JPH04351983A - Horn antenna - Google Patents

Horn antenna

Info

Publication number
JPH04351983A
JPH04351983A JP3126013A JP12601391A JPH04351983A JP H04351983 A JPH04351983 A JP H04351983A JP 3126013 A JP3126013 A JP 3126013A JP 12601391 A JP12601391 A JP 12601391A JP H04351983 A JPH04351983 A JP H04351983A
Authority
JP
Japan
Prior art keywords
ground surface
underground
antenna
reflection
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3126013A
Other languages
Japanese (ja)
Inventor
Takashi Kikuta
隆 菊田
Masushi Nishino
西野 益司
Masaru Tsunasaki
勝 綱崎
Masanobu Kominami
昌信 小南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP3126013A priority Critical patent/JPH04351983A/en
Publication of JPH04351983A publication Critical patent/JPH04351983A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the reflection at the ground surface at incidence and reflection time to efficiently use the electric wave of a radar for inquiry by having a hollow with a reverse horn shape in the center part of an inner space of a main body and filling the other part with a dielectric having dielectric constant close to that of the ground surface. CONSTITUTION:A hollow part 7 with a reverse horn shape is formed in the center part of the inner space of a horn-shape antenna main body 1 and the other part is filled with a dielectric 3 having low dielectric loss and dielectric constant close to that of the ground surface. Consequently, the transmission medium of an electric wave transmission route from the inner space of the main body 1 to underground 6 via the ground surface 5 changes continuously from air to the characteristic impedance of the ground surface 5, so that impedance comformity is obtained. As a result, the electric wave of a radar for inquiry which is led to a wave guide tube connecting part 2 can be transmitted efficiently to underground 6 while the reflection at the ground surface is suppressed as much as possible and reversely, the reflection wave from underground 6 can be led to the connecting part 2 while the reflection at the ground surface 5 is suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、例えば表面をアスフ
ァルト舗装した地中あるいはコンクリート中に埋設され
たガス管,水道管あるいは電力,電話ケーブル等を非掘
削で探査する探査用レーダの送受信アンテナとして使用
されるホーンアンテナに関するものである。
[Industrial Application Field] This invention can be used as a transmitting/receiving antenna for an exploration radar that searches for gas pipes, water pipes, electric power, telephone cables, etc. buried in asphalt-paved ground or concrete without excavation. This relates to the horn antenna used.

【0002】0002

【従来の技術】従来より、周波数変調連続波レーダを用
いて地中等の埋設物の位置を検知する技術が知られてい
る。図4にこの発明の基礎となる地中探査レーダ装置の
概略ブロック図を示す(特願平2−280353号参照
)。図4において、33は地上、34は地中、35は地
表面、36は例えば地表面35から1m程度の深さの地
中34に埋設された被探査物体、例えば地中埋設管であ
り、36aは継手位置である。
2. Description of the Related Art Conventionally, there has been known a technique for detecting the position of underground objects using frequency modulated continuous wave radar. FIG. 4 shows a schematic block diagram of an underground exploration radar system which is the basis of the present invention (see Japanese Patent Application No. 2-280353). In FIG. 4, 33 is on the ground, 34 is underground, 35 is the ground surface, and 36 is an object to be investigated buried in the ground 34 at a depth of about 1 m from the ground surface 35, for example, an underground pipe. 36a is a joint position.

【0003】21は例えば三角波を周波数変調した連続
波を発生する信号発生器で、中心周波数が数GHz程度
(例えば2GHz)で三角波の周波数が例えば50Hz
程度である。22は方向性結合器で、信号発生器1から
出力された連続波を2経路に分岐する。23はサーキュ
レータである。24は送受信兼用の例えば四角錐形の狭
指向性のホーンアンテナ(例えば、開口の一辺が200
mm、長さが300〜600mm)で、方向性結合器2
2の一方の出力端から出力される連続波がサーキュレー
タ23を通して入力され、地表面35から地中34に向
けて上記連続波の電波を放射し、かつ地中34の例えば
地中埋設管36で反射されて地表面35に出た反射波を
受信し、サーキュレータ23へ戻す。
Reference numeral 21 is a signal generator that generates a continuous wave obtained by frequency modulating a triangular wave, for example, where the center frequency is about several GHz (for example, 2 GHz) and the frequency of the triangular wave is, for example, 50 Hz.
That's about it. 22 is a directional coupler that branches the continuous wave output from the signal generator 1 into two paths. 23 is a circulator. 24 is a horn antenna with narrow directivity, such as a quadrangular pyramid, used for both transmission and reception (for example, one side of the aperture is 200 mm).
mm, length 300 to 600 mm), directional coupler 2
The continuous wave outputted from one output end of 2 is inputted through the circulator 23, and the continuous wave radio waves are radiated from the ground surface 35 toward the underground 34, and are emitted from the underground 34, for example, by the underground pipe 36. The reflected wave reflected from the ground surface 35 is received and returned to the circulator 23.

【0004】25はミキサであり、方向性結合器22の
他方の出力端から出力される連続波とサーキュレータ2
3から出力される反射波とを混合する。26はミキサ2
5の出力から連続波および反射波のビート周波数成分を
抽出するローパスフィルタで、数GHz(例えば上記の
2GHz)の搬送波を除去する。27は低周波増幅器で
、ローパスフィルタ26から出力されるビート周波数成
分を増幅する。28は周波数カウンタで、ローパスフィ
ルタ26で抽出され低周波増幅器27で増幅されたビー
ト周波数成分の周波数値を検出する。
25 is a mixer, which mixes the continuous wave output from the other output end of the directional coupler 22 and the circulator 2.
3 and the reflected wave output from 3. 26 is mixer 2
A low-pass filter extracts the beat frequency components of continuous waves and reflected waves from the output of 5, and removes carrier waves of several GHz (for example, the above-mentioned 2 GHz). A low frequency amplifier 27 amplifies the beat frequency component output from the low pass filter 26. A frequency counter 28 detects the frequency value of the beat frequency component extracted by the low-pass filter 26 and amplified by the low-frequency amplifier 27.

【0005】29は周波数−電圧変換回路で、周波数カ
ウンタ28の出力信号を電圧信号に変換する。30はコ
ンパレータで、周波数−電圧変換回路29の出力信号を
参照信号と比較することにより、地中埋設管36の継手
36aと継手36a以外の部分との地表面35から距離
の違いに応じたビート周波数の違いを検出する。参照信
号としては、地中埋設管36の継手36aの部分での反
射波を受信したときのビート周波数と地中埋設管36の
継手36a以外の部分での反射波を受信したときにビー
ト周波数の中間の周波数に対応する電圧を与えるように
している。
A frequency-voltage conversion circuit 29 converts the output signal of the frequency counter 28 into a voltage signal. 30 is a comparator which compares the output signal of the frequency-voltage conversion circuit 29 with a reference signal to determine the beat according to the difference in distance from the ground surface 35 between the joint 36a of the underground pipe 36 and the parts other than the joint 36a. Detect frequency differences. The reference signals include the beat frequency when receiving the reflected wave at the joint 36a of the underground pipe 36 and the beat frequency when receiving the reflected wave at a part other than the joint 36a of the underground pipe 36. A voltage corresponding to an intermediate frequency is applied.

【0006】31はコンパレータ30の出力信号に応動
するブザー、32は同じく表示用ランプである。つぎに
、この地中探査レーダ装置の動作を説明する。この地中
探査レーダ装置では、信号発生器21から周波数変調し
た連続波を発生し、この信号発生器21から出力された
連続波が方向性結合器22によって2経路に分岐される
。方向性結合器22によって2分岐された一方の連続波
は、サーキュレータ23を通してホーンアンテナ24へ
送られ、地中埋設管36の上方位置の地表面35から地
中埋設管36に向けて電波として放射され、他方の連続
波はミキサ25へ送られる。地表面35から地中埋設管
36に向けて放射された連続波は、地中34を伝搬して
地中埋設管36で反射され、反射波は再度地中34を伝
搬し地表面35から出てホーンアンテナ24で受信され
、サーキュレータ23を通してミキサ25へ送られる。
Reference numeral 31 is a buzzer that responds to the output signal of the comparator 30, and 32 is a display lamp. Next, the operation of this underground exploration radar device will be explained. In this underground exploration radar device, a signal generator 21 generates a frequency-modulated continuous wave, and the continuous wave output from the signal generator 21 is branched into two paths by a directional coupler 22. One of the continuous waves branched into two by the directional coupler 22 is sent to the horn antenna 24 through the circulator 23, and is radiated as a radio wave from the ground surface 35 above the underground pipe 36 toward the underground pipe 36. The other continuous wave is sent to the mixer 25. Continuous waves radiated from the ground surface 35 toward the underground pipe 36 propagate underground 34 and are reflected by the underground pipe 36, and the reflected waves propagate underground 34 again and exit from the ground surface 35. The signal is received by the horn antenna 24 and sent to the mixer 25 through the circulator 23.

【0007】ミキサ25は、方向性結合器22から送ら
れる電波とホーンアンテナ24からサーキュレータ23
を通して送られる反射波とを混合する。この混合波には
、連続波と反射波とのビート周波数成分が含まれる。 この両波のビート周波数は、連続波を放射してから反射
波が受信されるまでの時間に応じて異なり、地表面35
から地中埋設管36までの距離が異なるとビート周波数
も異なる。なお、地表面に対して、ホーンアンテナ24
を十分に近接させるので、地表面35からホーンアンテ
ナ24までの距離は無視できる。
The mixer 25 mixes the radio waves sent from the directional coupler 22 and the horn antenna 24 to the circulator 23.
mixed with the reflected waves sent through the This mixed wave includes beat frequency components of the continuous wave and the reflected wave. The beat frequency of these two waves differs depending on the time from emitting the continuous wave until receiving the reflected wave, and
If the distance from the underground pipe 36 to the underground pipe 36 differs, the beat frequency will also differ. Note that the horn antenna 24
are placed sufficiently close to each other, so the distance from the ground surface 35 to the horn antenna 24 can be ignored.

【0008】上記のミキサ25の出力から連続波および
反射波のビート周波数成分をローパスフィルタ26で抽
出し、さらに低周波増幅器27で増幅し、ローパスフィ
ルタ26で抽出され低周波増幅器27で増幅されたビー
ト周波数成分の周波数値を周波数カウンタ28で検出し
、さらに周波数カウンタ28の出力信号を周波数−電圧
変換回路29で電圧信号に変換する。
Beat frequency components of continuous waves and reflected waves are extracted from the output of the mixer 25 by a low-pass filter 26 and further amplified by a low-frequency amplifier 27; A frequency counter 28 detects the frequency value of the beat frequency component, and a frequency-voltage conversion circuit 29 converts the output signal of the frequency counter 28 into a voltage signal.

【0009】そして、周波数−電圧変換回路29の出力
信号をコンパレータ30で参照信号と比較することによ
り、地中埋設管36の継手36aの部分と継手36a以
外の部分との地表面35からの距離の違いに応じたビー
ト周波数の違いを検出する。このコンパレータ30の出
力信号に報知器であるブザー31および表示用ランプ3
2が応動し、地表面35から地中埋設管36までの距離
が短くなったときに、例えば発光表示もしくは鳴動を行
う。
By comparing the output signal of the frequency-voltage conversion circuit 29 with a reference signal by the comparator 30, the distance from the ground surface 35 between the joint 36a of the underground pipe 36 and the parts other than the joint 36a is determined. detect the difference in beat frequency according to the difference in the beat frequency. The output signal of this comparator 30 is applied to a buzzer 31 which is an alarm and a display lamp 3.
2 responds, and when the distance from the ground surface 35 to the underground pipe 36 becomes short, it makes a light emitting display or a sound, for example.

