JPH0435431B2 - - Google Patents

Info

Publication number
JPH0435431B2
JPH0435431B2 JP28905586A JP28905586A JPH0435431B2 JP H0435431 B2 JPH0435431 B2 JP H0435431B2 JP 28905586 A JP28905586 A JP 28905586A JP 28905586 A JP28905586 A JP 28905586A JP H0435431 B2 JPH0435431 B2 JP H0435431B2
Authority
JP
Japan
Prior art keywords
quartz
glass
temperature
quartz glass
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28905586A
Other languages
Japanese (ja)
Other versions
JPS63144151A (en
Inventor
Norio Kuroda
Shigeo Miura
Takao Oota
Masahisa Fujita
Takeshi Takemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAIDO DAIGA KUCHYO
Original Assignee
HOKKAIDO DAIGA KUCHYO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAIDO DAIGA KUCHYO filed Critical HOKKAIDO DAIGA KUCHYO
Priority to JP28905586A priority Critical patent/JPS63144151A/en
Publication of JPS63144151A publication Critical patent/JPS63144151A/en
Publication of JPH0435431B2 publication Critical patent/JPH0435431B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、石英ガラス材料相互間の接合方法に
関し、特に高出力色素レーザ用色素溶液セルの製
作に有利に應用し得る石英ガラス板の接着方法に
関する。 (従来の技術) 従来の石英ガラス材料間の接合方法としては、 (1) エポキシ樹脂系接着法、 (2) 電着法、および (3) 溶融接着法、 が一般に行なわれている。上記(1)の方法は比較的
に工作が手軽であるが、製品が有機溶媒、例えば
アルコール、ジオキサン等に接触する場合には、
化学的耐久性に問題が生じる。上記(2)の方法は、
接着面の研磨仕上げにおいて、ニユートンリング
5本以内という精度が要求され、高い精度を有す
る設備を必要とするのみならず、また接着部分の
機械的強度に問題が残る。また上記(3)の溶融接着
法の場合には、基本的に接着面の近傍において歪
を生ずるので、光学的精度を要求する製品に対し
ては問題がある。例えば第1図に示す色素レーザ
用色素溶液セルにおいては、使用する石英ガラス
側板1,2の厚さが通常3mm程度と厚く、また色
素溶液Pの濃度が相当に高いため、色素溶液は励
起光すなわち基本レーザ光(ここではエキシマレ
ーザ光)をセルの内壁面で殆ど吸収し、ミラー
M1,M2で矢示方向に色素レーザ発振が生じる。
接着面3の近傍を溶融することによつて、側板1
の、色素レーザ発振光路4を含む可成りの面部分
に歪みを生ずるので、光が散乱し光学条件を満た
しての溶融接着法は、相当高度の技術によるも遂
行が困難である。 ところで、高出力レーザ励起の色素レーザに使
用される色素溶液石英セルは、光励起された色素
の一部が光化学反応を受けるのに伴ない色素溶液
が石英セル内壁面で局部熱反応を生起することに
より相当の頻度で、第2図に示すような剥離損傷
を受け、一旦損傷した石英セルは再加工を行なう
ことができない。この石英セルは頗る高価である
ため、その補充・更新はそれを利用する光物理化
学研究における経費負担の大きな割合を占める。
従つて石英セルの損傷した石英ガラス板を交換
し、高い光学的精度を以つて接着し補修・再生す
ること、あるいは任意仕様の石英ガラス製品の容
易な製作を可能とすることが、従来強く要望され
て来た。 (発明が解決しようとする問題点) 本発明者等は、従来非常に困難視されていた石
英ガラス材料相互間における接着を特定の無機材
料を用いて高精度で容易に行なうことに成功した
ものであり、本発明の目的とするところは、 (a) 化学薬品、特に有機溶剤に強く、 (b) 高温から低温まで(1000℃〜−200℃)の温
度変化に耐え、 (c) 接合強度が大きく、且つ (d) 接合に際して被接着石英ガラス材料が歪を受
けない、 石英ガラス材料相互間の優れた接着を実現するに
ある。本発明の終極の目的は、高価な石英ガラス
光学機器の補修ならびに任意仕様における製作を
精度良く且つ安価に行なうことにある。 (問題点を解決するための手段) 上述の目的を達成するための本発明方法は、線
膨張係数が約19×10-7〜21.5×10-7cm/cm℃であ
り、軟化温度が約1050℃以上且つ石英ガラスのア
ニール温度未満である均一組成のガラスフリツト
と有機バインダとよりなるスリツプ状混合物を複
数個の石英ガラス材料の相互付き合わせ面に施
し、前記軟化温度以上で且つ石英ガラスのアニー
ル温度未満の温度に加熱して前記有機バインダを
ヒートクリーニングすると共に、前記ガラスフリ
ツトの融着により石英ガラス材料を互いに接着さ
せることを特徴とする。 以下に本発明の構成をその作用とともに詳述す
る。 本発明方法を適用する石英ガラス材料は、水晶
を原料とする透明石英ガラスで、SiO2含有量99.5
%以上、好ましくは99.98%以上であり、極微量
(PPMオーダー)の不純物、例えば、Fe2O3
TiO2,Al2O3,CaO,K2O,Na2Oなどを含有
し、線膨張係数は5.5×10-7cm/cm℃、軟化温度
は1580〜1665℃、アニール温度は約1140℃を示
す。 通常、ガラスの無機材料による接着の際、無機
接着剤の条件としては、 (1) 被接着材料の耐熱限度(変形温度)よりも接
着剤の溶融温度が低いこと、および、 (2) 被接着材料と接着剤との線膨張係数が互いに
近いこと、好ましくは膨張係数差が8×10-7
cm/cm℃以内にあること、 が要求される。従つて膨張係数が極端に相違する
2種のガラスを接着するには、膨張係数が両者間
で段階的に変わる数種の中間ガラスを順次接合す
るという方法が一般的である。例えば、第1表に
掲載した石英ガラス管に硬質ほう珪酸ガラス管を
繋ぐには、その間に表中の中間ガラスを石英ガラ
ス側より(1),(2),(3)の順に逐次熱融着により接続
して急激な線膨張係数の段差を避け、接合強度の
低下を防ぐことが行なわれる。
(Industrial Application Field) The present invention relates to a method for bonding quartz glass materials together, and more particularly to a method for bonding quartz glass plates that can be advantageously used in manufacturing a dye solution cell for a high-power dye laser. (Prior Art) Conventional methods for joining quartz glass materials include (1) epoxy resin adhesive method, (2) electrodeposition method, and (3) fusion bonding method. Method (1) above is relatively easy to work with, but when the product comes into contact with organic solvents, such as alcohol and dioxane,
Problems arise with chemical durability. The method (2) above is
In polishing and finishing the bonding surface, precision of within five Newton rings is required, which not only requires equipment with high precision, but also leaves problems with the mechanical strength of the bonded portion. Furthermore, in the case of the above-mentioned melt bonding method (3), distortion basically occurs in the vicinity of the bonding surface, which poses a problem for products that require optical precision. For example, in the dye solution cell for a dye laser shown in Fig. 1, the thickness of the quartz glass side plates 1 and 2 used is thick, usually about 3 mm, and the concentration of the dye solution P is quite high, so the dye solution is exposed to the excitation light. In other words, most of the basic laser light (excimer laser light here) is absorbed by the inner wall of the cell, and the mirror
