JPH04336443A - Microscope - Google Patents

Microscope

Info

Publication number
JPH04336443A
JPH04336443A JP3107925A JP10792591A JPH04336443A JP H04336443 A JPH04336443 A JP H04336443A JP 3107925 A JP3107925 A JP 3107925A JP 10792591 A JP10792591 A JP 10792591A JP H04336443 A JPH04336443 A JP H04336443A
Authority
JP
Japan
Prior art keywords
microscope
light source
light
semiconductor chip
television camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3107925A
Other languages
Japanese (ja)
Inventor
Naotaro Nakada
直太郎 中田
Wataru Kubo
渉 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP3107925A priority Critical patent/JPH04336443A/en
Priority to KR1019920007759A priority patent/KR960014968B1/en
Publication of JPH04336443A publication Critical patent/JPH04336443A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Abstract

PURPOSE:To provide a microscope which is capable of appropriately identifying a boundary between a semiconductor chip and gold pads, and which facilitates the setting of the brightness of the light source and levels used in binary decision by employing an infrared emission element as the light source. CONSTITUTION:A light receiving surface 21 of a television camera 2 is positioned at the image surface of the main body 1 of a microscope, and the bright-field or dark-field illumination of the object being captured is effected. Video signals of the television camera 2 are displayed on a monitor TV for visualization, or subjected to image processings. In such a microscope, an infrared emission element is used for the light source 3 which illuminates the object 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体のダイボン或
いは半導体チップの金パッドメッキ処理の判定検査を行
う際に使用される顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope used to judge and inspect gold pad plating of semiconductor die bonds or semiconductor chips.

【0002】0002

【従来の技術】図4及び図5は、従来の顕微鏡を示す説
明図である。図4に示す顕微鏡は、顕微鏡本体1の像面
に、白黒テレビカメラ(CCD・撮像管)2の受光面2
1を配置し、顕微鏡本体1の光路に対し光を放射する光
源3を配置している。この顕微鏡は、光源3から放射す
る光を顕微鏡光学系の光軸を通させる、所謂明視野タイ
プのもので、光源3からの光をハーフミラー11を介し
て、テーブル4上の半導体チップ(撮像対象物)5に照
射する。半導体チップ5に照射した反射光は、ハーフミ
ラー11を介して、顕微鏡光学系からテレビカカメラ2
の受光面21に入射し、テレビカメラ2にビデオ信号(
画像信号)として取り込まれる。この画像信号が、画像
処理され、モニタテレビに映し出され、半導体チップの
検査判定が、自動機で実行される。一方、  図5に示
す顕微鏡は、対象物5に対し照射する光の光源3を、顕
微鏡本体1外部に配備したもので、光源3からの光は顕
微鏡光学系の光軸を通さず、直接、対象物5に放射する
、所謂暗視野タイプのものである。
2. Description of the Related Art FIGS. 4 and 5 are explanatory diagrams showing a conventional microscope. The microscope shown in FIG.
1 is arranged, and a light source 3 that emits light to the optical path of the microscope main body 1 is arranged. This microscope is a so-called bright field type microscope in which the light emitted from the light source 3 passes through the optical axis of the microscope optical system. Irradiate target) 5. The reflected light irradiated onto the semiconductor chip 5 is transmitted from the microscope optical system to the television camera 2 via the half mirror 11.
The video signal (
image signal). This image signal is image-processed and displayed on a monitor television, and an automatic machine performs inspection and determination of the semiconductor chip. On the other hand, the microscope shown in FIG. 5 has a light source 3 that irradiates the object 5 with light outside the microscope body 1, and the light from the light source 3 does not pass through the optical axis of the microscope optical system, but directly. It is a so-called dark field type that emits light onto the object 5.

