991-08-02 Heterojunction bipolar transistor

Publications (2)

Publication Number Publication Date
JPH04355928A true JPH04355928A (en) 1992-12-09
JP2742340B2 JP2742340B2 (en) 1998-04-22

Family

ID=26508222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19398091A Expired - Fee Related JP2742340B2 (en) 1990-08-03 1991-08-02 Heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JP2742340B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511095A (en) * 2002-12-17 2006-03-30 レイセオン・カンパニー Sulfide sealing passivation technique
JP2014518449A (en) * 2011-06-14 2014-07-28 サントル・ナショナル・ドゥ・ラ・レシェルシュ・サイエンティフィーク−セ・エン・エール・エス− Method of chemically passivating the surface of a product made of III-V semiconductor material and the product obtained by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511095A (en) * 2002-12-17 2006-03-30 レイセオン・カンパニー Sulfide sealing passivation technique
JP2014518449A (en) * 2011-06-14 2014-07-28 サントル・ナショナル・ドゥ・ラ・レシェルシュ・サイエンティフィーク−セ・エン・エール・エス− Method of chemically passivating the surface of a product made of III-V semiconductor material and the product obtained by the method
US9514961B2 (en) 2011-06-14 2016-12-06 Centre National de la Recherche Scientifique—CNRS Method for chemically passivating a surface of a product made of a III-V semiconductor material and the product obtained by such a method

Also Published As

Publication number Publication date
JP2742340B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JPH03266439A (en) Substrate of group iii-v compound semiconductor heterostructure and semiconductor device of group iii-v compound heterostructure
JPH06104273A (en) Semiconductor device
JPS6010775A (en) Hetero-junction type bipolar semiconductor device
JPH04355928A (en) Hetero-junction bipolar transistor
JP2851044B2 (en) Method for manufacturing semiconductor device
JP2000156382A (en) Semiconductor device and its manufacture
US5266830A (en) Hetero junction bipolar transistor with reduced surface recombination current
JP3084820B2 (en) Compound semiconductor device
US5153692A (en) Semiconductor device
JP2890729B2 (en) Bipolar transistor and method of manufacturing the same
JP2830409B2 (en) Bipolar transistor and method of manufacturing the same
US11211480B2 (en) Heterojunction bipolar transistor
JP2001298031A (en) Junction-type bipolar transistor, its manufacturing method, and semiconductor integrated circuit device
JPH1154522A (en) Manufacture of heterojunction bipolar transistor
JP2867472B2 (en) Semiconductor device
JP3399673B2 (en) Heterojunction bipolar transistor and method of manufacturing the same
JP2615983B2 (en) Method for manufacturing heterojunction bipolar transistor
JPH02188964A (en) Semiconductor device and manufacture thereof
JP2976664B2 (en) Manufacturing method of bipolar transistor
EP0387010A2 (en) Hetero-junction bipolar transistor
JPH11121463A (en) Semiconductor device
JPH02189931A (en) Bipolar transistor
JP3321229B2 (en) Semiconductor device
JPH05226376A (en) Semiconductor device and manufacture thereof
JP3534370B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees