JPH0435541B2 - - Google Patents

Info

Publication number
JPH0435541B2
JPH0435541B2 JP60090571A JP9057185A JPH0435541B2 JP H0435541 B2 JPH0435541 B2 JP H0435541B2 JP 60090571 A JP60090571 A JP 60090571A JP 9057185 A JP9057185 A JP 9057185A JP H0435541 B2 JPH0435541 B2 JP H0435541B2
Authority
JP
Japan
Prior art keywords
alloy
weight
cao
desulfurization
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60090571A
Other languages
Japanese (ja)
Other versions
JPS61250125A (en
Inventor
Tooru Degawa
Tohei Otoya
Kenichi Kusumoto
Makoto Ebata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen KK
Original Assignee
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP9057185A priority Critical patent/JPS61250125A/en
Application filed by Mitsui Zosen KK filed Critical Mitsui Zosen KK
Priority to GB8609901A priority patent/GB2174716B/en
Priority to FR868606058A priority patent/FR2587367B1/en
Priority to CN90106761.XA priority patent/CN1017067B/en
Priority to CN86102879.1A priority patent/CN1010105B/en
Publication of JPS61250125A publication Critical patent/JPS61250125A/en
Priority to US06/937,426 priority patent/US4729787A/en
Priority to US07/010,598 priority patent/US4820485A/en
Priority to GB8901401A priority patent/GB2212512B/en
Priority to GB8901402A priority patent/GB2212513B/en
Priority to US07/441,600 priority patent/US4999053A/en
Priority to US07/702,347 priority patent/US5268141A/en
Publication of JPH0435541B2 publication Critical patent/JPH0435541B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は硫黄含有量の極めて少ないFe基、Co
基、Ni基合金の製造方法に関する。 [従来の技術] Fe基、Co基、Ni基合金は、機械的性質、耐熱
性ならびに耐食性等において優れた性質を有する
ものが多い。ところが残留酸素及び硫黄が多いと
加工性が低下するので、残留酸素及び硫黄を十分
に少なくすることが必要である。 真空又はアルゴンガス雰囲気下での、精錬中の
脱酸、脱硫について、特公昭54−849号、特公昭
54−24688及び特開昭52−58010号に、それぞれ
CaO(酸化カルシウウム)含有率の高い塩基性耐
火物で裏付けされた溶解炉又は取鍋を用い、真空
又はアルゴンガス雰囲気中で溶湯中にアルミニウ
ム(Al)またはその合金を添加することを特徴
とする脱酸、脱硫方法が提案されている。この原
理は、Alの添加により耐火物中のCaOを還元し、
還元生成物であるカルシウム(Ca)により溶湯
中の硫黄(S)、酸素(O)を除去するものであ
る。なお、特開昭57−200513には、繰返し使用す
ると炉壁が次第に酸硫化物により表面は蓄積汚染
されるので、溶剤を併用添加して炉壁汚染の防止
を図ることが記載されている。 [発明が解決しようとする問題点] 上記従来の方法では、一応の脱酸、脱硫が可能
であるが、合金の精錬分野においては、より高い
脱酸、脱硫能が要求されており、より優れた精錬
技術の出現が望まれている。 [問題点を解決するための手段] 本発明は、上記従来法に比し、格段に優れた脱
硫、脱酸効果、特に脱硫効果を得るべくなされた
ものであり、 MgOを15〜55重量%含み、かつCaOを15重量
%以上含有し、SiO2含有率が1重量%以下であ
るマグネシア質の耐火物をもつて裏付けされた溶
解炉又は容器内のFe基、Co基又はNi基の合金溶
湯中に、真空又は非酸化性雰囲気でAlを存在せ
しめることにより、Mgを0.03〜0.0001重量%、
Caを0.02〜0.0001重量%、硫黄を0.0015重量%以
下、酸素を0.002重量%以下、窒素を0.003重量%
以下含有する合金を得ることを特徴とする高純度
超極低硫黄合金の製造方法、 を要旨とするものである。 なお、以下において%重量%を表わす。 以下本発明の構成について詳細に説明する。 本発明の方法においては、MgOを15〜55%含
み、CaOを15%以上含有し、SiO2含有率が1%
以下であるマグネシア質耐火物をもつて裏付けさ
れた溶解炉又は取鍋等の容器内の、Fe基、Co基
又はNi基の合金溶湯中に、真空又は非酸化性雰
囲気でAlを存在せしめる。 溶湯中のAlの一部は、直接に、溶湯中の酸素
と結合して脱酸を行なうが、Alの他の部分は耐
火物表面のMgO、CaOと反応して 2Al+3MgO→Al2O3+3Mg 2Al+3CaO→Al2O3+3Ca となり、Mg、CaとAl2O3が生じる。このMg、
Caは脱酸、脱硫反応し、MgO、CaO、MgS、
CaSとなる。 一方、Al2O3は、 Al2O3+3CaO→3CaO・Al2O3 なる反応により3CaO・Al2O3(以下C3Aというこ
とがある。)を主体とするカルシウムアルミネー
トを形成する。このC3Aは溶湯の脱硫能が高く、
C3Aによつても脱硫が進行する。 このように、Alにより脱酸が、またAlの還元
作用により生じた活性なMg、Ca、C3Aにより脱
酸と脱硫が行われる。 この反応は、極めて急速に進行し、例えばAl
を溶湯中に存在せしめた後、数分程度で脱硫、脱
酸がほぼ終了する。 また、時間の経過と共に、次第に溶湯中のN量
が減少してくる。これはCa等の蒸発(沸騰)等
に伴つてNも溶湯から離脱するためである。この
脱窒速度は、アルゴン又は真空雰囲気下では、脱
酸、脱硫の進行に従つて著しく向上する。 本発明において、溶解炉又は容器の裏付け材を
MgO15〜75%、CaO15%以上を含む組成の耐火
物で構成した理由について説明する。 一般に、CaO質耐火物は、高温でも安定であ
り、各種の反応性の高い合金溶湯の溶解に用いら
れていることは周知である。また、このCaO質耐
火物が内張りされた容器中の溶湯にAl及び/又
はAl合金を添加すると、AlによつてCaOが還元
されCaが生じ、脱酸、脱硫反応が進行すること
も公知である。 ところが、本発明者らが更に検討を重ねたとこ
ろ、前記反応式の如く、MgOとCaOとが共存す
る炉壁においては、Al及び/又はAl合金を添加
するとCaの他にMgも生じる様になり、一層強力
な脱酸、脱硫が行われることが見出された。な
お、必要に応じてアルカリ金属、アルカリ土類金
属の酸化物、炭酸塩、ハロゲン化物、炭化物、ア
ルミナ等の溶剤を5%以下添加する理由は、特開
昭57−200513と全く同様であり、繰返し使用する
と炉壁に酸硫化物が表面に付着して蓄積汚染する
ため、溶剤を使用して蓄積汚染を防止するためで
ある。 なお、第1図及び第2図は、CaO−MgO系裏
付け耐火材中のMgO含有率を変えた場合の脱硫
特性の測定結果(溶湯中のAlは0.5%)を示すも
のであるが、図示のごとく、MgOが15〜55%と
りわけ20〜50%含まれる場合には、極めて強力な
脱硫反応が行われることが明瞭に認められる。な
お、第2図には残留Alの分析値も併せて示した
が、反応時間の経過に伴うAl量の低下が見られ、
前述のMgOとAlとの反応の進行が確認される。 MgO以外の残部は組成としては、CaOが必須
である。CaOは、それ自体Alによつて還元され、
Caを生じさせると共に、MgOと共存することに
よつてMgOの還元反応を促進する。CaOの含有
率は、炉材全体の15%以上であり、特に40以上が
好ましい。 CaO含有率が15%未満とりわけ40%未満の場合
には、耐火物中のCaOは他の酸化物と強固に結合
しているため、CaOの活性が少なく、アルミニウ
ムにより還元され難い。これに対し、15%以上と
りわけ40%以上のCaOを有する耐火物中のCaOは
活性が大でアルミニウムによつてよく還元するこ
とができる。 また、CaOを15%以上とりわけ40%以上含む耐
火物は、Al2O3やSiO2等の酸化物と反応し易く、
従つて、溶湯中の酸化物を吸収し、酸化物介在量
を大幅に減少させる。またCaOを15%以上とりわ
け40%以上含む耐火物はC、Ti、Zr等に対する
安定性が高いので、高温溶解が可能となる。な
お、この耐火物は、SiO2含有率が1%以下とり
わけ0.5%未満のものが好適である。耐火物中の
SiO2が過度に多いと、添加されたAlが耐火物中
のSiO2と反応し、無駄に消費されると共に、溶
湯が酸化性雰囲気となり、脱硫反応が進行しにく
くなる。 このような耐火材としては、例えばCaO又は
MgOを富化したドロマイト耐火材等が好適に用
いられる。 本発明においては、溶湯中に、Alと共にB及
びアルカリ金属からなる群から選ばれる少なくと
も1種あるいは、これらに加えてCaを共存せし
めても良い。アルカリ金属としてはNa、K、Li
が挙げられる。 溶湯中に存在するCa、B、Na、K、Liは、
CaO、B2O3、Na2O、K2O、Li2Oとなり、耐火物
壁に Al2O3−CaO−B2O3 Al2O3−CaO−B2O3−Na2O Al2O3−CaO−B2O3−K2O 等の低融点組成物を形成し、脱酸、脱硫速度を増
大させる。 即ち、Ca、B、Na、K、Li等の酸化物は炉壁
表面に形成されたC3A等のカルシウムアルミネー
ト組成物の融点を下げその中の化合物、原子もし
くはこれらのイオン(例えばS2-など)の拡散を
容易とし、脱酸、脱硫反応を加速するものであ
る。 またCaO、B2O3、アルカリ金属の酸化物、と
りわけB2O3、アルカリ金属酸化物は、スラグに
取り込まれたときに該スラグの融点をも低下さ
せ、かつその粘度を低下させる。これにより、該
スラグ中へのS2-等のイオンやその他の原子、化
合物の拡散係数を大きくし、脱硫速度、脱硫能が
大幅に向上される。 Al、B及びアルカリ金属は、製造されるFe、
Co、Ni基合金中の残留量が、 Al:0.01〜20% B、アルカリ金属及び Mg、Ca以外のアルカリ土類金属:合量で0.001
〜10% となるように溶湯中に存在せしめるのが好まし
い。 本発明において、合金中のAl残留量を0.01〜20
%の範囲とするのが好ましい理由は、アルミニウ
ム残留量0.01%未満では十分な脱酸は行なわれな
いのみならず、Caの生成も殆ど行なわれず、Ca
による脱硫、脱酸も殆ど行なわれず、かつCaに
よる十分な脱硫、脱酸の条件である仕上合金中の
残留カルシウム量が0.0001%以上にならないから
である。一方上限としては、アルミニウムが20%
を超える合金は実用性に乏しいからである。 B残留量は0.001%以下ではその存在量が少な
すぎ、B存在による効果が少なく、また10.0%よ
り多いと合金が脆くなる。特に好ましいB残留量
は0.005〜3%である。 Al、B、アルカリ金属及びMg、Ca以外のアル
カリ土類金属を溶湯中に添加する場合には、これ
らを合金形態で添加しても、別々に添加しても良
く、その添加の形態に特に制限はない。Al、B
については、これらを別々に添加することも可能
であるが、アルカリ金属、アルカリ土類金属は反
応性が高く取り扱い性に問題を有することから、
合金の形態で添加するのが好ましい。単体、合金
いずれの場合においても、線状体、棒状体、ブロ
ツク、粉体の様々な形で添加可能である。 本発明の方法により得られる合金のMg及びCa
残留量は、各々、Mg残留量300〜1ppm、好まし
くは30〜5ppm、Ca残留量200〜1ppm、好ましく
は100〜5ppmとする。Mg残留量、Ca残留量が少
な過ぎると脱酸、脱硫、脱窒効果が低く、多過ぎ
ると合金が脆くなるなどの欠点を生じる。 なお、本発明においては、溶湯に、更に希土類
元素を、得られる合金に200ppm以下の範囲で該
希土類元素が残留するように添加しても良い。こ
のような本発明の方法により得られる合金は、硫
黄15ppm以下、特に10ppm以下、酸素20ppm以
下、特に15ppm以下、窒素30ppm以下、特に
20ppm以下、の極めて清浄な合金である。 本発明方法の対象とする合金は、Fe基、Co基
又はNi基の合金である。 Fe基の合金としては、普通元素C、Si、Mn、
P、Sを含有し、Cを2%以下含有する炭素鋼
と、特殊な性質を与えるため上記普通元素の他に
Ni、Cr、Co、W、Mo、Al等の特殊元素はもと
より、普通元素に属するものでも、普通元素の含
有範囲を超え、特殊な性質の付加を目的として加
えられている合金鋼が代表的である。合金鋼のう
ち、低合金鋼としては、高力低合金鋼、高温高圧
低合金鋼、石油工業用低合金鋼があり、中合金鋼
にはクロム鋼、ニツケル鋼等があり、高合金鋼に
は高クロムステンレス鋼、高クロム−ニツケルス
テンレス鋼等がある。 ニツケル基合金としては、ニツケルを主な構成
成分として含有している主として耐熱耐食性合金
や磁性合金等が挙げられ、これに属する合金とし
ては、Ni−Cu合金(モネルメタル)、Ni−Cr−
Fe系合金(インコネル)、Ni−Mo系合金(ハス
テロイA、B)、Ni−Mo−Cr−W系合金(ハス
テロイC)、Ni−Si系合金(ハステロイD)、Ni
−Ta系合金等がある。 Co基合金としては、Coを主な構成成分として
含有している耐熱合金、耐食性合金、超高合金、
磁性合金等であり、これに属する合金には、Co
−Cr−W−C系合金(ステライト)、Co−Fe系
合金(ductile cobalt)、Co−Cr−Ni−Mo
(Eligiloy合金)、Co−Cr−Ni−W(Hayness)、
Vicalloy、Renendur、Permendur等の磁性材料
用Co合金、或はNi3Tiの析出を利用したCo基超
合金等が挙げられる。 なお、本発明の製造方法において、非酸化性雰
囲気中とは、開放炉又は密閉炉中の溶湯にアルゴ
ンガス又は窒素ガス、Heガス等の非酸化性ガス
を吹込むことにより溶湯を処理するか、密閉炉中
の溶湯表面にこのようなガス雰囲気を形成して溶
湯を処理する場合の雰囲気を意味するものであ
る。 [作 用] 本発明においては、合金溶湯がMgO−CaO耐
火材で裏付けされた溶解炉又は容器中でAlの存
在のもとに強力な脱酸、脱硫を施される。特に溶
湯中にはMgが生ずるようになるため、このMg
がCaと共に脱硫に作用し、その脱硫能は極めて
高いものとなる。 [実施例] 以下実施例及び比較例について説明する。 比較例 1 第1表に示す組成のCaO坩堝内で第2表に示す
組成の電解鉄に0.03%程度の硫黄成分になるよう
に予めFeSを添加した鉄500gを50KHz高周波溶
解炉にて溶解し、アルゴン雰囲気下で、Al合金
を0.4%添加した。 坩堝内の合金溶湯の酸素含有量、硫黄含有量、
窒素含有量の経時変化を測定した。 その結果を第3図に示す。 なお、使用に供したCaO坩堝は、一級試薬の
CaOを原料とし、これを20メツシユに粉砕後、坩
堝型中へ入れてよくつき固め、固められた坩堝を
約900℃、24時間電気抵抗炉中で仮焼することに
より作製した。
[Industrial Application Field] The present invention is applicable to Fe-based and Co-based materials with extremely low sulfur content.
The present invention relates to a method for producing Ni-based alloys. [Prior Art] Many Fe-based, Co-based, and Ni-based alloys have excellent properties such as mechanical properties, heat resistance, and corrosion resistance. However, if the residual oxygen and sulfur are large, the processability will deteriorate, so it is necessary to sufficiently reduce the residual oxygen and sulfur. Regarding deoxidation and desulfurization during refining under vacuum or argon gas atmosphere, Special Publication No. 54-849, Special Publication No.
54-24688 and JP-A No. 52-58010, respectively.
It is characterized by adding aluminum (Al) or its alloy to the molten metal in a vacuum or argon gas atmosphere using a melting furnace or ladle backed by a basic refractory with a high CaO (calcium oxide) content. Deoxidation and desulfurization methods have been proposed. This principle reduces CaO in the refractory by adding Al,
Sulfur (S) and oxygen (O) in the molten metal are removed using calcium (Ca), which is a reduction product. Furthermore, JP-A No. 57-200513 describes that when the furnace wall is used repeatedly, the surface of the furnace wall gradually accumulates and becomes contaminated with oxysulfides, so a solvent is added in combination to prevent the furnace wall from contaminating. [Problems to be Solved by the Invention] The conventional methods described above are capable of deoxidizing and desulfurizing to a certain degree, but in the field of alloy refining, higher deoxidizing and desulfurizing abilities are required. It is hoped that new refining technology will emerge. [Means for Solving the Problems] The present invention has been made to obtain much superior desulfurization and deoxidizing effects, especially desulfurization effects, as compared to the above-mentioned conventional methods. Fe-based, Co - based or Ni-based alloys in a melting furnace or vessel supported by a magnesia refractory containing 15% by weight or more of CaO and 1% by weight or less of SiO 2 By making Al exist in the molten metal in vacuum or in a non-oxidizing atmosphere, Mg can be added to 0.03 to 0.0001% by weight.
Ca 0.02 to 0.0001% by weight, sulfur 0.0015% or less, oxygen 0.002% or less, nitrogen 0.003% by weight
The gist of the present invention is a method for producing a high-purity ultra-low sulfur alloy, characterized by obtaining an alloy containing the following: In addition, % weight % is expressed below. The configuration of the present invention will be explained in detail below. In the method of the present invention, MgO is contained in an amount of 15 to 55%, CaO is contained in an amount of 15% or more, and the SiO2 content is 1%.
Al is made to exist in a molten Fe-based, Co-based, or Ni-based alloy in a vacuum or non-oxidizing atmosphere in a container such as a melting furnace or ladle backed with the following magnesia refractory: A part of Al in the molten metal directly combines with oxygen in the molten metal to perform deoxidation, but the other part of Al reacts with MgO and CaO on the surface of the refractory to form 2Al + 3MgO → Al 2 O 3 + 3Mg. 2Al + 3CaO → Al 2 O 3 + 3Ca, producing Mg, Ca and Al 2 O 3 . This Mg,
Ca undergoes deoxidation and desulfurization reactions, resulting in MgO, CaO, MgS,
Becomes CaS. On the other hand, Al 2 O 3 forms calcium aluminate mainly composed of 3CaO・Al 2 O 3 (hereinafter sometimes referred to as C 3 A) through the reaction Al 2 O 3 + 3CaO → 3CaO・Al 2 O 3 . . This C 3 A has a high ability to desulfurize molten metal,