【0003】0003

【考案が解決しようとする課題】図4及び図5に示す従
来の顕微鏡は、いずれも可視光源(タングステンランプ
)3を使用している。図3で示すように、可視光のタン
グステンランプ3では、600nmから800nmで発
光強度が大きな値を示し、波長の長い850nmを越え
ると急激に小さくなる。また、撮像対象物が例えば半導
体チップであるとすると、半導体チップ5のチップ部(
GaP)51の反射率は、500nm近傍で最も大きく
(反射率がほぼ40%)、波長の長い領域になるほど除
々に反射率が小さくなり、700nm辺りから反射率約
25%位の水平状態を示す。更に、半導体チップ面内の
金パッド部52は、500nm辺りでは反射率が50%
程度であるが、波長が長い領域になるほど、除々に反射
率が大きくなり、約800nm辺りから反射率が約10
0%に近い値で水平状態を示す。また、CCDの感度も
、波長の小さい500乃至700nm辺りで大きい。 従って、図6で示すように半導体チップ5に対しタング
ステンランプ3の可視光を照射すると、金パッド部52
の反射光とチップ部51の反射光の強度が近接しており
、殆ど両者の間に差がなく、金パッド部52とチップ部
51との境界が判然としない。このため、金パッド部5
2の反射パターンを正確に認識するための最適範囲Aが
狭く、光源の明るさ、及び2値化判定用レベル(スレッ
ショルドレベル)Bの設定が困難である不利があった。
[Problems to be Solved by the Invention] The conventional microscopes shown in FIGS. 4 and 5 both use a visible light source (tungsten lamp) 3. As shown in FIG. 3, in the visible light tungsten lamp 3, the emission intensity exhibits a large value between 600 nm and 800 nm, and rapidly decreases when the wavelength exceeds 850 nm. Furthermore, if the object to be imaged is, for example, a semiconductor chip, the chip portion of the semiconductor chip 5 (
The reflectance of GaP) 51 is highest near 500 nm (reflectance is approximately 40%), and as the wavelength becomes longer, the reflectance gradually decreases, and from around 700 nm it shows a horizontal state with a reflectance of about 25%. . Furthermore, the reflectance of the gold pad portion 52 within the semiconductor chip surface is 50% at around 500 nm.
However, as the wavelength becomes longer, the reflectance gradually increases, and from around 800 nm, the reflectance increases to about 10
A value close to 0% indicates a horizontal state. Furthermore, the sensitivity of the CCD is also high at a small wavelength of around 500 to 700 nm. Therefore, when the semiconductor chip 5 is irradiated with visible light from the tungsten lamp 3 as shown in FIG.
The intensity of the reflected light from the gold pad portion 52 and the reflected light from the chip portion 51 are close to each other, there is almost no difference between the two, and the boundary between the gold pad portion 52 and the chip portion 51 is not clear. Therefore, the gold pad portion 5
The disadvantage is that the optimum range A for accurately recognizing the reflection pattern of No. 2 is narrow, and that it is difficult to set the brightness of the light source and the level (threshold level) B for binarization determination.

【0004】この発明では、以上のような課題を解消さ
せ、光源に赤外発光素子を用いることで、半導体チップ
部と金パッド部の境界が正確に認識でき、光源の明るさ
及び2値化判定用レベルの設定が容易な顕微鏡を提供す
ることを目的とする。
[0004] In the present invention, the above problems are solved, and by using an infrared light emitting element as a light source, the boundary between the semiconductor chip part and the gold pad part can be accurately recognized, and the brightness of the light source and the binarization can be improved. The purpose of the present invention is to provide a microscope in which the determination level can be easily set.

【0005】[0005]

【課題を解決するための手段及び作用】この目的を達成
させるために、この発明の顕微鏡では、次のような構成
としている。顕微鏡は、顕微鏡本体の像面にテレビカメ
ラの受光面を配置し、撮像対象物に対し明視野乃至暗視
野照明を行い、テレビカメラのビデオ信号をモニタテレ
ビで目視或いは画像処理する顕微鏡であって、前記撮像
対象物に対する照明は、赤外発光素子を光源として用い
ることを特徴としている。
Means and Effects for Solving the Problems In order to achieve this object, the microscope of the present invention has the following configuration. A microscope is a microscope in which the light-receiving surface of a television camera is arranged on the image plane of the microscope body, bright-field or dark-field illumination is applied to the object to be imaged, and the video signal of the television camera is visually viewed or image-processed on a monitor television. The illumination of the object to be imaged is characterized in that an infrared light emitting element is used as a light source.

