JPH04337044A - High strength al-li alloy excellent in scc resistance - Google Patents

High strength al-li alloy excellent in scc resistance

Info

Publication number
JPH04337044A
JPH04337044A JP13593491A JP13593491A JPH04337044A JP H04337044 A JPH04337044 A JP H04337044A JP 13593491 A JP13593491 A JP 13593491A JP 13593491 A JP13593491 A JP 13593491A JP H04337044 A JPH04337044 A JP H04337044A
Authority
JP
Japan
Prior art keywords
strength
weight
alloy
content
scc resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13593491A
Other languages
Japanese (ja)
Other versions
JP3078874B2 (en
Inventor
Kazunori Kobayashi
一徳 小林
Yoshihiro Tsuji
辻 美紘
Takehiko Eto
武比古 江藤
Seiichi Hirano
平野 清一
Kunihiko Kishino
邦彦 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARISHIUMU KK
Original Assignee
ARISHIUMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARISHIUMU KK filed Critical ARISHIUMU KK
Priority to JP03135934A priority Critical patent/JP3078874B2/en
Publication of JPH04337044A publication Critical patent/JPH04337044A/en
Application granted granted Critical
Publication of JP3078874B2 publication Critical patent/JP3078874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain an Al-Li alloy having high specific-strength and high specific-elasticity and combining superior SCC resistance with high strength. CONSTITUTION:This alloy has a composition containing, by weight, 0.5-3.5% Li, 0.5-6.0% Cu, and 0.05-1.5% Zn and further containing at least one element selected from the group consisting of 0.05-3.0% Mg, 0.05-0.3% Zr, 0.05-0.3% Cr, 0.05-1.5% Mn, 0.05-0.3% V, and 0.005-0.1% Ti.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は優れた耐SCC性と高強
度の双方の特性を兼ね備えた耐SCC性が優れた高強度
Al−Li系合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength Al--Li alloy having both excellent SCC resistance and high strength.

【0002】0002

【従来の技術】Al−Li系合金は、高比強度及び高比
弾性を有するため、航空機工業、自動車工業及び電気工
業における次世代の製品に要求される特性を満たす高張
力Al合金として実用化が検討されている。そして、そ
れらの用途に使用するためには、強度、延性、靱性、疲
労特性及び耐食性などの材料特性も従来のAl合金と同
等以上の性能を有することが必要不可欠である。従来、
Al−Li系合金に関して種々研究がなされているが、
特に、Al−Li−Cu系及びAl−Li−Cu−Mg
系合金が実用化をめざして開発されてきた。
[Prior Art] Al-Li alloys have high specific strength and high specific elasticity, so they have been put to practical use as high-strength Al alloys that meet the characteristics required for next-generation products in the aircraft, automobile, and electrical industries. is being considered. In order to use it for these purposes, it is essential that the material properties such as strength, ductility, toughness, fatigue properties, and corrosion resistance are equivalent to or better than those of conventional Al alloys. Conventionally,
Various studies have been conducted on Al-Li alloys, but
In particular, Al-Li-Cu system and Al-Li-Cu-Mg
alloys have been developed with the aim of putting them into practical use.

【0003】0003

【発明が解決しようとする課題】しかしながら、良好な
耐食性(耐SCC性)を必要とする用途に使用する場合
には、従来のAl−Li系合金は必ずしも満足できる特
性を具備していない。即ち、従来のAl−Li系合金は
、従前、高張力Al合金として使用されていたAA70
75合金及びAA2024合金と同等の耐SCC性は得
られていない。
However, when used in applications requiring good corrosion resistance (SCC resistance), conventional Al-Li alloys do not necessarily have satisfactory properties. That is, the conventional Al-Li alloy is AA70, which was previously used as a high-strength Al alloy.
SCC resistance equivalent to that of 75 alloy and AA2024 alloy has not been obtained.

【0004】本発明はかかる問題点に鑑みてなされたも
のであって、高比強度及び高比弾性を有すると共に、優
れた耐SCC性及び高強度を兼ね備えた耐SCC性が優
れた高強度Al−Li系合金を提供することを目的とす
る。
The present invention has been made in view of the above problems, and is a high-strength Al having high specific strength and high specific elasticity, as well as excellent SCC resistance and high strength. -An object of the present invention is to provide a Li-based alloy.