【0010】そこで、地中埋設管36の上方位置(真上
)の地表面35を地中埋設管36に沿って移動しながら
、連続波を放射し、その反射波を受信し、両者のビート
周波数を検出し、そのビート周波数を電圧信号に変換し
て参照信号と比較すれば、地中埋設管36の継手36a
と継手36a以外の位置との地表面35からの距離の違
いに伴うビート周波数の違いを判別することができ、し
たがって地表面35からの距離が他の部分に比べて短く
なる地中埋設管36の継手36aの位置を検出すること
ができる。
[0010] Therefore, while moving along the underground pipe 36 on the ground surface 35 above (directly above) the underground pipe 36, a continuous wave is emitted, the reflected wave is received, and the beats of both are transmitted. By detecting the frequency, converting the beat frequency into a voltage signal, and comparing it with a reference signal, the joint 36a of the underground pipe 36 can be detected.
It is possible to determine the difference in beat frequency due to the difference in distance from the ground surface 35 between the underground pipe 36 and the position other than the joint 36a, and therefore the distance from the ground surface 35 is shorter than other parts of the underground pipe 36. The position of the joint 36a can be detected.

【0011】なお、ホーンアンテナ24は、地中埋設管
36の埋設位置を予め調べて、地中埋設管36の真上に
位置させ、この状態で地中埋設管36に沿って移動させ
るが、ホーンアンテナ24と地表面35との距離を一定
に保つ必要がある。
Note that the horn antenna 24 is located directly above the underground pipe 36 by checking the buried position of the underground pipe 36 in advance, and is moved along the underground pipe 36 in this state. It is necessary to keep the distance between the horn antenna 24 and the ground surface 35 constant.

【0012】0012

【発明が解決しようとする課題】上記のような地中探査
レーダ装置を地中埋設管36の探査に用いる場合、ホー
ンアンテナ24から放射された電波の大半が地表面35
で反射され、地中34を伝搬する電波のレベルが低くな
り、地下1m程度に埋設されている地中埋設管36の検
知を行うことが容易でなかった。
[Problems to be Solved by the Invention] When the above-described underground exploration radar device is used to explore the underground pipe 36, most of the radio waves radiated from the horn antenna 24 are transmitted to the ground surface 35.
The level of radio waves reflected by the underground pipe 34 and propagated underground 34 becomes low, making it difficult to detect the underground pipe 36 buried approximately 1 m underground.

【0013】上記のように、ホーンアンテナ24から放
射された電波の大半が地表面35で反射して地中34に
向かってほとんど伝搬しないのは、ホーンアンテナ24
の開口部の誘電率(空気の誘電率)と地表面35の誘電
率(例えば、アスファルトの誘電率;ε≒2.7)とが
大きく異なり、その界面でインピーダンス不整合が生じ
、電波が反射するからであると考えられる。なお、空気
の特性インピーダンスは370Ωであり、アスファルト
の特性インピーダンスは370×ε−1/2=225Ω
である。
As described above, most of the radio waves radiated from the horn antenna 24 are reflected by the ground surface 35 and hardly propagate toward the ground 34 because the horn antenna 24
The permittivity of the opening (the permittivity of air) and the permittivity of the ground surface 35 (for example, the permittivity of asphalt; ε≒2.7) are significantly different, and an impedance mismatch occurs at the interface, causing radio waves to be reflected. This is thought to be because. The characteristic impedance of air is 370Ω, and the characteristic impedance of asphalt is 370×ε-1/2=225Ω.
It is.

【0014】したがって、この発明の目的は、地表面で
の反射を抑えて地中に電波を有効に伝搬させ、もしくは
地中からの物体で反射した電波を地表面での反射を抑え
て有効に受けることができるホーンアンテナを提供する
ことである。
Therefore, it is an object of the present invention to effectively propagate radio waves underground by suppressing reflection on the ground surface, or to effectively propagate radio waves reflected by objects from underground by suppressing reflection on the ground surface. An object of the present invention is to provide a horn antenna capable of receiving signals.

【0015】[0015]

【課題を解決するための手段】この発明のホーンアンテ
ナは、地表面から地中へ電波を放射し、もしくは地中か
ら地表面へ出た電波を受信するもので、中心部に逆ホー
ン形の空洞を有する低損失でかつ前記地表面の層の誘電
率に近い誘電率を有する誘電体をアンテナ本体の内部空
間に詰めている。
[Means for Solving the Problems] The horn antenna of the present invention radiates radio waves from the ground surface to the ground, or receives radio waves emitted from the ground to the ground surface, and has an inverted horn shape in the center. The internal space of the antenna body is filled with a dielectric material having a cavity and having a low loss and a dielectric constant close to the dielectric constant of the ground surface layer.