【0006】このような構成を有する顕微鏡では、赤外
発光ダイオードを光源として用いている。図3で示すよ
うに赤外発光ダイオードのスペクトルは、850nmか
ら1000nmの範囲であって、950nmでピーク値
を有するスペクトルを示す。つまり、波長の長い領域で
ピーク値を持つ光源である。しかも、950nm辺りで
は、半導体チップ部の反射率は約25%であり、金パッ
ド部の反射率は約100%に近い値を示している。更に
、CCDの感度は950nmでは低いが約50%程度を
示している。従って、図2で示すように、赤外発光ダイ
オードを光源として用い、対象物である半導体チップに
赤外放射を行った場合、金パッド部の反射光とチップ部
の反射光とに大きな差があり、両者の境界が明瞭になる
。従って、金パッド部の反射パターンを正確に認識する
ための最適範囲が広がる結果、光源の明るさ、及び2値
化判定用レベルの設定が容易となる。
[0006] A microscope having such a configuration uses an infrared light emitting diode as a light source. As shown in FIG. 3, the spectrum of the infrared light emitting diode ranges from 850 nm to 1000 nm, with a peak value at 950 nm. In other words, it is a light source that has a peak value in a long wavelength region. Moreover, at around 950 nm, the reflectance of the semiconductor chip portion is approximately 25%, and the reflectance of the gold pad portion is close to approximately 100%. Furthermore, the sensitivity of CCD is low at 950 nm, but it is about 50%. Therefore, as shown in Figure 2, when an infrared light emitting diode is used as a light source and infrared radiation is applied to a semiconductor chip, there is a large difference between the light reflected from the gold pad and the light reflected from the chip. Yes, the boundary between the two becomes clear. Therefore, the optimum range for accurately recognizing the reflection pattern of the gold pad portion is widened, and as a result, it becomes easy to set the brightness of the light source and the level for binarization determination.

【0007】[0007]

【実施例】図1は、この発明に係る顕微鏡の具体的な一
実施例を示す斜視図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view showing a specific embodiment of a microscope according to the present invention.

【0008】実施例では、明視野タイプの顕微鏡を示し
ている。この顕微鏡は、公知のように、顕微鏡本体(実
体顕微鏡或いは金属顕微鏡)1と、この顕微鏡本体1の
像面側に配置された白黒テレビカメラ(CCD・撮像管
)2とから成る。つまり、テレビカメラ2の受光面21
を、顕微鏡本体1の像面に配置している。また、光源3
は顕微鏡本体1の光学系に対し光を放射するように、顕
微鏡本体1内に配備し、光源3からの光はハーフミラー
11を介して、光軸を通しテーブル4上の撮像対象物(
半導体チップ)5に照射するようになっている。また、
半導体チップ5に照射した反射光は、ハーフミラー11
を介して、顕微鏡光学系からテレビカカメラ2の受光面
21に入射し、テレビカメラ2にビデオ信号(画像信号
)として取り込まれる。この画像信号が、画像処理され
、モニタテレビに映し出される。
[0008] In the embodiment, a bright field type microscope is shown. As is well known, this microscope consists of a microscope main body (stereomicroscope or metallurgical microscope) 1 and a black and white television camera (CCD/image pickup tube) 2 arranged on the image plane side of the microscope main body 1. In other words, the light receiving surface 21 of the television camera 2
is arranged on the image plane of the microscope main body 1. Also, light source 3
is installed in the microscope body 1 so as to emit light to the optical system of the microscope body 1, and the light from the light source 3 passes through the optical axis through the half mirror 11 and onto the imaging target on the table 4 (
It is designed to irradiate the semiconductor chip (5). Also,
The reflected light irradiated onto the semiconductor chip 5 is reflected by a half mirror 11.
The light enters the light-receiving surface 21 of the television camera 2 from the microscope optical system via the microscope optical system, and is captured by the television camera 2 as a video signal (image signal). This image signal is subjected to image processing and displayed on a monitor television.

【0009】この発明の特徴は、赤外発光素子を光源3
として用いた点にある。つまり、波長の長い赤外放射を
目的とする赤外発光ダイオード3を使用する。この赤外
発光ダイオード3は、図3で示すように、波長の長い8
50nmから1000nmの範囲で、950nmをピー
ク値とする放物線を描くスペクトルを持つ。また、図3
で示すように、この950nmの波長領域では、金パッ
ド部52の反射率は極めて大きく(約100%に近く)
、逆に半導体チップ部51の反射率は、極端に小さい(
約25%)。また、CCDは低いが感度がある(約50
%)。つまり、赤外発光ダイオード3は金パッド部52
の反射率とチップ部51の反射率との差が大きく、且つ
CCDの感度が低いが存在する領域の光を放射する光源
である。
The feature of this invention is that the infrared light emitting element is used as a light source 3.
The point is that it was used as That is, an infrared light emitting diode 3 whose purpose is to emit infrared radiation with a long wavelength is used. As shown in FIG. 3, this infrared light emitting diode 3 has a long wavelength 8
It has a parabolic spectrum with a peak value of 950 nm in the range of 50 nm to 1000 nm. Also, Figure 3
As shown in , the reflectance of the gold pad portion 52 is extremely large (nearly 100%) in this 950 nm wavelength region.
, conversely, the reflectance of the semiconductor chip portion 51 is extremely small (
approximately 25%). Also, although the CCD is low, it has a high sensitivity (approximately 50
%). In other words, the infrared light emitting diode 3 has a gold pad portion 52.
This is a light source that emits light in a region where there is a large difference between the reflectance of the chip portion 51 and the reflectance of the chip portion 51, and the sensitivity of the CCD is low.