【0005】[0005]

【課題を解決するための手段】本発明に係る耐SCC性
が優れた高強度Al−Li系合金は、重量%で、Li;
 0.5〜 3.5%、Cu; 0.5〜 6.0%及
びZn;0.05〜 1.5%を含有し、更にMg;0
.05〜 3.0%、Zr;0.05〜 0.3%、C
r;0.05〜 0.3%、Mn;0.05〜 1.5
%、V;0.05〜 0.3%及びTi; 0.005
〜 0.1%からなる群から選択された少なくとも1種
の元素を含有し、残部がAl及び不可避的不純物である
ことを特徴とする。
[Means for Solving the Problems] The high-strength Al-Li alloy with excellent SCC resistance according to the present invention has Li;
0.5-3.5%, Cu; 0.5-6.0% and Zn; 0.05-1.5%, further Mg; 0
.. 05-3.0%, Zr; 0.05-0.3%, C
r; 0.05-0.3%, Mn; 0.05-1.5
%, V; 0.05-0.3% and Ti; 0.005
It is characterized by containing at least one element selected from the group consisting of ~0.1%, with the remainder being Al and inevitable impurities.

【0006】[0006]

【作用】本願発明者等は、高比強度及び高比弾性を有す
るAl−Li系合金の特長を維持しつつ、耐SCC性を
改善すべく種々実験研究を行った結果、以下に示す成分
を以下に示す所定の含有量で含有することにより、所期
の目的を達成できることを見い出した。
[Operation] The inventors of the present application have conducted various experimental studies to improve SCC resistance while maintaining the features of Al-Li alloys having high specific strength and high specific elasticity. It has been found that the intended purpose can be achieved by containing it in the predetermined content shown below.

【0007】以下、本発明に係るAl−Li系合金の成
分添加理由及び組成限定理由について説明する。
[0007] The reasons for adding the ingredients and the reasons for limiting the composition of the Al-Li alloy according to the present invention will be explained below.

【0008】Li Liは、合金の低密度化及び高弾性化のために不可欠の
元素であると共に、強度の向上に寄与する元素である。 Liは製造の最終熱処理の時効処理過程において、Al
やCuと結合してδ’相又はT1 相等として析出し、
時効硬化に寄与するものである。Liの含有量が 0.
5重量%未満の場合は、低密度化・高弾性化の効果が小
さく、 3.5重量%を超えると延性及び靱性が著しく
低下する。 従って、Li含有量は 0.5〜 3.5重量%とする
Li Li is an essential element for lowering the density and increasing the elasticity of the alloy, and is also an element that contributes to improving the strength. In the aging treatment process of the final heat treatment in manufacturing, Li is
and Cu to precipitate as δ' phase or T1 phase,
It contributes to age hardening. Li content is 0.
If it is less than 5% by weight, the effect of lowering density and increasing elasticity will be small, and if it exceeds 3.5% by weight, ductility and toughness will be significantly reduced. Therefore, the Li content is set to 0.5 to 3.5% by weight.

【0009】  Cu Cuは、合金の強度の向上に寄与する元素であり、製造
の最終熱処理の時効処理過程においてAl、Li又はM
gと結合して、T1 相、θ’相又はS’相等として析
出し、時効硬化に寄与するものである。しかし、Cuの
含有量が 0.5重量%未満では所望の高強度は得られ
ず、逆に 6.0重量%を超えると延性及び靱性が著し
く低下し、且つ低密度化の効果も小さくなる。従って、
Cuの含有量は 0.5〜 6.0重量%とする。
[0009]Cu Cu is an element that contributes to improving the strength of the alloy, and is added to Al, Li, or M during the aging process of the final heat treatment in manufacturing.
It combines with g and precipitates as a T1 phase, θ' phase, S' phase, etc., and contributes to age hardening. However, if the Cu content is less than 0.5% by weight, the desired high strength cannot be obtained, and on the other hand, if it exceeds 6.0% by weight, the ductility and toughness are significantly reduced, and the effect of lowering the density is also reduced. . Therefore,
The content of Cu is 0.5 to 6.0% by weight.