Dye laser oscillation occurs in the direction of the arrow at M 1 and M 2 .
By melting the vicinity of the adhesive surface 3, the side plate 1
Since distortion occurs in a considerable surface area including the dye laser oscillation optical path 4, it is difficult to carry out a melt bonding method that satisfies optical conditions due to light scattering, even with fairly sophisticated technology. By the way, in a dye solution quartz cell used for a dye laser pumped by a high-power laser, a part of the photoexcited dye undergoes a photochemical reaction, and the dye solution causes a local thermal reaction on the inner wall surface of the quartz cell. As a result, quartz cells frequently suffer peeling damage as shown in FIG. 2, and once damaged, quartz cells cannot be reprocessed. Since this quartz cell is extremely expensive, its replenishment and renewal account for a large portion of the cost burden in photophysical chemistry research that uses it.
Therefore, there has been a strong desire to replace damaged quartz glass plates in quartz cells and repair and regenerate them by bonding them with high optical precision, or to be able to easily manufacture quartz glass products with arbitrary specifications. I've been (Problems to be Solved by the Invention) The present inventors have succeeded in easily and highly accurately adhering quartz glass materials using a specific inorganic material, which had been considered extremely difficult in the past. Therefore, the objects of the present invention are: (a) resistant to chemicals, especially organic solvents; (b) resistant to temperature changes from high to low temperatures (1000°C to -200°C); and (c) bonding strength. (d) The quartz glass materials to be bonded are not subjected to distortion during bonding, and excellent adhesion between quartz glass materials can be achieved. A final object of the present invention is to repair expensive quartz glass optical instruments and to manufacture them according to arbitrary specifications with high precision and at low cost. (Means for Solving the Problems) The method of the present invention for achieving the above objects has a linear expansion coefficient of about 19×10 -7 to 21.5×10 -7 cm/cm°C and a softening temperature of about A slip-like mixture of a glass frit and an organic binder having a uniform composition at a temperature of 1050°C or higher and lower than the annealing temperature of silica glass is applied to the mating surfaces of a plurality of quartz glass materials, and the quartz glass is annealed at a temperature higher than the softening temperature and lower than the annealing temperature of the silica glass. The method is characterized in that the organic binder is heat-cleaned by heating to a temperature lower than that temperature, and the quartz glass materials are bonded to each other by fusing the glass frit. The configuration of the present invention will be explained in detail below along with its operation. The quartz glass material to which the method of the present invention is applied is transparent quartz glass made from quartz, and has a SiO 2 content of 99.5.
% or more, preferably 99.98% or more, and contains extremely small amounts (PPM order) of impurities, such as Fe 2 O 3 ,
Contains TiO 2 , Al 2 O 3 , CaO, K 2 O, Na 2 O, etc., linear expansion coefficient is 5.5×10 -7 cm/cm°C, softening temperature is 1580-1665°C, annealing temperature is approximately 1140°C shows. Normally, when bonding glass with inorganic materials, the conditions for the inorganic adhesive are: (1) the melting temperature of the adhesive is lower than the heat resistance limit (deformation temperature) of the material to be bonded; and (2) the bonding material. The linear expansion coefficients of the material and adhesive are close to each other, preferably the difference in expansion coefficient is 8×10 -7
It is required that the temperature be within cm/cm℃. Therefore, in order to bond two types of glasses with extremely different coefficients of expansion, a common method is to sequentially bond several types of intermediate glasses whose coefficients of expansion vary in stages. For example, in order to connect a hard borosilicate glass tube to the quartz glass tube listed in Table 1, the intermediate glasses listed in the table are sequentially heated in the order of (1), (2), and (3) from the quartz glass side. They are connected by bonding to avoid a sudden step in the coefficient of linear expansion and to prevent a decrease in bonding strength.