Desulfurization also proceeds with C 3 A. In this way, deoxidation is performed by Al, and deoxidation and desulfurization are performed by active Mg, Ca, and C 3 A generated by the reducing action of Al. This reaction proceeds very rapidly, e.g. Al
After being present in the molten metal, desulfurization and deoxidation are almost completed in about a few minutes. Further, as time passes, the amount of N in the molten metal gradually decreases. This is because N also leaves the molten metal as Ca and the like evaporate (boil). This denitrification rate improves significantly under an argon or vacuum atmosphere as deoxidation and desulfurization progress. In the present invention, the backing material of the melting furnace or container is
The reason why it is made of a refractory having a composition containing 15 to 75% MgO and 15% or more CaO will be explained. It is generally known that CaO refractories are stable even at high temperatures and are used for melting various highly reactive molten alloys. It is also known that when Al and/or Al alloy is added to the molten metal in a container lined with this CaO-based refractory, CaO is reduced by Al and Ca is generated, and deoxidation and desulfurization reactions proceed. be. However, the inventors conducted further studies and found that, as shown in the reaction equation above, in the furnace wall where MgO and CaO coexist, when Al and/or Al alloy is added, Mg is also produced in addition to Ca. It was found that even stronger deoxidation and desulfurization can be performed. The reason for adding 5% or less of a solvent such as an alkali metal or alkaline earth metal oxide, carbonate, halide, carbide, or alumina as necessary is exactly the same as in JP-A-57-200513. This is to prevent accumulated contamination by using a solvent, since oxysulfides adhere to the surface of the furnace wall and cause accumulated contamination when used repeatedly. Note that Figures 1 and 2 show the measurement results of desulfurization characteristics when the MgO content in the CaO-MgO-based backing refractory material was changed (Al content in the molten metal was 0.5%). It is clearly seen that when MgO is contained in an amount of 15 to 55%, especially 20 to 50%, an extremely strong desulfurization reaction takes place. Furthermore, Figure 2 also shows the analytical values for residual Al, and it was observed that the amount of Al decreased with the passage of reaction time.
Progress of the aforementioned reaction between MgO and Al is confirmed. The remainder other than MgO must be CaO. CaO is itself reduced by Al,
It generates Ca and promotes the reduction reaction of MgO by coexisting with MgO. The CaO content is preferably 15% or more of the entire furnace material, particularly preferably 40 or more. When the CaO content is less than 15%, particularly less than 40%, CaO in the refractory is strongly bonded to other oxides, so the activity of CaO is low and it is difficult to be reduced by aluminum. On the other hand, CaO in refractories containing 15% or more, especially 40% or more of CaO has high activity and can be reduced well by aluminum. In addition, refractories containing 15% or more CaO, especially 40% or more, easily react with oxides such as Al 2 O 3 and SiO 2 .
Therefore, it absorbs oxides in the molten metal and significantly reduces the amount of oxides present. Furthermore, refractories containing CaO of 15% or more, especially 40% or more, have high stability against C, Ti, Zr, etc., and therefore can be melted at high temperatures. Note that this refractory preferably has a SiO 2 content of 1% or less, especially less than 0.5%. in refractories
If SiO 2 is excessively large, the added Al reacts with SiO 2 in the refractory and is wasted, and the molten metal becomes an oxidizing atmosphere, making it difficult for the desulfurization reaction to proceed. Such refractory materials include, for example, CaO or
Dolomite refractory material enriched with MgO is preferably used. In the present invention, in addition to Al, at least one selected from the group consisting of B and alkali metals, or in addition to these, Ca may be allowed to coexist in the molten metal. Alkali metals include Na, K, and Li.
can be mentioned. Ca, B, Na, K, and Li present in the molten metal are
CaO, B 2 O 3 , Na 2 O, K 2 O, Li 2 O, and Al 2 O 3 −CaO−B 2 O 3 Al 2 O 3 −CaO−B 2 O 3 −Na 2 O in the refractory wall. It forms a low melting point composition such as Al 2 O 3 -CaO-B 2 O 3 -K 2 O and increases the rate of deoxidation and desulfurization. That is, oxides such as Ca, B, Na, K, and Li lower the melting point of calcium aluminate compositions such as C 3 A formed on the surface of the furnace wall, and lower the melting point of calcium aluminate compositions such as C 3 A formed on the surface of the furnace wall. 2-, etc.) and accelerates deoxidation and desulfurization reactions. CaO, B 2 O 3 and alkali metal oxides, especially B 2 O 3 and alkali metal oxides, when incorporated into the slag, also lower the melting point of the slag and lower its viscosity. This increases the diffusion coefficient of ions such as S 2- and other atoms and compounds into the slag, and greatly improves the desulfurization rate and desulfurization ability. Al, B and alkali metals are Fe,
The residual amount in Co and Ni-based alloys is: Al: 0.01 to 20% B, alkali metals and alkaline earth metals other than Mg and Ca: 0.001 in total
It is preferable that it be present in the molten metal in an amount of ~10%. In the present invention, the amount of Al remaining in the alloy is 0.01 to 20
The reason why it is preferable to use a range of
This is because desulfurization and deoxidation by Ca are hardly performed, and the amount of residual calcium in the finished alloy, which is a condition for sufficient desulfurization and deoxidation by Ca, does not exceed 0.0001%. On the other hand, the upper limit is 20% for aluminum.
This is because alloys exceeding the above range are of poor practical use. If the amount of B remaining is less than 0.001%, the amount is too small and the effect of the presence of B is small, and if it is more than 10.0%, the alloy becomes brittle. A particularly preferable residual amount of B is 0.005 to 3%. When adding Al, B, alkali metals, and alkaline earth metals other than Mg and Ca to the molten metal, they may be added in the form of an alloy or separately. There are no restrictions. Al,B
Although it is possible to add these separately, alkali metals and alkaline earth metals are highly reactive and have problems in handling.
Preferably, it is added in the form of an alloy. Whether alone or in an alloy, it can be added in various forms such as a linear body, a rod-shaped body, a block, or a powder. Mg and Ca of the alloy obtained by the method of the present invention
The residual amount of Mg is 300 to 1 ppm, preferably 30 to 5 ppm, and the residual amount of Ca is 200 to 1 ppm, preferably 100 to 5 ppm. If the residual amount of Mg or Ca is too small, deoxidation, desulfurization, and denitrification effects will be low, and if it is too large, the alloy will become brittle. In the present invention, a rare earth element may be further added to the molten metal so that the rare earth element remains in the resulting alloy in a range of 200 ppm or less. The alloy obtained by such a method of the present invention contains 15 ppm or less of sulfur, especially 10 ppm or less, 20 ppm or less of oxygen, especially 15 ppm or less, and 30 ppm or less of nitrogen, especially