【0010】Zn Znは、アルミニウム合金の耐SCC性の向上に寄与す
る元素であり、本発明において主目的を達成するための
添加元素である。Zn含有量が0.05重量%未満では
耐SCC性の向上の効果は小さい。一方、Zn含有量が
 1.5重量%を超えると、アルミニウム合金の延性及
び靱性が著しく低下する。
Zn Zn is an element that contributes to improving the SCC resistance of aluminum alloys, and is an added element to achieve the main purpose of the present invention. If the Zn content is less than 0.05% by weight, the effect of improving SCC resistance is small. On the other hand, when the Zn content exceeds 1.5% by weight, the ductility and toughness of the aluminum alloy decrease significantly.

【0011】Znによる耐SCC性改善のメカニズムに
ついては未だ明確には判明していないが、本願発明者ら
による多数の実験研究により得られた知見では、Znの
添加効果は以下に示すものであると考えられる。即ち、
Znを添加することによりサブ粒界と粒内の析出組織形
態が変化し、電気化学的な性質も変化する。その結果、
腐食の形態が全面腐食型となり、これにより耐SCC性
が向上する。いずれにしても、本願発明者らによる多数
の実験研究の結果、Znの含有量を0.05〜 1.5
重量%とすることにより、延性及び靱性を劣化させるこ
となく、耐SCC性を向上できることが判明した。
[0011] Although the mechanism by which Zn improves SCC resistance has not yet been clearly clarified, according to the findings obtained through numerous experimental studies by the inventors of the present application, the effects of adding Zn are as follows. it is conceivable that. That is,
By adding Zn, the morphology of the sub-grain boundaries and intragranular precipitated structures changes, and the electrochemical properties also change. the result,
The form of corrosion becomes a general corrosion type, which improves SCC resistance. In any case, as a result of numerous experimental studies conducted by the inventors of the present application, the Zn content was determined to be between 0.05 and 1.5.
It was found that SCC resistance can be improved without deteriorating ductility and toughness by adjusting the amount by weight%.

【0012】  Zr Zrは、最終熱処理後のミクロ組織において、その組織
形態を制御することにより強度及び延性の向上に寄与す
る元素である。Zr含有量が0.05重量%未満では、
再結晶化が起きてミクロ組織が大きくなり、強度の低下
はそれほど認められないものの延性が著しく低下してし
まう。Zr含有量が0.20重量%を超えると、その効
果が飽和すると共に、Zrを含む巨大晶出物が生じ、強
度及び靱性等の低下をもたらす。従って、特に優れた強
度及び靱性を必要とする用途に使用する場合には、Zr
の含有量を0.05〜0.20重量%とする。
Zr Zr is an element that contributes to improving strength and ductility by controlling the microstructure morphology after final heat treatment. When the Zr content is less than 0.05% by weight,
Recrystallization occurs and the microstructure becomes larger, and although the strength is not significantly reduced, the ductility is significantly reduced. When the Zr content exceeds 0.20% by weight, the effect is saturated and large crystallized substances containing Zr are generated, resulting in a decrease in strength, toughness, etc. Therefore, when used in applications requiring particularly excellent strength and toughness, Zr
The content is 0.05 to 0.20% by weight.

【0013】  Mg Mgは延性及び靱性を低下させることなく強度を向上さ
せる元素であり、製造工程における最終熱処理の時効処
理過程にS’相等として析出し、強度の向上に寄与する
。このため、特に高強度を要求される場合に、任意に添
加する。Mg含有量が0.05重量%未満では、強度向
上の効果が小さく、Mg含有量が 3.0重量%を超え
ると延性及び靱性が低下する。従って、Mgを添加する
場合には、その含有量を0.05〜 3.0重量%とす
る。
Mg Mg is an element that improves strength without reducing ductility and toughness, and precipitates as S' phase during the aging process of the final heat treatment in the manufacturing process and contributes to improving strength. Therefore, it is optionally added when particularly high strength is required. If the Mg content is less than 0.05% by weight, the effect of improving strength will be small, and if the Mg content exceeds 3.0% by weight, ductility and toughness will decrease. Therefore, when adding Mg, the content should be 0.05 to 3.0% by weight.