【表】 ところで石英ガラス材料相互間の接合を行な
い、特に光学的高精度の機器を製作する場合は、
石英ガラスの接合部近傍をそのアニール温度すな
わち約1140℃以上に加熱することは歪防止の観点
から避けなければならず、従つて1140℃未満の軟
化温度を有し且つ線膨張係数が極力石英ガラスの
それに近い無機材料を一種のハンダガラスとして
適用する必要がある。かゝる材料として第1表中
の中間ガラス(1)および(2)は軟化点が1140℃または
それ以上であり、中間ガラス(3)は軟化点は低いも
のの、膨張係数が大き過ぎて十分な接着強度が得
られず、何れも本発明の目的に適合しない。 ところが、本発明者等は、第1表中の中間ガラ
ス(2)と(3)の間の化学組成を有し、適度に高い軟化
溶融温度を示す無機材料を特定条件下で適用すれ
ば、驚くべきことには、膨張係数が石英ガラスの
それより可成り大であるにも拘らず、適正範囲に
抑制され極めて強固にして温度特性の優れた接着
を与えることを確認した。 本発明方法に適用される無機材料は、線膨張係
数が約19×10-7〜21.5×10-7cm/cm℃、好ましく
は20.5×10-7〜21×10-7cm/cm℃であり、軟化温
度が約1050℃以上で且つ石英ガラスのアニール温
度未満、好ましくは1095〜1120℃である。かゝる
無機材料は典型的には下記組成を有するガラスで
ある。 SiO2 83〜85モル% Na2O 2.2〜2.7モル% B2O3 7.2〜10モル% Al2O3 1.5〜1.7モル% 他にK2O,CaOの微量を含む。 かゝる無機材料はガラス原料より常法に従つて
製造し得るが、市販の中間ガラス、例えば第1表
に掲載したものを粉砕し、適宜比率で混合・溶融
して容易に取得することができる。複数種の中間
ガラスの粉砕、混合、溶融による場合、生成した
ガラス相の組成が均一性を欠くと、再溶融によつ
て相分離を生じ、甚しい場合にはクラツクが発生
して所期の目的を達成することができない。従つ
て、無機材料は充分に均一化した組成を有するこ
とを要する。 無機材料は粉砕、擂潰等によつて好ましくは
200メツシユ程度あるいはそれより細かい粉末状
ガラスフリツトとなし、有機バインダを加えて泥
漿状すなわちスリツプ状の混合物とする。 有機バインダとしては例えばポリビニルアルコ
ール、CMC等の水溶液、ポリビニルブチラール、
ポリ酢酸ビニル、ポリビニルアセタール、ニトロ
セルローズ等の有機溶剤溶液等が仕様可能である
が、ポリビニルアルコール水溶液が特に好適であ
る。 上記スリツプ状混合物を、接合すべき石英ガラ
ス材料の目地部分表面に塗布または吹付けなどに
よつて施与し、それら石英ガラス材料を相互に付
き合わせた状態で、例えば電気炉などの加熱装置
中に装入し徐々に加熱する。加熱は、ガラスフリ
ツトの軟化温度以上、且つ石英ガラスのアニール
温度(約1140℃)未満の温度範囲で、好ましくは
約30分以上行なわれる。温度上昇過程で先ず有機
バインダは熱分解して飛び、ヒートクリーニング
を受け、次いでガラスフリツトは軟化溶融して、
石英ガラス材料間の接着層を形成する。 かくして形成された接着は極めて強固であり、
約1000℃に加熱しても接着面が変化せず、また液
体窒素中に浸して急冷しても何等変化を生じない
など、優れた温度特性を示すのみならず、約10-5
Torr.の真空度にまで減圧しても変化を来たすこ
となく、強制剥離すれば接着相手面を刳るほどに
強力に接着していることが確認された。 次に本発明の実施例を示す。 (実施例) 本発明方法を石英セル製作に応用した。第3図
は後記実施例および比較例において、色素レーザ
に使用する色素溶液石英セルの製作手順を示す。 工程 (1) 2枚の石英ガラス側板1,1′を相対峙させて、
仮止め治具5によつて互いに平行に固定する。側
板1,1′の上端面A,Aに先ず有機バインダ
(ガラスフリツトを含まない、有機バインダ)を
施与して別の石英ガラス側板2を載置し仮り接着
する。 工程 (2) 上記工程(1)によつて仮り接着した側板を端面
A,A側を下にして倒置し、上端面B,Bに粉末
状ガラスフリツトを含んだ前記スリツプ状混合物
を塗布し、その上に更に別の側板2′を載置し、
この枠状組立体を電気炉中へ装入し、所定温度に
加熱する。加熱により、有機バインダは分解して
飛び、ガラスフリツトの融着により、二隅B,B
が接着するが、下方の二隅A,Aは有機バインダ
の熱分解揮散により仮り接着が外れる。 工程 (3) 接着固定された隅B,Bを下にして倒置し、
A,A端面に再び前記スリツプ状混合物を施与
し、側板2を載置して電気炉中で加熱焼成し、隅
A,Aを融着させる。 工程 (4) 上記工程により組立て固着された4枚の側板よ
りなる枠体の片側端縁Cにスリツプ状混合物を塗
布し、石英ガラス底板6の上に載置し前記同様電
気炉中で所定温度に加熱・融着せしめ、セルを完
成する。 上記各工程を通じ、加熱工程は、石英板を下敷
きとして用い、その上にセルを載置して行なつ
た。また、セル四隅の相互接合面においては第1
図に示すように側板の内面端縁を面取りすること
により、溶融接着層がはみ出して色素レーザ発振
光路に影響を与えないように、光路を避けた接着
面を形成する配慮を加えた。 比較例 1 前記第1表に示した中間ガラス(1)と実質的に同
一組成を有するガラス棒(コーニング社製、商品
番号7729,RSC−1)を粉砕して200メツシユ以
上の細粉とし、該粉末材料をポリビニルアルコー
ル水溶液に混ぜてスリツプ状となしたものを用
い、前記製作手順に従つて石英セルを製作した。
この場合ガラスフリツトの軟化点が1185℃と高い
ため、電気炉内温度を1200℃前後に保つ必要があ
り、石英ガラスのアニール温度が約1140℃である
から、セルと下敷きに用いた石英ガラス板とが付
着し、部分的に剥離を引き起こし、満足なセルが
得られなかつた。 比較例 2 前記第1表に示した中間ガラス(2)と実質的に同
一組成を有するガラス棒(コーニング社製、商品
番号7729,RSC−3)を比較例1と同様に粉末
となし、ポリビニルアルコール水溶液とのスリツ
プ状混合物としたものを用い前記製作手順に従
い、石英セルを製作した。フリツトの軟化点が石
英ガラスのアニール温度と同様であつたため、前
記比較例1と同様、不満足な結果となつた。 比較例 3 前記第1表に示した中間ガラス(3)と実質的に同
一組成を有するガラス棒(コーニング社製、商品
番号7729,RSC−4)を用いて前記比較例1に
準じて石英セルを製作した。この場合、ガラスフ
リツトの軟化点が935℃と低いため、電気炉温度
を約950℃とすることができ、温度に関する限り
問題はなかつたが、接着面に亀裂が入り、良好な
接着が得られなかつた。これは膨張係数が比較的
大きいためと考えられる。 比較例 4 上記比較例2および3で用いた中間ガラス(2)お
よび(3)の粉末を重量比で2:3に混合したものに
ポリビニルアルコール水溶液を加え混捏してスリ
ツプとなし、前記手順に従つて石英セルを製作し
た。第4図は、この接着層断面(幅約3mm)の顕
微鏡写真(×75)より模写した断面図であり、不
均一なフリツトより形成された接着層が相分離し
て亀裂を生じていることを示す。すなわち、中間
ガラス(2)の相を真中にして両側に中間ガラス(3)リ
ツチの相が位置し、膨張係数の大きい中間ガラス
(3)相に亀裂が走つている状態が観察される。 実施例 1 上記比較例4で用いた中間ガラス(2)と(3)の粉末
混合物を約2800℃まで加熱溶融し、混合して均一
相となした後、棒状に固化し、更に粉砕して200
メツシユまたはそれより細かい粉末状ガラスフリ
ツトとなした。このフリツトは中間ガラス(2)と(3)
との中間的組成を有し、線膨張係数が20.8×10-7
cm/cm℃であり、軟化点は1100℃であつた。この
ものをポリビニルアルコール水溶液に混ぜ、スリ
ツプ状とし、石英ガラス板の付き合わせ面に塗布
し、電気炉内で1100℃の温度に30分加熱して接着
させた。その接着層断面の顕微鏡写真(×75)よ
り模写した断面図を第5図に示す。同図から明か
な通り、接着面は極めて均一にして良好であつ
た。この接着層について試験の結果、約1000℃の
高温から液体窒素温度の低温に至るまでの急激な
温度変化に曝されても変化なく、約10-5Torr.の
真空度においても全く変化が認められなかつた。
また引張り破壊によつて接着相手である石英ガラ
ス板の表面が一部刳られる程強力に接合してい
た。 実施例 2 前記比較例2および3で用いた中間ガラス(2)お
よび(3)の粉末を重量比で3:7の割合で混合した
粉末混合物を出発原料として前記実施例1と同様
手順により均質な粉末状ガラスフリツトを作つ
た。平均粒度は約250メツシユであり、その線膨
張係数は21.5×10-7cm/cm℃であり、軟化点は
1050℃を示した。このガラスフリツトを用いて実
施例1と同様に石英ガラス板を接着し色素溶液石
英セルを製作した。得られたセルの温度特性、機
械的強度、接着強度などについて試験したとこ
ろ、実施例1と同様に満足すべき結果が得られ
た。またセル壁には、色素レーザ発振光路に影響
を与えるような歪・変形等が一切見られず、光学
的精度の平滑面を保持していた。 (発明の効果) 本発明方法によれば市中で容易に入手可能な材
料を用いて調製した特定の無機材料を接着媒体と
して、従来殆ど不可能とされていた石英ガラス材
料相互間の高精度接着を容易に行なうことがで
き、接着面に有機化合物の残存もなく、石英ガラ
ス材料の歪変形を生ずることもなく、温度特性頗
る良好にして、機械的並びに化学的接着強度極め
て大なる接着を達成し得るから、これまで困難と
されていた光学用想定精度を保つた石英ガラス製
品、例えば極低温用デユワーの光路部分の製作、
太い石英管の接続、セル内の遮断等の製作等にお
ける広い応用が期待される。特に高出力レーザ励
起の色素レーザに使用される色素溶液石英セルの
製作・補修等に有効である。
[Table] By the way, when bonding quartz glass materials to each other, especially when manufacturing high-precision optical equipment,
Heating the vicinity of the joint of quartz glass above its annealing temperature, which is approximately 1140°C, must be avoided from the perspective of preventing distortion. It is necessary to apply an inorganic material similar to that of the solder glass as a kind of solder glass. As such materials, intermediate glass (1) and (2) in Table 1 have a softening point of 1140°C or higher, and intermediate glass (3) has a low softening point but has an expansion coefficient that is too large to be used. Neither of these methods is suitable for the purpose of the present invention. However, the present inventors have discovered that if an inorganic material having a chemical composition between intermediate glasses (2) and (3) in Table 1 and exhibiting a moderately high softening and melting temperature is applied under specific conditions, Surprisingly, it was confirmed that although the coefficient of expansion was considerably larger than that of quartz glass, it was suppressed to an appropriate range and provided extremely strong adhesion with excellent temperature characteristics. The inorganic material applied to the method of the present invention has a linear expansion coefficient of about 19×10 -7 to 21.5×10 -7 cm/cm°C, preferably 20.5×10 -7 to 21×10 -7 cm/cm°C. The softening temperature is about 1050°C or higher and lower than the annealing temperature of quartz glass, preferably 1095 to 1120°C. Such an inorganic material is typically a glass having the following composition: SiO 2 83-85 mol% Na 2 O 2.2-2.7 mol% B 2 O 3 7.2-10 mol% Al 2 O 3 1.5-1.7 mol% Also contains trace amounts of K 2 O and CaO. Such inorganic materials can be produced from glass raw materials according to conventional methods, but they can also be easily obtained by crushing commercially available intermediate glasses, such as those listed in Table 1, and mixing and melting them in appropriate proportions. can. When pulverizing, mixing, and melting multiple types of intermediate glass, if the composition of the glass phase produced lacks uniformity, phase separation will occur upon remelting, and in severe cases, cracks may occur, making it impossible to achieve the desired result. unable to achieve the goal. Therefore, the inorganic material is required to have a sufficiently uniform composition. Inorganic materials are preferably crushed, crushed, etc.
A powdered glass frit of about 200 mesh or finer is prepared, and an organic binder is added to form a slurry-like or slip-like mixture. Examples of organic binders include polyvinyl alcohol, aqueous solutions such as CMC, polyvinyl butyral,
Organic solvent solutions such as polyvinyl acetate, polyvinyl acetal, nitrocellulose, etc. can be used, but an aqueous polyvinyl alcohol solution is particularly suitable. The above-mentioned slip-like mixture is applied by coating or spraying onto the surfaces of the joint parts of the quartz glass materials to be joined, and the quartz glass materials are placed in contact with each other in a heating device such as an electric furnace. and gradually heat it. The heating is preferably carried out for about 30 minutes or more at a temperature range that is higher than the softening temperature of the glass frit and lower than the annealing temperature of quartz glass (about 1140° C.). During the temperature rise process, the organic binder first thermally decomposes and flies off, undergoes heat cleaning, and then the glass frit softens and melts.
Forms an adhesive layer between quartz glass materials. The bond thus formed is extremely strong;
Not only does it exhibit excellent temperature characteristics, but the adhesive surface does not change even when heated to approximately 1000℃, and no change occurs even when quenched in liquid nitrogen.
It was confirmed that there was no change even when the pressure was reduced to a vacuum level of Torr., and that the bond was strong enough to tear apart the other surface if forcedly peeled off. Next, examples of the present invention will be shown. (Example) The method of the present invention was applied to manufacturing a quartz cell. FIG. 3 shows a procedure for manufacturing a dye solution quartz cell used in a dye laser in Examples and Comparative Examples described later. Process (1) Place the two quartz glass side plates 1 and 1' facing each other,