【0010】このような構成を有する顕微鏡では、赤外
発光ダイオードを光源3として用いている。図3で示す
ように赤外発光ダイオードのスペクトルは、850nm
辺りから上昇し、950nmでピークを迎え、1000
nmで850nmと同じ最低点を持つ。つまり、波長の
大きい領域でピーク値を持つ光源である。しかも、95
0nm辺りでは、半導体チップ部51の反射率は約25
%であり、金パッド部52の反射率は約100%に近い
値を示している。更に、CCDの感度も950nmでは
低いが約50%程度を示している。従って、図2で示す
ように、赤外発光ダイオードを光源3として用い、対象
物である半導体チップ5に赤外放射を行った場合、金パ
ッド部52の反射光とチップ部51の反射光とに大きな
差があり、両者の境界が極めて明瞭となる。これにより
、金パッド部52の反射パターンを正確に認識するため
の最適範囲Aが広がる結果、光源の明るさ、及び2値化
判定用レベル(スレッショルドレベルB)の設定が容易
となる。
[0010] In the microscope having such a configuration, an infrared light emitting diode is used as the light source 3. As shown in Figure 3, the spectrum of an infrared light emitting diode is 850 nm.
It rises from around 950 nm and reaches a peak at 1000 nm.
nm and has the same lowest point as 850 nm. In other words, it is a light source that has a peak value in a large wavelength region. Moreover, 95
At around 0 nm, the reflectance of the semiconductor chip portion 51 is approximately 25
%, and the reflectance of the gold pad portion 52 shows a value close to about 100%. Furthermore, the sensitivity of the CCD is also low at 950 nm, but only about 50%. Therefore, as shown in FIG. 2, when an infrared light emitting diode is used as the light source 3 and infrared radiation is emitted to the target semiconductor chip 5, the reflected light from the gold pad portion 52 and the reflected light from the chip portion 51 are separated. There is a large difference between the two, and the boundary between the two is extremely clear. As a result, the optimal range A for accurately recognizing the reflection pattern of the gold pad portion 52 is widened, and the brightness of the light source and the level for binarization determination (threshold level B) can be easily set.

【0011】尚、実施例では撮像対象物として半導体チ
ップ5のチップ部(GaP)51と、金パッド部(Au
)52との反射特性についての例示をしたが、例えばA
l電極とSiチップの場合であっても、赤外放射するこ
とで両者の境界を明確にすることが出来る。
In the embodiment, the object to be imaged is the chip portion (GaP) 51 of the semiconductor chip 5 and the gold pad portion (Au).
) 52, but for example, A
Even in the case of an L electrode and a Si chip, the boundary between the two can be made clear by emitting infrared radiation.

【0012】0012

【発明の効果】この発明では、以上のように、顕微鏡の
撮像対象物に対し光を放射する光源を、赤外発光素子と
することとしたから、半導体チップ部の反射光と金パッ
ド部の反射光とに大きな差が出来、且つCCD感度も低
いが存在するため、両者の境界が明らかとなり、明確な
撮像が得られる。従って、金パッド部の反射パターンを
正確に認識するための最適範囲が広がり、光源の明るさ
及び2値化判定用レベルの設定が容易となる等、発明目
的を達成した優れた効果を有する。
Effects of the Invention As described above, in this invention, since the light source that emits light to the object to be imaged by the microscope is an infrared light emitting element, the light reflected from the semiconductor chip portion and the gold pad portion are Since there is a large difference between the reflected light and the CCD sensitivity, which is low, the boundary between the two becomes clear and clear imaging can be obtained. Therefore, the optimum range for accurately recognizing the reflection pattern of the gold pad portion is widened, and the brightness of the light source and the level for binary determination can be easily set, and the present invention has excellent effects that achieve the purpose of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例顕微鏡を示す説明図である。FIG. 1 is an explanatory diagram showing an example microscope.

【図2】実施例顕微鏡で半導体チップを撮像した場合を
示す説明図である。
FIG. 2 is an explanatory diagram showing a case where a semiconductor chip is imaged with an example microscope.

【図3】LED用照明系の分光特性を示す説明図である
FIG. 3 is an explanatory diagram showing spectral characteristics of an LED illumination system.

【図4】従来の顕微鏡を示す説明図である。FIG. 4 is an explanatory diagram showing a conventional microscope.

【図5】従来の他の顕微鏡を示す説明図である。FIG. 5 is an explanatory diagram showing another conventional microscope.

【図6】従来の顕微鏡で半導体チップを撮像した場合を
示す説明図である。
FIG. 6 is an explanatory diagram showing a case where a semiconductor chip is imaged using a conventional microscope.

【符号の説明】[Explanation of symbols]

1  顕微鏡本体 2  テレビカメラ 3  光源 5  半導体チップ 1 Microscope body 2 TV camera 3. Light source 5 Semiconductor chip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】顕微鏡本体の像面にテレビカメラの受光面
を配置し、撮像対象物に対し明視野乃至暗視野照明を行
い、テレビカメラのビデオ信号をモニタテレビで目視或
いは画像処理する顕微鏡において、前記撮像対象物に対
する照明は、赤外発光素子を光源として用いることを特
徴とする顕微鏡。
Claim 1: A microscope in which the light-receiving surface of a television camera is arranged on the image plane of the microscope body, bright-field or dark-field illumination is applied to the object to be imaged, and the video signal of the television camera is visually viewed or image-processed on a monitor television. . A microscope characterized in that illumination of the object to be imaged uses an infrared light emitting element as a light source.
JP3107925A 1991-05-14 1991-05-14 Microscope Pending JPH04336443A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3107925A JPH04336443A (en) 1991-05-14 1991-05-14 Microscope
KR1019920007759A KR960014968B1 (en) 1991-05-14 1992-05-08 Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107925A JPH04336443A (en) 1991-05-14 1991-05-14 Microscope

Publications (1)

Publication Number Publication Date
JPH04336443A true JPH04336443A (en) 1992-11-24

Family

ID=14471529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107925A Pending JPH04336443A (en) 1991-05-14 1991-05-14 Microscope

Country Status (2)

Country Link
JP (1) JPH04336443A (en)
KR (1) KR960014968B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398619A (en) * 1986-10-16 1988-04-30 Olympus Optical Co Ltd Lighting device for microscope
JPS63237428A (en) * 1987-03-26 1988-10-03 Oki Electric Ind Co Ltd Pattern recognition system for semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398619A (en) * 1986-10-16 1988-04-30 Olympus Optical Co Ltd Lighting device for microscope
JPS63237428A (en) * 1987-03-26 1988-10-03 Oki Electric Ind Co Ltd Pattern recognition system for semiconductor device

Also Published As

Publication number Publication date
KR960014968B1 (en) 1996-10-23
KR920022015A (en) 1992-12-19

Similar Documents

Publication Publication Date Title
KR960006966B1 (en) Bonding wire inspection apparatus
JPH02100580A (en) Optical camera
KR20150005405A (en) Illumination System for Use in Optical Inspection, Illumination System-based Inspection System, and Illumination System-based Inspection Method
KR930014857A (en) Bonding wire inspection device and method
US6407810B1 (en) Imaging system
KR100941878B1 (en) Optical system for inspecting appearance of semiconductor package
JP2801974B2 (en) microscope
US4236781A (en) Illumination system for specimen
JPH04336443A (en) Microscope
US20030031342A1 (en) Apparatus for examining documents of value
KR960014967B1 (en) Microscope
JPH05196568A (en) Plated metal inspection device
US8976366B2 (en) System and method for monitoring LED chip surface roughening process
JP2519363B2 (en) Wiring pattern defect inspection method on printed circuit board
TW202129237A (en) Inspection apparatus and inspection method
JP3603549B2 (en) Semiconductor visual inspection device and semiconductor visual inspection method
JPH10246617A (en) Method and apparatus for judgment of flatness
KR100262550B1 (en) Inspection device and its method for semiconductor chip
JP3250703B2 (en) Photoelectric conversion surface inspection method and inspection device
JPH0628393B2 (en) Object observation device
KR102336094B1 (en) Apparatus for determining an orientation of a die
JP2004061354A (en) Method for examining surface of material to be examined
CN117630031A (en) Semiconductor inspection apparatus and semiconductor manufacturing apparatus
JPH11150142A (en) Method and device for inspecting wiring bonding
JPS59200908A (en) Method and apparatus for lighting wafer