【0014】Cr,Mn,V Cr,Mn,VはZrと同様に最終熱処理後のミクロ組
織において、その組織形態を制御することにより強度及
び延性の向上に寄与する元素である。このため、特に高
強度及び高延性が要求される用途には、これらの各元素
を添加することが好ましい。これらの元素は、いずれも
含有量が0.05重量%未満の場合は再結晶化が起こり
、ミクロ組織が大きくなるため延性が低下する。一方、
Crを 0.3重量%、Mnを 1.5重量%、Vを 
0.3重量%を超えて含有してもその効果が飽和するた
め、それ以上の添加は無駄である。従って、これらの各
元素を添加する場合には、Crの含有量は0.05〜 
0.3重量%、Mnの含有量は0.05〜 1.5重量
%、Vの含有量は0.05〜 0.3重量%とする。
Cr, Mn, V Cr, Mn, and V, like Zr, are elements that contribute to improving strength and ductility by controlling the microstructure morphology after final heat treatment. For this reason, it is preferable to add each of these elements especially for applications requiring high strength and high ductility. If the content of any of these elements is less than 0.05% by weight, recrystallization occurs and the microstructure becomes larger, resulting in a decrease in ductility. on the other hand,
Cr: 0.3% by weight, Mn: 1.5% by weight, V:
Even if the content exceeds 0.3% by weight, the effect will be saturated, so adding more than that is wasteful. Therefore, when adding each of these elements, the Cr content should be between 0.05 and 0.05.
The content of Mn is 0.05 to 1.5% by weight, and the content of V is 0.05 to 0.3% by weight.

【0015】Ti Tiは鋳塊のマクロ組織の微細化に寄与する元素である
。しかし、Ti含有量が 0.005重量%未満の場合
は、良好な微細化効果が得られず、逆に 0.1重量%
を超えると晶出物が増加して延性及び靱性が低下する。 従って、Tiの含有量は 0.005〜 0.1重量%
とする。これらのZr,Mg,Cr,Mn,V,Tiは
任意添加成分である。
Ti Ti is an element that contributes to refining the macrostructure of the ingot. However, if the Ti content is less than 0.005% by weight, a good refining effect cannot be obtained;
If it exceeds this amount, crystallized substances will increase and ductility and toughness will decrease. Therefore, the Ti content is 0.005 to 0.1% by weight.
shall be. These Zr, Mg, Cr, Mn, V, and Ti are optionally added components.

【0016】また、鋳塊中に不純物として含有されるF
e,Siは、含有量が0.25重量%を超えるとAl−
Fe−Si系晶出物が増加し、最終製品での延性及び靱
性が著しく低下する。従って、Fe又はSiの含有量は
0.25重量%以下とする必要がある。
[0016] Furthermore, F contained as an impurity in the ingot
e, Si, if the content exceeds 0.25% by weight, Al-
Fe-Si crystallized substances increase, and the ductility and toughness of the final product are significantly reduced. Therefore, the content of Fe or Si needs to be 0.25% by weight or less.

【0017】次に、本発明に係る高強度Al−Li系合
金の製造方法の一例について説明する。
Next, an example of a method for manufacturing a high-strength Al--Li alloy according to the present invention will be explained.

【0018】本発明に係る高強度Al−Li系合金の製
品形態は展伸材、押出材及び鍛造材のいずれでもよく、
いずれの形態でも良好な材料特性を示す。このため、製
造方法の一例として、展伸材の製造方法を例にとって、
以下に説明する。
The product form of the high-strength Al-Li alloy according to the present invention may be any of a wrought material, an extruded material, and a forged material.
Both forms exhibit good material properties. For this reason, as an example of the manufacturing method, taking the manufacturing method of wrought material as an example,
This will be explained below.

【0019】上述した組成のAl−Li系合金鋳塊を、
結晶粒径ができるだけ微細になるように、即ち例えば 
3mm以下となるように造塊する。この鋳塊の結晶粒径
が 3mmを超えると、粒界に存在する晶出物のサイズ
及び分布が夫々粗大及び不均一となるため、最終製品に
おける延性及び靱性が低下する。
[0019] An Al-Li alloy ingot having the above-mentioned composition,
The grain size should be as fine as possible, i.e.
Form the agglomerates to a thickness of 3 mm or less. If the crystal grain size of the ingot exceeds 3 mm, the size and distribution of crystallized substances present at the grain boundaries will become coarse and non-uniform, respectively, resulting in a decrease in ductility and toughness in the final product.