They are fixed in parallel to each other using a temporary fixing jig 5. First, an organic binder (organic binder not containing glass frit) is applied to the upper end surfaces A, A of the side plates 1, 1', and another quartz glass side plate 2 is placed and temporarily bonded. Step (2) The side plates temporarily bonded in step (1) above are turned upside down with the end surfaces A and A side facing down, and the slip-like mixture containing powdered glass frit is applied to the upper end surfaces B and B. Place another side plate 2' on top,
This frame-like assembly is placed into an electric furnace and heated to a predetermined temperature. Due to heating, the organic binder decomposes and flies away, and the two corners B and B are fused together by the glass frit.
are adhered, but the two lower corners A and A are temporarily unbonded due to thermal decomposition and volatilization of the organic binder. Step (3) Turn it upside down with the adhesively fixed corners B and B facing down.
The slip-like mixture is again applied to the end faces A and A, and the side plate 2 is placed on it and fired in an electric furnace to fuse the corners A and A. Step (4) A slip-like mixture is applied to one edge C of the frame consisting of the four side plates assembled and fixed in the above step, placed on the quartz glass bottom plate 6, and heated to a predetermined temperature in an electric furnace as described above. Heat and fuse to complete the cell. Throughout each of the above steps, the heating step was performed by using a quartz plate as an underlay and placing the cell thereon. Also, at the mutual joint surfaces of the four corners of the cell, the first
As shown in the figure, by chamfering the inner edge of the side plate, consideration was given to forming an adhesive surface that avoids the optical path so that the molten adhesive layer does not protrude and affect the dye laser oscillation optical path. Comparative Example 1 A glass rod (manufactured by Corning, product number 7729, RSC-1) having substantially the same composition as the intermediate glass (1) shown in Table 1 above was ground into a fine powder of 200 mesh or more, A quartz cell was manufactured using the powder material mixed with an aqueous polyvinyl alcohol solution to form a slip according to the manufacturing procedure described above.
In this case, since the softening point of the glass frit is as high as 1185°C, it is necessary to maintain the temperature inside the electric furnace around 1200°C, and since the annealing temperature of quartz glass is approximately 1140°C, the quartz glass plate used for the cell and underlay must be kept at around 1200°C. adhered and caused partial peeling, making it impossible to obtain satisfactory cells. Comparative Example 2 A glass rod (manufactured by Corning, product number 7729, RSC-3) having substantially the same composition as the intermediate glass (2) shown in Table 1 was powdered as in Comparative Example 1, and polyvinyl A quartz cell was manufactured using a slip-like mixture with an alcohol aqueous solution according to the manufacturing procedure described above. Since the softening point of the frit was similar to the annealing temperature of quartz glass, the results were unsatisfactory, similar to Comparative Example 1. Comparative Example 3 A quartz cell was prepared according to Comparative Example 1 using a glass rod (manufactured by Corning, product number 7729, RSC-4) having substantially the same composition as the intermediate glass (3) shown in Table 1 above. was produced. In this case, since the softening point of the glass frit is as low as 935°C, the electric furnace temperature could be set to approximately 950°C, and there were no problems as far as the temperature was concerned. Ta. This is considered to be because the expansion coefficient is relatively large. Comparative Example 4 A polyvinyl alcohol aqueous solution was added to a mixture of powders of intermediate glasses (2) and (3) used in Comparative Examples 2 and 3 above at a weight ratio of 2:3, kneaded to form a slip, and the above procedure was followed. Therefore, a quartz cell was fabricated. Figure 4 is a cross-sectional view reproduced from a microscopic photograph (x75) of this adhesive layer cross section (width approximately 3 mm), showing that the adhesive layer formed from uneven frits has phase separated and cracks have occurred. shows. In other words, the intermediate glass (3) rich phase is located on both sides with the intermediate glass (2) phase in the middle, and the intermediate glass has a large expansion coefficient.
(3) Cracks running through the phase are observed. Example 1 The powder mixture of intermediate glasses (2) and (3) used in Comparative Example 4 above was heated and melted to about 2800°C, mixed to form a homogeneous phase, solidified into a rod shape, and further crushed. 200
It was made into mesh or finer powdered glass frit. This frit has intermediate glass (2) and (3)
It has a composition intermediate between
cm/cm°C, and the softening point was 1100°C. This material was mixed with an aqueous polyvinyl alcohol solution, formed into a slip, applied to the mating surfaces of quartz glass plates, and heated in an electric furnace to 1100°C for 30 minutes to bond them. A cross-sectional view reproduced from a microscopic photograph (×75) of the cross-section of the adhesive layer is shown in FIG. As is clear from the figure, the adhesive surface was extremely uniform and good. Tests on this adhesive layer showed no change even when exposed to rapid temperature changes from high temperatures of about 1000°C to low temperatures of liquid nitrogen, and no change was observed even under vacuum levels of about 10 -5 Torr. I couldn't help it.
In addition, the bond was so strong that part of the surface of the quartz glass plate to which it was bonded was cracked due to tensile failure. Example 2 A powder mixture obtained by mixing the intermediate glasses (2) and (3) powders used in Comparative Examples 2 and 3 at a weight ratio of 3:7 was used as a starting material, and a homogeneous product was prepared in the same manner as in Example 1. We made a powdered glass frit. The average particle size is about 250 mesh, its linear expansion coefficient is 21.5×10 -7 cm/cm℃, and its softening point is
It showed 1050℃. Using this glass frit, a quartz glass plate was adhered in the same manner as in Example 1 to produce a dye solution quartz cell. The obtained cell was tested for temperature characteristics, mechanical strength, adhesive strength, etc., and as in Example 1, satisfactory results were obtained. Furthermore, the cell wall exhibited no distortion or deformation that would affect the dye laser oscillation optical path, and maintained a smooth surface with optical precision. (Effects of the Invention) According to the method of the present invention, a specific inorganic material prepared using materials that are easily available in the market is used as an adhesive medium to achieve high precision between quartz glass materials, which was previously considered almost impossible. Bonding is easy, there is no residual organic compound on the bonding surface, there is no distortion or deformation of the quartz glass material, the temperature characteristics are very good, and the bonding has extremely high mechanical and chemical bonding strength. Because it is possible to achieve this, we can manufacture quartz glass products that maintain the expected optical precision, which has been considered difficult until now, such as the optical path part of cryogenic dewars.
It is expected to have a wide range of applications, such as connecting thick quartz tubes and making shutoffs inside cells. It is particularly effective for manufacturing and repairing dye solution quartz cells used in dye lasers pumped by high-power lasers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を適用すべき色素レーザ用
色素溶液セルの概要説明図、第2図は、色素溶液
石英セルの内壁面の剥離損傷状態を示す状態図、
第3図は、石英セル製作手順概略説明図、第4図
は、本発明方法の条件を満たさない方法による接
着層横断面の顕微鏡拡大図(倍率75倍)であり、
また、第5図は、本発明方法によつて得られた接
着層の同じく顕微鏡拡大図(倍率75倍)である。 1,1′,2,2′……石英ガラス側板、3……
接着面、4……色素レーザ発振光路、5……仮止
め治具、6……石英ガラス底板、A,B……隅
(端面)、C……端縁、M1,M2……ミラー、P…
…色素溶液。
FIG. 1 is a schematic explanatory diagram of a dye solution cell for a dye laser to which the method of the present invention is applied, and FIG. 2 is a state diagram showing a state of exfoliation damage on the inner wall surface of the dye solution quartz cell.
FIG. 3 is a schematic explanatory diagram of the quartz cell manufacturing procedure, and FIG. 4 is an enlarged microscopic view (magnification: 75 times) of a cross section of the adhesive layer obtained by a method that does not satisfy the conditions of the method of the present invention.
Furthermore, FIG. 5 is an enlarged microscopic view (magnification: 75 times) of the adhesive layer obtained by the method of the present invention. 1, 1', 2, 2'... quartz glass side plate, 3...
Adhesive surface, 4... Dye laser oscillation optical path, 5... Temporary fixing jig, 6... Quartz glass bottom plate, A, B... Corner (end surface), C... Edge, M 1 , M 2 ... Mirror , P...
...Dye solution.