【0016】[0016]

【作用】この発明の構成によれば、アンテナ本体の内部
空間から地表面を通り地中に達する電波の伝搬路の特性
インピーダンスが、電波の伝搬媒体が空気のときの特性
インピーダンスから伝搬媒体が地表面の特性インピーダ
ンスまで連続的に変化することになり、地表面に対して
インピーダンス整合を図ることができ、地表面での反射
を抑えて地中に電波を有効に伝搬させ、もしくは地中か
らの物体で反射した電波を地表面での反射を抑えて有効
に受けることができる。また、誘電体として、低損失の
材料を選択しているので、誘電体自体での損失の増加も
少ないものとすることができる。
[Operation] According to the configuration of the present invention, the characteristic impedance of the propagation path of the radio wave from the internal space of the antenna body through the ground surface and reaching the ground is changed from the characteristic impedance when the propagation medium of the radio wave is air. The characteristic impedance of the surface changes continuously, making it possible to match the impedance to the ground surface, suppressing reflections on the ground surface and effectively propagating radio waves underground, or transmitting radio waves from underground. It is possible to effectively receive radio waves reflected by objects by suppressing their reflection on the ground surface. Furthermore, since a low-loss material is selected as the dielectric, the increase in loss in the dielectric itself can be reduced.

【0017】[0017]

【実施例】以下、この発明の一実施例を図面を参照しな
がら説明する。図1はこの発明の一実施例のホーンアン
テナの概略断面図を示す。図1において、1はホーン形
(四角錐形)のアンテナ本体、2はアンテナ本体1の給
電端1aに設けた導波管接続部である。3はアンテナ本
体1の内部空間に詰めた例えばパラフィンなどの低損失
でかつ地表面5に存在する例えばアスファルトの誘電率
に近い誘電率を有する誘電体であり、中心部に逆ホーン
形の空洞7を有しており、アンテナ本体1の給電端1a
から開口端1bへいくにつれてアンテナ本体1の断面積
に占める空洞7の割合を徐々に小さくし、開口端1bで
はこの実施例では零にしている。誘電体3を上記のよう
な形状にするには、例えば、アンテナ本体1の内部に紙
あるいはプラスチックなどからなる角錐形の枠4を開口
端側から挿入し、アンテナ本体1の内面と枠4の外面と
の間に例えばパラフィンなどの誘電体3を溶かして流し
込み、固化させることで作成する。この結果、誘電体3
の中心部に逆ホーン形の空洞7ができることになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic cross-sectional view of a horn antenna according to an embodiment of the present invention. In FIG. 1, reference numeral 1 indicates a horn-shaped (square pyramid-shaped) antenna main body, and reference numeral 2 indicates a waveguide connection portion provided at a feeding end 1a of the antenna main body 1. Reference numeral 3 denotes a dielectric material such as paraffin which has a low loss and has a dielectric constant close to that of, for example, asphalt that exists on the ground surface 5, and is filled in the internal space of the antenna body 1, and has an inverted horn-shaped cavity 7 in the center. The feeding end 1a of the antenna body 1
The proportion of the cavity 7 in the cross-sectional area of the antenna main body 1 is gradually reduced from the opening end 1b to zero in this embodiment at the opening end 1b. In order to form the dielectric body 3 into the above shape, for example, a pyramid-shaped frame 4 made of paper or plastic is inserted into the antenna body 1 from the open end side, and the inner surface of the antenna body 1 and the frame 4 are aligned. It is created by melting and pouring a dielectric material 3 such as paraffin between the outer surface and solidifying it. As a result, dielectric 3
An inverted horn-shaped cavity 7 is formed at the center of the hole.

【0018】このホーンアンテナは、アンテナ本体1の
内部空間に中心部に逆ホーン形の空洞7を有する低損失
でかつ前記地表面の層の誘電率に近い誘電率を有する誘
電体3を詰めたので、アンテナ本体1の内部空間におけ
るアンテナ本体1の給電端1aから開口端1bへいくに
つれてアンテナ本体1の断面積に占める空洞7の割合が
徐々に小さくなる。したがって、アンテナ本体1の内部
空間から地表面5を通り地中6に達する電波の伝搬路の
特性インピーダンスが、電波の伝搬媒体が空気のときの
特性インピーダンスから伝搬媒体が地表面5の例えばア
スファルトの特性インピーダンスまで連続的に変化する
ことになり、インピーダンス整合をとることができる。 この結果、導波管接続部2まで導かれた電波がアンテナ
本体1の内部空間を通り地表面5を通して地中6に伝搬
する場合の反射を極力抑えることが可能となり、電波を
地中6へ有効に伝搬させることができる。また逆に、地
中6からの電波も地表面5での反射を抑えて導波管接続
部2まで有効に到達させることができる。なお、図1の
矢印Aは電波の伝搬を示す。
This horn antenna has a dielectric material 3 having an inverted horn-shaped cavity 7 in the center filled in the internal space of the antenna body 1 and having a low loss and a dielectric constant close to the dielectric constant of the layer on the ground surface. Therefore, the proportion of the cavity 7 in the cross-sectional area of the antenna body 1 gradually decreases from the feeding end 1a of the antenna body 1 to the open end 1b in the internal space of the antenna body 1. Therefore, the characteristic impedance of the propagation path of the radio wave from the internal space of the antenna body 1 through the ground surface 5 to the underground 6 is determined from the characteristic impedance when the radio wave propagation medium is air. Since the characteristic impedance changes continuously, impedance matching can be achieved. As a result, it is possible to suppress reflections as much as possible when the radio waves guided to the waveguide connection part 2 pass through the internal space of the antenna body 1 and propagate to the underground 6 through the ground surface 5, thereby transmitting the radio waves to the underground 6. It can be propagated effectively. Conversely, radio waves from underground 6 can also be effectively transmitted to waveguide connection portion 2 by suppressing reflection at ground surface 5. Note that arrow A in FIG. 1 indicates the propagation of radio waves.

【0019】図2はホーンアンテナの内部空間にパラフ
ィンを詰めた場合と土を詰めた場合と空洞の場合とにお
ける電波の減衰特性を測定する測定装置の概略図を示す
。図2において、11はホーンアンテナからなる送信ア
ンテナ、12はおなじく受信アンテナ、13はスペクト
ラムアナライザである。14は幅500mmの木箱で、
真砂土15を充填してあり、木箱14を挟んで送信アン
テナ11および受信アンテナ12を対向させている。な
お、木の誘電率は、アスファルトの誘電率略2.7と近
似した略2.5〜3.5の値であり、パラフィンの誘電
率は略2.3である。
FIG. 2 shows a schematic diagram of a measuring device for measuring the attenuation characteristics of radio waves when the internal space of a horn antenna is filled with paraffin, when it is filled with soil, and when it is hollow. In FIG. 2, 11 is a transmitting antenna consisting of a horn antenna, 12 is also a receiving antenna, and 13 is a spectrum analyzer. 14 is a wooden box with a width of 500mm,
It is filled with sand 15, and a transmitting antenna 11 and a receiving antenna 12 are opposed to each other with a wooden box 14 in between. The dielectric constant of wood is approximately 2.5 to 3.5, which is approximate to the dielectric constant of asphalt, approximately 2.7, and the dielectric constant of paraffin is approximately 2.3.

【0020】図2の測定装置において、送信アンテナ1
1から電波を放射し、木箱14およびその内部の真砂土
15を通して伝搬した電波を受信アンテナ12で受ける
構成とし、送信アンテナ11および受信アンテナ12に
上記実施例のような、空洞7を有するパラフィンからな
る誘電体3を詰めた場合と、パラフィンに代えて土を詰
めた場合と、空洞(従来例)の場合とについて、電波の
周波数を変化させてスペクトラムアナライザ13で電波
の減衰特性を測定した。その測定結果を図3に示す。曲
線X1 はパラフィンを詰めた場合を示し、曲線X2 
は空洞の場合を示し、曲線X3 は土を詰めた場合を示
している。
In the measuring device of FIG. 2, the transmitting antenna 1
The receiving antenna 12 receives radio waves propagated through the wooden box 14 and the Masago soil 15 therein, and the transmitting antenna 11 and the receiving antenna 12 are made of paraffin having the cavity 7 as in the above embodiment. The attenuation characteristics of radio waves were measured using a spectrum analyzer 13 while changing the frequency of the radio waves, in the case of filling with dielectric material 3 consisting of 3, filling with soil instead of paraffin, and in the case of a cavity (conventional example). . The measurement results are shown in FIG. Curve X1 shows the case filled with paraffin, and curve X2
Curve X3 shows the case of a cavity, and curve X3 shows the case of filling with soil.

【0021】この図から、ホーンアンテナの内部空間が
空洞の場合に比べて誘電体としてパラフィンを詰めた場
合の方が電波の減衰が小さいことが明らかである。また
、誘電体として土を詰めた場合に、空洞の場合よりも減
衰が大きくなっているのは、土が水分等を含んで土自体
での損失が大きいからであると考えられる。したがって
、ホーンアンテナ内に詰めるのは、損失の少ないものが
望ましい。低損失の誘電体の例としては、パラフィンの
他に、例えばガラス(誘電率:略7.0),フェノール
樹脂(誘電率:略5.0,陶器(誘電率:略6.0)な
どをあげることができる。
From this figure, it is clear that the attenuation of radio waves is smaller when the horn antenna is filled with paraffin as a dielectric material than when it is hollow. Furthermore, the reason why the attenuation is larger when the dielectric is filled with soil than when it is a cavity is thought to be because the soil contains water and the loss in the soil itself is large. Therefore, it is desirable to fill the horn antenna with a material with low loss. In addition to paraffin, examples of low-loss dielectrics include glass (dielectric constant: approximately 7.0), phenol resin (dielectric constant: approximately 5.0), and ceramic (dielectric constant: approximately 6.0). I can give it to you.

【0022】以上のような誘電体を内部空間に詰めたホ
ーンアンテナを用いて図4に示したレーダ探査装置で地
中埋設管等の物体を探査する場合、地表面での電波の反
射を少なく抑えることができるので、より深いところに
埋設された物体をも有効に探査することができる。逆に
いえば、ホーンアンテナに供給する空中線電力を少なく
抑えても十分に物体を探査することができ、電波漏れ対
策も容易となる。
When searching for objects such as underground pipes with the radar exploration device shown in FIG. 4 using a horn antenna whose internal space is filled with a dielectric material as described above, it is necessary to reduce the reflection of radio waves on the ground surface. Since it can be suppressed, it is possible to effectively explore objects buried in deeper places. Conversely, even if the antenna power supplied to the horn antenna is kept low, the object can be sufficiently searched, and measures against leakage of radio waves can be easily taken.

【0023】[0023]

【発明の効果】この発明のホーンアンテナによれば、ア
ンテナ本体の内部空間に中心部に逆ホーン形の空洞を有
する低損失でかつ前記地表面の層の誘電率に近い誘電率
を有する誘電体を詰めたので、アンテナ本体の内部空間
から地表面を通り地中に達する電波の伝搬路の特性イン
ピーダンスが、電波の伝搬媒体が空気のときの特性イン
ピーダンスから伝搬媒体が地表面の特性インピーダンス
まで連続的に変化することになり、地表面に対してイン
ピーダンス整合を図ることができ、地表面での反射を抑
えて地中に電波を有効に伝搬させ、もしくは地中からの
物体で反射した電波を地表面での反射を抑えて有効に受
けることができる。
Effects of the Invention According to the horn antenna of the present invention, a dielectric material having an inverted horn-shaped cavity at the center in the internal space of the antenna body has a low loss and has a dielectric constant close to the dielectric constant of the layer on the ground surface. Since the characteristic impedance of the radio wave propagation path from the internal space of the antenna body through the ground surface to the ground is continuous from the characteristic impedance when the radio wave propagation medium is air to the characteristic impedance when the propagation medium is the ground surface. This makes it possible to achieve impedance matching with the earth's surface, suppressing reflections on the earth's surface and effectively propagating radio waves underground, or transmitting radio waves reflected by objects underground. It can be effectively received by suppressing reflections on the ground surface.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例のホーンアンテナの概略断
面図である。
FIG. 1 is a schematic cross-sectional view of a horn antenna according to an embodiment of the present invention.

【図2】ホーンアンテナの内部空間にパラフィンおよび
土を詰めた場合と空洞の場合とにおける電波の減衰特性
を測定する測定装置の概略図である。
FIG. 2 is a schematic diagram of a measuring device that measures the attenuation characteristics of radio waves when the internal space of a horn antenna is filled with paraffin and soil and when the horn antenna is hollow.

【図3】図2の測定装置により得られた電波の減衰特性
を示す特性図である。
FIG. 3 is a characteristic diagram showing the attenuation characteristics of radio waves obtained by the measuring device of FIG. 2;

【図4】この発明の基礎となるレーダ探査装置のブロッ
ク図である。
FIG. 4 is a block diagram of a radar exploration device that is the basis of this invention.

【符号の説明】[Explanation of symbols]

1    アンテナ本体 3    誘電体 5    地表面 6    地中 1 Antenna body 3 Dielectric 5 Ground surface 6 Underground

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  地表面から地中へ電波を放射し、もし
くは地中から地表面へ出た電波を受信するホーンアンテ
ナであって、中心部に逆ホーン形の空洞を有する低損失
でかつ前記地表面の層の誘電率に近い誘電率を有する誘
電体をアンテナ本体の内部空間に詰めたことを特徴とす
るホーンアンテナ。
Claim 1: A horn antenna that emits radio waves from the ground surface to the ground or receives radio waves emitted from the ground to the ground surface, the antenna having a low loss having an inverted horn-shaped cavity in the center, and A horn antenna characterized in that an internal space of an antenna body is filled with a dielectric material having a dielectric constant close to that of a layer on the earth's surface.
JP3126013A 1991-05-29 1991-05-29 Horn antenna Pending JPH04351983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3126013A JPH04351983A (en) 1991-05-29 1991-05-29 Horn antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3126013A JPH04351983A (en) 1991-05-29 1991-05-29 Horn antenna

Publications (1)

Publication Number Publication Date
JPH04351983A true JPH04351983A (en) 1992-12-07

Family

ID=14924571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3126013A Pending JPH04351983A (en) 1991-05-29 1991-05-29 Horn antenna

Country Status (1)

Country Link
JP (1) JPH04351983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661389B2 (en) 2000-11-20 2003-12-09 Vega Grieshaber Kg Horn antenna for a radar device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661389B2 (en) 2000-11-20 2003-12-09 Vega Grieshaber Kg Horn antenna for a radar device

Similar Documents

Publication Publication Date Title
US7068213B2 (en) Level meter
KR101492714B1 (en) Adaptor for Connecting Microstrip Line and Waveguide
KR970701345A (en) Inspection method of plumbing elements by electromagnetic waves
US8915133B2 (en) Arrangement and method for testing a level gauge system
US5880698A (en) Arrangement for generating and transmitting microwaves, in particular for a filling level measuring device
GB2341289A (en) Portable ground-probing radar
SE0102881D0 (en) radar Level Meter
US7852091B2 (en) Microwave determination of location and speed of an object inside a pipe
RU2327958C2 (en) Device and process of level measurement by radiolocation
KR100413831B1 (en) Ground penetration radar
JPH04351983A (en) Horn antenna
JP2004294449A (en) Distance measuring instrument for measuring distance by electromagnetic wave, based on radar principle
WO1990015452A1 (en) Antenna with bends
JP3883251B2 (en) Radar antenna
JP3927688B2 (en) Antenna for leak detector
JPS5835478A (en) Locating device for underground structure by radar system
KR100431777B1 (en) Water leak detector and antenna thereof
RU2101717C1 (en) Method for measurement of effective scattering area and device which implements said method
RU2092874C1 (en) Method of detection of objects in earth and device intended for its realization
JP2632653B2 (en) Depth measuring device
JP3245065B2 (en) Sewer inspection device
Olver Microwave detection of hidden objects
RU2556746C2 (en) Radar level indicator with waveguide line
SU1446487A1 (en) Radio-frequency oscillation meter
RU2073852C1 (en) Shf-apparatus for measuring moisture content in petroleum and petroleum products