【0020】次に、得られた鋳塊を 400〜 550
℃の温度において均質化熱処理を施す。この処理の目的
は、第1にLi,Cu,Mg等の元素を十分に固溶させ
ること、第2に晶出物を部分的に固溶させて小さくする
こと、第3にZrAl3,Cr2Mg3Al16,Mn
Al6 ,VAl6等の金属間化合物の析出物を形成さ
せることである。続いて、 400℃以上の温度で熱間
圧延を開始し、熱延材を製造する。また、最終製品の板
厚が約 8mm以下のものは更に冷間圧延により所定板
厚にまで圧延加工する。
Next, the obtained ingot was 400 to 550
A homogenization heat treatment is carried out at a temperature of °C. The purpose of this treatment is, firstly, to sufficiently dissolve elements such as Li, Cu, Mg, etc., secondly, to partially dissolve crystallized substances to reduce their size, and thirdly, to dissolve elements such as ZrAl3, Cr2Mg3Al16, Mn
This is to form precipitates of intermetallic compounds such as Al6 and VAl6. Subsequently, hot rolling is started at a temperature of 400° C. or higher to produce a hot rolled material. In addition, if the final product has a thickness of about 8 mm or less, it is further cold rolled to a predetermined thickness.

【0021】以上の熱間圧延又は冷間圧延により製造し
た製品は所定の強度を付与するために、溶体化処理した
後、焼入れ処理し、必要に応じて冷間加工を施した後に
、時効処理を行う。
[0021] In order to impart a predetermined strength to the products manufactured by hot rolling or cold rolling, the products are subjected to solution treatment, quenching treatment, cold working as necessary, and then aging treatment. I do.

【0022】[0022]

【実施例】次に、本発明に係るAl−Li系合金の実施
例について、その比較例と共に説明する。
[Examples] Next, examples of Al--Li alloys according to the present invention will be described together with comparative examples thereof.

【0023】下記表1に示す含有成分のアルミニウム合
金を溶製し、鋳造して厚さが 300mmの鋳塊を作製
した。 次いで、 500℃で均質化処理を行い、 450℃ま
で降温した後、熱間圧延を開始し、厚さが25mmの圧
延材を製作した。この圧延材を 520℃に60分加熱
して溶体化処理した後、水焼入れし、次いで、冷間加工
として 6%のストレッチを行い、最後に 160℃に
48時間加熱して時効処理を施した。
[0023] An aluminum alloy having the ingredients shown in Table 1 below was melted and cast to produce an ingot with a thickness of 300 mm. Next, homogenization treatment was performed at 500°C, and after the temperature was lowered to 450°C, hot rolling was started to produce a rolled material with a thickness of 25 mm. This rolled material was solution-treated by heating to 520°C for 60 minutes, water quenched, then stretched by 6% as cold working, and finally aged to 160°C for 48 hours. .

【0024】耐SCC試験は、外径が19.1mmのC
−リングを作製し、所定の応力を負荷した後、交互浸漬
法( 3.5%NaCl水溶液に10分間浸漬する工程
と50分間乾燥する工程とを30日間に亘って繰り返す
)による促進試験により行った。
[0024] The SCC resistance test was conducted using C with an outer diameter of 19.1 mm.
- After producing a ring and applying a predetermined stress, an accelerated test was conducted using an alternate immersion method (a step of immersing it in a 3.5% NaCl aqueous solution for 10 minutes and a step of drying it for 50 minutes were repeated over a period of 30 days). Ta.

【0025】下記表2には、得られたAl−Li系合金
の機械的性質、耐SCC性、破壊靱性及び密度の各測定
値を示す。但し、表2において、F/Nは破損した試料
の数/試験した試料の数の比であり、Daysは破損ま
での日数を示す。
Table 2 below shows the measured values of the mechanical properties, SCC resistance, fracture toughness, and density of the obtained Al--Li alloy. However, in Table 2, F/N is the ratio of the number of damaged samples/the number of tested samples, and Days indicates the number of days until breakage.

【0026】この表2から明らかなように、本発明の実
施例に係るAl−Li系合金は、比較例合金に比して機
械的性質、耐SCC性及び破壊靱性のいずれの特性も優
れており、低密度のバランスが優れた特性を有している
ことがわかる。
As is clear from Table 2, the Al-Li alloys according to the examples of the present invention are superior in mechanical properties, SCC resistance, and fracture toughness compared to the comparative example alloys. It can be seen that the low density balance has excellent characteristics.