Claims (1)

【特許請求の範囲】 1 線膨張係数が約19×10-7〜21.5×10-7cm/cm
℃であり、軟化温度が約1050℃以上且つ石英ガラ
スのアニール温度未満である均一組成のガラスフ
リツトと有機バインダとよりなるスリツプ状混合
物を複数個の石英ガラス材料の相互付き合わせ面
に施し、前記軟化温度以上で且つ石英ガラスのア
ニール温度未満の温度に加熱して前記有機バイン
ダをヒートクリーニングすると共に、前記ガラス
フリツトの融着により石英ガラス材料を互いに接
着させることを特徴とする石英ガラス間の無機材
料接着法。 2 加熱が少なくとも約30分間行なわれている特
許請求の範囲第1項記載の石英ガラス間の無機材
料接着法。 3 ガラスフリツトの線膨張係数が20.5×10-7
21×10-7cm/cm℃であり、軟化温度が1095〜1120
℃である特許請求の範囲第1項記載の石英ガラス
間の無機材料接着法。 4 前記ガラスフリツトが、 SiO2 83〜85モル% Na2O 2.2〜2.7モル% B2O3 7.2〜10モル% Al2O3 1.5〜1.7モル% K2O 微量 CaO 微量 の成分を含有してなる組成を有する特許請求の範
囲第1項記載の石英ガラス間の無機材料接着法。 5 有機バインダがポリビニルアルコール水溶液
である特許請求の範囲第1項記載の石英ガラス間
の無機材料接着法。 6 石英ガラス材料が色素レーザ用色素溶液セル
を構成する石英ガラス板である前記特許請求の範
囲第1項、第2項、第3項、第4項及び第5項の
何れかに記載の石英ガラス間の無機材料接着法。 7 前記相互接合面が色素レーザ発振光路を避け
て形成される特許請求の範囲第6項記載の石英ガ
ラス間の無機材料接着法。
[Claims] 1. Linear expansion coefficient of approximately 19×10 -7 to 21.5×10 -7 cm/cm
℃, and the softening temperature is about 1050℃ or higher and lower than the annealing temperature of silica glass.A slip-like mixture consisting of a glass frit of a uniform composition and an organic binder is applied to the mating surfaces of a plurality of quartz glass materials, and the softening temperature is Inorganic material adhesion between quartz glasses, characterized in that the organic binder is heat-cleaned by heating to a temperature above the temperature and below the annealing temperature of the quartz glass, and the quartz glass materials are bonded to each other by fusing the glass frits. Law. 2. The method for bonding inorganic materials between quartz glasses according to claim 1, wherein the heating is performed for at least about 30 minutes. 3 The linear expansion coefficient of glass frit is 20.5×10 -7 ~
21×10 -7 cm/cm℃, and the softening temperature is 1095 to 1120
The method for adhering inorganic materials between quartz glasses according to claim 1, wherein the temperature is .degree. 4. The glass frit contains the following components: SiO 2 83-85 mol% Na 2 O 2.2-2.7 mol% B 2 O 3 7.2-10 mol% Al 2 O 3 1.5-1.7 mol% K 2 O trace amount CaO trace amount A method for adhering inorganic materials between quartz glasses according to claim 1, having a composition as follows. 5. The method for adhering inorganic materials between quartz glasses according to claim 1, wherein the organic binder is an aqueous polyvinyl alcohol solution. 6. The quartz according to any one of claims 1, 2, 3, 4, and 5, wherein the quartz glass material is a quartz glass plate constituting a dye solution cell for a dye laser. Inorganic material adhesion method between glasses. 7. The inorganic material adhesion method between quartz glasses according to claim 6, wherein the mutual bonding surfaces are formed avoiding the dye laser oscillation optical path.
JP28905586A 1986-12-05 1986-12-05 Bonding between quartz glass with inorganic material Granted JPS63144151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28905586A JPS63144151A (en) 1986-12-05 1986-12-05 Bonding between quartz glass with inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28905586A JPS63144151A (en) 1986-12-05 1986-12-05 Bonding between quartz glass with inorganic material

Publications (2)

Publication Number Publication Date
JPS63144151A JPS63144151A (en) 1988-06-16
JPH0435431B2 true JPH0435431B2 (en) 1992-06-11

Family

ID=17738239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28905586A Granted JPS63144151A (en) 1986-12-05 1986-12-05 Bonding between quartz glass with inorganic material

Country Status (1)

Country Link
JP (1) JPS63144151A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393656A (en) * 1989-09-04 1991-04-18 Nippon Sheet Glass Co Ltd Production of glass product having uneven pattern
DE102004054392A1 (en) 2004-08-28 2006-03-02 Heraeus Quarzglas Gmbh & Co. Kg Method for joining components made of high-siliceous material, as well as assembled from such components component composite
WO2006024440A1 (en) * 2004-08-28 2006-03-09 Heraeus Quarzglas Gmbh & Co. Kg Joining agent for joining parts, method for joining parts made of a material with a high content of silicic acid while using the joining agent, and a bonding of parts that is obtained according to the method
JP2008297162A (en) * 2007-05-31 2008-12-11 Hoya Candeo Optronics株式会社 Glass composition for joining quartz glass body, glass paste for joining quartz glass body and method for joining quartz glass body
JP5467653B2 (en) * 2011-01-13 2014-04-09 信越石英株式会社 Glass polygonal tube, manufacturing method thereof and container

Also Published As

Publication number Publication date
JPS63144151A (en) 1988-06-16

Similar Documents

Publication Publication Date Title
US10465433B2 (en) Vacuum insulating glass (VIG) unit with lead-free dual-frit seals and/or methods of making the same
US10421684B2 (en) Frits for use in vacuum insulating glass (VIG) units, and/or associated methods
US3966449A (en) Sealing glass composition and process
CN107827364B (en) Vanadium-based frit material, sealing material, and method for preparing the same and sealing vacuum insulating glass using the same
EP0812810B1 (en) Optical device comprising substrate of betaeucryptite or fused silico, an optical component and a fusion seal comprising a low melting glass frit and a mill addition
US2964839A (en) Flux free bonded article and method
US3414465A (en) Sealed glass article of manufacture
JPS6111243A (en) Fiber reinforced mirror blank and manufacture thereof
FR2497508A1 (en) PROCESS FOR PRODUCING ENAMELLED CERAMIC SUBSTRATE
JP2020150488A (en) Composite substrate, electronic device, manufacturing method of composite substrate, and manufacturing method of electronic device
CA1077528A (en) Glass frit composition for sealing window glass
US4794483A (en) Magnetic head having layers of amorphous magnetic alloy bonded together with a glass containing vandium oxide phosphorus oxide and antimony oxide
JPH0435431B2 (en)
US4544974A (en) Alumina glass composition and magnetic head incorporating same
US20050255324A1 (en) Composite substrate material and process for producing the same
US5009690A (en) Method of bonding single crystal quartz by field-assisted bonding
JPH02153849A (en) Composite consisting of glass-containing substance and glass-free substance, and method for forming said composite
JPH0118020B2 (en)
US3770335A (en) Composite magnetic mirror and method of forming same
JP2868131B2 (en) Method of manufacturing electronic component substrate
JP2003054971A (en) Method for bonding quartz glass
DE2923011A1 (en) Bonding together quartz optical elements - via heat and pressure using thin intermediate layer of aluminium
GB2095604A (en) Seal between two components
JPS63201027A (en) Method for heating and joining quartz parts in vacuum
JPH05323145A (en) Reinforcing device for optical fiber juncture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term