It is an extremely clean alloy with less than 20ppm. The alloys targeted by the method of the present invention are Fe-based, Co-based, or Ni-based alloys. Fe-based alloys include common elements C, Si, Mn,
Carbon steel containing P, S and 2% or less of C, and in addition to the above ordinary elements to give special properties.
In addition to special elements such as Ni, Cr, Co, W, Mo, Al, etc., even those belonging to ordinary elements are added to them for the purpose of adding special properties beyond the content range of ordinary elements. It is. Among alloy steels, low-alloy steels include high-strength low-alloy steel, high-temperature, high-pressure low-alloy steel, and low-alloy steel for the petroleum industry; medium-alloy steels include chrome steel and nickel steel; There are high chromium stainless steel, high chromium-nickel stainless steel, etc. Examples of nickel-based alloys include heat-resistant and corrosion-resistant alloys and magnetic alloys that contain nickel as a main component, and alloys that belong to these include Ni-Cu alloy (monel metal), Ni-Cr-
Fe alloy (Inconel), Ni-Mo alloy (Hastelloy A, B), Ni-Mo-Cr-W alloy (Hastelloy C), Ni-Si alloy (Hastelloy D), Ni
-There are Ta-based alloys, etc. Co-based alloys include heat-resistant alloys, corrosion-resistant alloys, ultra-high alloys, and
Magnetic alloys, etc. Alloys belonging to this include Co
-Cr-W-C alloy (stellite), Co-Fe alloy (ductile cobalt), Co-Cr-Ni-Mo
(Eligiloy alloy), Co-Cr-Ni-W (Hayness),
Examples include Co alloys for magnetic materials such as Vicalloy, Renendur, and Permendur, and Co-based superalloys that utilize Ni 3 Ti precipitation. In addition, in the manufacturing method of the present invention, being in a non-oxidizing atmosphere means that the molten metal is treated by blowing a non-oxidizing gas such as argon gas, nitrogen gas, or He gas into the molten metal in an open furnace or a closed furnace. , refers to the atmosphere when the molten metal is processed by forming such a gas atmosphere on the surface of the molten metal in a closed furnace. [Function] In the present invention, the molten alloy is subjected to strong deoxidation and desulfurization in the presence of Al in a melting furnace or container supported by a MgO--CaO refractory material. In particular, since Mg is generated in the molten metal, this Mg
acts on desulfurization together with Ca, and its desulfurization ability is extremely high. [Example] Examples and comparative examples will be described below. Comparative Example 1 In a CaO crucible with the composition shown in Table 1, 500 g of electrolytic iron with the composition shown in Table 2 and FeS added in advance to a sulfur content of about 0.03% was melted in a 50 KHz high-frequency melting furnace. , 0.4% Al alloy was added under an argon atmosphere. Oxygen content, sulfur content of the molten alloy in the crucible,
Changes in nitrogen content over time were measured. The results are shown in FIG. The CaO crucible used was a first-class reagent.
CaO was used as a raw material, which was crushed into 20 meshes, put into a crucible mold, and compacted well, and the solidified crucible was calcined in an electric resistance furnace at approximately 900°C for 24 hours.

【表】【table】

【表】 実施例 1 一級試薬のMgO、CaOを原料とし、第3表に
示す組成のMgO−CaO坩堝を作製し、これを用
いて行なつたこと以外は比較例1と同様の手順に
より実験を行なつた。その結果を第3図に示す。
[Table] Example 1 An MgO-CaO crucible with the composition shown in Table 3 was prepared using first-class reagents MgO and CaO as raw materials, and the experiment was conducted in the same manner as in Comparative Example 1, except that the crucible was used. I did this. The results are shown in FIG.

【表】 第3図より、本発明の方法によれば、酸素、硫
黄及び窒素含有量の少ない溶湯が速やかに得ら
れ、特にその脱硫効果が大きいことが認められ
る。 実施例2及び比較例2 Al添加量を0.5%とし、炉材のMgO:CaO比率
を種々変更したこと以外に実施例1及び比較例1
と同様にして精錬を行つた。 脱硫特性及びAl残留量の測定結果を第1図及
び第2図に示す。 この第1図及び第2図より、前述のように、
MgO15〜55%の範囲では著しい脱硫効果が得ら
れることが認められる。 [効 果] 以上の通り、本発明によれば、Fe基、Co基又
はNi基超合金の極めて強力な脱酸、脱硫、脱窒
を行なうことができ、O、N、Sが極めて少な
く、クリープ強度、耐熱性、靭性、溶接性、鍛造
性等の諸特性に著しく優れた合金を製造すること
ができる。また介在される酸化物も殆ど無い。
[Table] From FIG. 3, it is recognized that according to the method of the present invention, a molten metal with low contents of oxygen, sulfur, and nitrogen can be quickly obtained, and the desulfurization effect is particularly large. Example 2 and Comparative Example 2 Example 1 and Comparative Example 1 except that the amount of Al added was 0.5% and the MgO:CaO ratio of the furnace material was variously changed.
Refining was carried out in the same manner. The measurement results of the desulfurization properties and the residual amount of Al are shown in Figures 1 and 2. From these figures 1 and 2, as mentioned above,
It is recognized that a remarkable desulfurization effect can be obtained in the range of 15 to 55% MgO. [Effects] As described above, according to the present invention, extremely strong deoxidation, desulfurization, and denitrification of Fe-based, Co-based, or Ni-based superalloys can be performed, and the content of O, N, and S is extremely low. It is possible to produce alloys with outstanding properties such as creep strength, heat resistance, toughness, weldability, and forgeability. Also, there are almost no intervening oxides.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はMgO含有率と脱硫能との
関係を示すグラフ、第3図は実施例1及び比較例
1で得られた、溶湯中の酸素、硫黄及び窒素含有
率の経時変化を示すグラフである。
Figures 1 and 2 are graphs showing the relationship between MgO content and desulfurization ability, and Figure 3 is the change over time in the oxygen, sulfur, and nitrogen contents in the molten metal obtained in Example 1 and Comparative Example 1. This is a graph showing.

Claims (1)

【特許請求の範囲】 1 MgOを15〜55重量%含み、かつCaOを15重
量%以上含有し、SiO2含有率が1重量%以下で
あるマグネシア質の耐火物をもつて裏付けされた
溶解炉又は容器内のFe基、Co基又はNi基の合金
溶湯中に、真空又は非酸化性雰囲気でAlを存在
せしめることにより、Mgを0.03〜0.0001重量%、
Caを0.02〜0.0001重量%、硫黄を0.0015重量%以
下、酸素を0.002重量%以下、窒素を0.003重量%
以下含有する合金を得ることを特徴とする高純度
超極低硫黄合金の製造方法。 2 溶剤を5重量%以下用いることを特徴とする
特許請求の範囲第1項に記載の高純度超極低硫黄
合金の製造方法。 3 得られる合金は、Alを0.01〜20重量%、B、
アルカリ金属及びCa、Mg以外のアルカリ土類金
属を合量で0.001〜10重量%含有することを特徴
とする特許請求の範囲第1項に記載の高純度超極
低硫黄合金の製造方法。
[Claims] 1. A melting furnace supported by a magnesia refractory containing 15 to 55% by weight of MgO, 15% by weight or more of CaO, and 1% or less of SiO 2 by weight. Or, by making Al exist in a Fe-based, Co-based, or Ni-based alloy molten metal in a container in a vacuum or non-oxidizing atmosphere, Mg can be added to 0.03 to 0.0001% by weight.
Ca 0.02 to 0.0001% by weight, sulfur 0.0015% or less, oxygen 0.002% or less, nitrogen 0.003% by weight
A method for producing a high-purity ultra-low sulfur alloy, characterized by obtaining an alloy containing the following: 2. The method for producing a high-purity ultra-low sulfur alloy according to claim 1, characterized in that the solvent is used in an amount of 5% by weight or less. 3 The resulting alloy contains 0.01 to 20% by weight of Al, B,
The method for producing a high-purity ultra-low sulfur alloy according to claim 1, which contains a total of 0.001 to 10% by weight of alkali metals and alkaline earth metals other than Ca and Mg.
JP9057185A 1985-04-26 1985-04-26 Manufacture of high purity ultralow sulfur alloy Granted JPS61250125A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP9057185A JPS61250125A (en) 1985-04-26 1985-04-26 Manufacture of high purity ultralow sulfur alloy
GB8609901A GB2174716B (en) 1985-04-26 1986-04-23 Method of producing an iron-cobalt-and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
FR868606058A FR2587367B1 (en) 1985-04-26 1986-04-25 PROCESS FOR THE PRODUCTION OF AN IRON, COBALT AND NICKEL ALLOY, WITH LOW SULFUR, OXYGEN AND NITROGEN CONTENT
CN90106761.XA CN1017067B (en) 1985-04-26 1986-04-25 Iron-based alloys having lower content of sulfur, oxygen and nitrogen
CN86102879.1A CN1010105B (en) 1985-04-26 1986-04-25 Method of producing an iron-, cobalt-and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
US06/937,426 US4729787A (en) 1985-04-26 1986-12-03 Method of producing an iron; cobalt and nickel base alloy having low contents of sulphur, oxygen and nitrogen
US07/010,598 US4820485A (en) 1985-04-26 1987-02-03 Method of producing an iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
GB8901401A GB2212512B (en) 1985-04-26 1989-01-23 An iron-base alloy having low contents of sulphur, oxygen and nitrogen
GB8901402A GB2212513B (en) 1985-04-26 1989-01-23 A nickel-base alloy having low contents of sulphur, oxygen and nitrogen
US07/441,600 US4999053A (en) 1985-04-26 1989-11-27 Method of producing an iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
US07/702,347 US5268141A (en) 1985-04-26 1991-05-15 Iron based alloy having low contents of aluminum silicon, magnesium, calcium, oxygen, sulphur, and nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9057185A JPS61250125A (en) 1985-04-26 1985-04-26 Manufacture of high purity ultralow sulfur alloy

Publications (2)

Publication Number Publication Date
JPS61250125A JPS61250125A (en) 1986-11-07
JPH0435541B2 true JPH0435541B2 (en) 1992-06-11

Family

ID=14002109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9057185A Granted JPS61250125A (en) 1985-04-26 1985-04-26 Manufacture of high purity ultralow sulfur alloy

Country Status (1)

Country Link
JP (1) JPS61250125A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258010A (en) * 1975-11-08 1977-05-13 Tohoku Daigaku Kinzoku Zairyo Production of low oxgen* sulpher and nitrogen steel
JPS54849A (en) * 1977-06-03 1979-01-06 Nec Corp Pll oscillator circuit
JPS5424688A (en) * 1977-07-27 1979-02-24 Toyo Boorudouin Kk Chuck for material tester
JPS57200513A (en) * 1981-06-02 1982-12-08 Metal Res Corp:Kk Preparation of iron base alloy with reduced oxygen, sulfur and nitrogen contents

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258010A (en) * 1975-11-08 1977-05-13 Tohoku Daigaku Kinzoku Zairyo Production of low oxgen* sulpher and nitrogen steel
JPS54849A (en) * 1977-06-03 1979-01-06 Nec Corp Pll oscillator circuit
JPS5424688A (en) * 1977-07-27 1979-02-24 Toyo Boorudouin Kk Chuck for material tester
JPS57200513A (en) * 1981-06-02 1982-12-08 Metal Res Corp:Kk Preparation of iron base alloy with reduced oxygen, sulfur and nitrogen contents

Also Published As

Publication number Publication date
JPS61250125A (en) 1986-11-07

Similar Documents

Publication Publication Date Title
US4484946A (en) Method of producing iron-, nickle-, or cobalt-base alloy with low contents of oxygen, sulphur, and nitrogen
US4035892A (en) Composite calcium clad material for treating molten metals
US4944798A (en) Method of manufacturing clean steel
US5268141A (en) Iron based alloy having low contents of aluminum silicon, magnesium, calcium, oxygen, sulphur, and nitrogen
US4820485A (en) Method of producing an iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
JPH03223414A (en) Production of iron-nickel-cobalt-base alloy minimal in respective contents of sulfur, oxygen, and nitrogen
US4999053A (en) Method of producing an iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
JPH03236434A (en) Nickel-base alloy in which each content of sulfur, oxygen and nitrogen extremely low
JPH0435541B2 (en)
US5055018A (en) Clean steel
KR910001488B1 (en) Method of producing an iron cobalt and nickel base alloy having low contents of sulphur,oxygen and nitrogen
US5225156A (en) Clean steel composition
JPS6184341A (en) Manufacture of alloy having small content of oxygen, sulfur and nitrogen
JPS6286111A (en) Calcia refractory composition for refining and desulfurization method using said composition
JP7438436B1 (en) Ni-based alloy with excellent surface quality
JP7438435B1 (en) Stainless steel with excellent surface quality
JPH03236435A (en) Cobalt-base alloy in which each content of sulfur, oxygen and nitrogen is extremely low
GB2212512A (en) Iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
JPS61243134A (en) Production of extra-low sulfur alloy
KR940008928B1 (en) Clean steel
JPS6252021B2 (en)
JPS6025486B2 (en) Method for manufacturing clean steel with low oxygen, sulfur, and nitrogen content
JPH03223440A (en) Iron base alloy in which each content of sulfur, oxygen and nitrogen is extremely low
JPH0613431B2 (en) Refining refractory material and refining method
Sunulahpašić et al. INTENSIFICATION OF LOW-CARBON STEEL DESULPHURISATION IN THE INDUCTION FURNACE