【0027】[0027]

【表1】[Table 1]

【0028】[0028]

【表2】[Table 2]

【0029】[0029]

【発明の効果】以上説明したように、本発明に係る耐S
CC性が優れた高強度Al−Li系合金は上述の組成を
有するから、高比強度及び高比弾性を有するのに加え、
耐SCC性が優れているという効果を奏する。
[Effects of the Invention] As explained above, the S resistance according to the present invention is
Since the high-strength Al-Li alloy with excellent CC properties has the above-mentioned composition, in addition to having high specific strength and high specific elasticity,
The effect is that the SCC resistance is excellent.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量%で、Li; 0.5〜 3.5
%、Cu; 0.5〜 6.0%及びZn;0.05〜
 1.5%を含有し、更にMg;0.05〜 3.0%
、Zr;0.05〜 0.3%、Cr;0.05〜 0
.3%、Mn;0.05〜 1.5%、V;0.05〜
 0.3%及びTi; 0.005〜0.1%からなる
群から選択された少なくとも1種の元素を含有し、残部
がAl及び不可避的不純物であることを特徴とする耐S
CC性が優れた高強度Al−Li系合金。
Claim 1: Li; 0.5 to 3.5 in weight %
%, Cu; 0.5~6.0% and Zn; 0.05~
Contains 1.5% and further contains Mg; 0.05-3.0%
, Zr; 0.05-0.3%, Cr; 0.05-0
.. 3%, Mn; 0.05-1.5%, V; 0.05-
S-resistant material containing at least one element selected from the group consisting of 0.3% and Ti; 0.005 to 0.1%, with the remainder being Al and inevitable impurities.
High strength Al-Li alloy with excellent CC properties.
JP03135934A 1991-05-10 1991-05-10 Method for producing high-strength Al-Li alloy with excellent SCC resistance Expired - Lifetime JP3078874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03135934A JP3078874B2 (en) 1991-05-10 1991-05-10 Method for producing high-strength Al-Li alloy with excellent SCC resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03135934A JP3078874B2 (en) 1991-05-10 1991-05-10 Method for producing high-strength Al-Li alloy with excellent SCC resistance

Publications (2)

Publication Number Publication Date
JPH04337044A true JPH04337044A (en) 1992-11-25
JP3078874B2 JP3078874B2 (en) 2000-08-21

Family

ID=15163264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03135934A Expired - Lifetime JP3078874B2 (en) 1991-05-10 1991-05-10 Method for producing high-strength Al-Li alloy with excellent SCC resistance

Country Status (1)

Country Link
JP (1) JP3078874B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109868400A (en) * 2017-12-04 2019-06-11 凯瑟铝制品有限责任公司 A kind of low cost for high formability light sheet products, is substantially free of the aluminium lithium alloy of Zr
JP2022506542A (en) * 2018-11-07 2022-01-17 アーコニック テクノロジーズ エルエルシー 2XXX Aluminum Lithium Alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109868400A (en) * 2017-12-04 2019-06-11 凯瑟铝制品有限责任公司 A kind of low cost for high formability light sheet products, is substantially free of the aluminium lithium alloy of Zr
JP2022506542A (en) * 2018-11-07 2022-01-17 アーコニック テクノロジーズ エルエルシー 2XXX Aluminum Lithium Alloy

Also Published As

Publication number Publication date
JP3078874B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JPS6140742B2 (en)
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP4185247B2 (en) Aluminum-based alloy and heat treatment method thereof
CN112626386A (en) High-strength corrosion-resistant Al-Mg-Si-Cu aluminum alloy and preparation method and application thereof
JPS59159961A (en) Superplastic al alloy
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JPS58167757A (en) Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability
JPS61163233A (en) Non-heat treatment type free-cutting aluminum alloy
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JPH0713275B2 (en) High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy
JPH04337044A (en) High strength al-li alloy excellent in scc resistance
JPS6123751A (en) Manufacture of al-li alloy having superior ductility and toughness
JPS61166938A (en) Al-li alloy for expansion and its production
JPH062092A (en) Method for heat-treating high strength and high formability aluminum alloy
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH06207254A (en) Production of high strength al-li series alloy casting
JPH07197177A (en) Aluminum alloy rolled sheet for superplastic formation and low in cavitation
JPS61227157A (en) Manufacture of al-li alloy for elongation working
JPS63169353A (en) Aluminum alloy for forming and its production
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPS6296643A (en) Superplastic aluminum alloy
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture