JPH04328921A - Parallel spread spectrum modulator-demodulator - Google Patents

Parallel spread spectrum modulator-demodulator

Info

Publication number
JPH04328921A
JPH04328921A JP3125402A JP12540291A JPH04328921A JP H04328921 A JPH04328921 A JP H04328921A JP 3125402 A JP3125402 A JP 3125402A JP 12540291 A JP12540291 A JP 12540291A JP H04328921 A JPH04328921 A JP H04328921A
Authority
JP
Japan
Prior art keywords
signal
spread spectrum
parallel
output
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3125402A
Other languages
Japanese (ja)
Other versions
JP2600518B2 (en
Inventor
Yukinobu Ishigaki
石垣 行信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP12540291A priority Critical patent/JP2600518B2/en
Priority to US07/813,735 priority patent/US5239556A/en
Publication of JPH04328921A publication Critical patent/JPH04328921A/en
Application granted granted Critical
Publication of JP2600518B2 publication Critical patent/JP2600518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize the parallel spread spectrum modulator-demodulator in which trade-off between an information speed and an inter-code interference is remarkably improved and high speed processing is attained while providing the effect onto an interference wave, a disturbing wave and noise or the like. CONSTITUTION:A modulation section 10 gives an information signal d(t) such as a data to a serial/parallel converter 2 from an input terminal I1, in which the signal is converted into sets of low speed information d1(t), d2(t), d3(t) and the sets of information d1(t)-d3(t) are fed to multipliers 11-13 being components of a parallel spread spectrum SS modulation section. Then the sets of information d1(t)-d3(t) are added (3) and a resulting composite SS modulation signal is outputted. On the other hand, a demodulation section 40 applies demodulation by inverse spread to a signal resulting from a reception input signal subject to elimination of a high frequency interrupt signal component for a main lobe band of the spread code or over. Then N sets of low speed processing data obtained in this way are subject to parallel/serial conversion to obtain the original information. Then the low speed coding data is subject to parallel/serial conversion through an inter-code interference noise circuit of N sets of inverse spread demodulation section of the demodulation section 40.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は並列スペクトル拡散変調
復調装置に係り、特に、並列SS(スペクトル拡散)方
式に符号間干渉抑圧技術を導入して、情報速度と符号間
干渉とのトレードオフを大巾に改善し、高速化を可能に
した、並列スペクトル拡散変調復調装置に関する。
[Industrial Application Field] The present invention relates to a parallel spread spectrum modulation and demodulation device, and in particular, it introduces an intersymbol interference suppression technique to a parallel SS (spread spectrum) system to eliminate the trade-off between information rate and intersymbol interference. This invention relates to a parallel spread spectrum modulation demodulation device that has been greatly improved and enables higher speeds.

【0002】0002

【技術的背景】情報を扱う種々の分野において、決めら
れた制限の中で如何に情報量を高めるかは永遠のテーマ
でもある。近年の技術の進歩や方向は、高能率な符号化
技術や変復調技術で代表されると言っても過言ではなく
、たとえば通信分野での多値QAM{Quadratu
re Amplitude Modulation;直
交振幅変調}の移動通信への応用の例にも見られるよう
に、定められた周波数帯域の中で伝送速度を高める技術
の研究,開発が一般的と言える。 かかる分野における前途有望な通信方式の1つに、スペ
クトル拡散(Spread Spectrum:以下“
SS”とも記載する)変調復調方式がある。
[Technical Background] In various fields that handle information, how to increase the amount of information within set limits is an eternal theme. It is no exaggeration to say that the progress and direction of technology in recent years is represented by highly efficient coding technology and modulation/demodulation technology.
As can be seen in the application of re Amplitude Modulation (orthogonal amplitude modulation) to mobile communications, it can be said that research and development of technology to increase transmission speed within a defined frequency band is common. One of the promising communication methods in this field is spread spectrum (hereinafter referred to as “Spread Spectrum”).
There is a modulation/demodulation method (also referred to as "SS").

【0003】SS変調復調方式とは、変調側では情報信
号等を広帯域の雑音状の拡散符号により拡散変調して、
非常に広い周波数帯域に拡散すると共に、復調側では変
調側で使用する拡散符号と等価な拡散符号で逆拡散する
方式である。かかる変調復調方式を用いて通信を行なう
SS通信方式は、秘話性が非常に高く、外部干渉や雑音
,故意の妨害に強く、従来システムと共存でき、しかも
微弱な電力で送信でき、更に、疑似雑音符号を変えるこ
とにより同一周波数帯域内に多重できる等々多くの特長
があるので、現在では単に通信機器分野に止まらず各分
野での応用が進んでおり、民生機器への展開も始まりつ
つある。
[0003] The SS modulation and demodulation method is such that on the modulation side, an information signal, etc. is spread-modulated using a wideband noise-like spreading code.
This method spreads over a very wide frequency band and despreads on the demodulation side using a spreading code equivalent to the spreading code used on the modulation side. The SS communication method, which communicates using such a modulation and demodulation method, has extremely high confidentiality, is resistant to external interference, noise, and intentional interference, can coexist with conventional systems, can transmit with very low power, and is Since it has many features such as being able to multiplex within the same frequency band by changing the noise code, it is currently being applied not only to communication equipment but also to various fields, and is beginning to be applied to consumer equipment.

【0004】0004

【従来の技術】SS通信方式を含むSS変調復調方式は
、ジャミングや狭帯域の干渉,及び伝送路の変動に強い
が、帯域の制限された伝送路においては、伝送するデー
タの持つ周波数帯域を非常に広い帯域に拡散して伝送す
るという性質がある。その特徴を生かそうとして拡散比
を取ると、伝送する信号の占有する帯域に対して、デー
タ速度が低くなるという短所がある。そこで、SS方式
の利点を極力損わないようにしてデータ速度の向上を図
ろうとして、SS方式の他の特徴である符号分割性を利
用した、SS方式による並列データ通信システムが、例
えば電子情報通信学会誌(IEICE) August
,4,5 ’89等に紹介されている。更に、データの
高速化に伴って並列チャンネル数が増加し、それと共に
系列間の相互相関による干渉の影響により性能が劣化す
ることに対する改善策として、M−ary SS方式に
よる並列データ通信システム等も、同誌に紹介されてい
る。
[Prior Art] SS modulation and demodulation systems, including SS communication systems, are resistant to jamming, narrowband interference, and transmission path fluctuations, but on transmission paths with limited bandwidth, the frequency band of the data to be transmitted is limited. It has the property of being spread over a very wide band for transmission. If the spreading ratio is used to take advantage of this characteristic, the disadvantage is that the data rate will be low relative to the band occupied by the transmitted signal. Therefore, in an attempt to improve the data speed without impairing the advantages of the SS method as much as possible, a parallel data communication system based on the SS method, which takes advantage of the code division property, which is another feature of the SS method, has been developed, for example, for electronic information. Journal of the Institute of Communication Studies (IEICE) August
, 4, 5 '89, etc. Furthermore, parallel data communication systems using the M-ary SS method are being developed as countermeasures against the fact that the number of parallel channels increases as data speeds increase, and performance deteriorates due to interference caused by cross-correlation between sequences. , is featured in the same magazine.

【0005】ここで、SS方式による並列データ通信シ
ステムの原理について簡単に説明する。まず、送信(変
調)側では、通信データを直列→並列(シリパラ)変換
にて複数ch.(チャンネル)の、より低速なデータに
分割し、これを全ch.のデータの同期をとった後、各
ch.毎にPN系列を用いて拡散して送信する。一方、
受信側では各ch.毎にデータを復調し、並列→直列(
パラシリ)変換によって最終的な受信データを得るもの
である。この様な並列データ通信システムには、拡散符
号として相互相関値を小さくできること等から、直交拡
散符号が用いられ、結果的に並列データ数を増すことが
できる。
[0005] Here, the principle of a parallel data communication system based on the SS method will be briefly explained. First, on the transmission (modulation) side, communication data is converted from serial to parallel (serial-parallel) to multiple channels. (channel) into lower-speed data, and divide this into lower-speed data for all channels. After synchronizing the data of each ch. Each signal is spread using a PN sequence and transmitted. on the other hand,
On the receiving side, each channel. Demodulate the data each time, parallel → serial (
The final received data is obtained through parallel-to-serial) conversion. In such a parallel data communication system, an orthogonal spreading code is used because the cross-correlation value can be reduced as a spreading code, and as a result, the number of parallel data can be increased.

【0006】[0006]

【発明が解決しようとする課題】しかるにこの方式では
、SS信号の伝送周波数帯域が広く取れており、SS信
号の伝送ロスが無い場合に効果が得られるもので、伝送
周波数帯域に制限が生じると、直交拡散符号の直交性が
損われることになり、相互相関値が大きくなって{即ち
逆拡散出力における符号間干渉ノイズが大きくなり}、
結果的に並列データ数があまり高められない等の問題が
生じる。
[Problem to be Solved by the Invention] However, this method is effective when the transmission frequency band of the SS signal is wide and there is no transmission loss of the SS signal, but if the transmission frequency band is limited, , the orthogonality of the orthogonal spreading code will be impaired, the cross-correlation value will increase {that is, the inter-symbol interference noise in the despreading output will increase},
As a result, problems arise such as the number of parallel data cannot be increased very much.

【0007】また、このようなシステムは、伝送途上に
おいて混入してくる干渉波や雑音等においては、従来よ
りのSS方式におけるプロセスゲインによる抑圧効果は
期待できるが、抑圧効果を更に高めるための性能は持ち
合せていない。そこで、妨害等に対する抑圧効果を更に
高めながら、この抑圧効果と情報速度とのtrade 
off(両立)問題を改善できる、並列型SS通信方式
(SS変調復調装置)の出現が渇望されていた。
[0007] In addition, in such a system, the process gain in the conventional SS method can be expected to suppress interference waves and noise that enter the transmission process, but the performance needs to be improved to further enhance the suppression effect. I don't have it. Therefore, while further increasing the suppression effect against interference etc., it is necessary to trade this suppression effect with information speed.
There has been a strong desire for the emergence of a parallel SS communication system (SS modulation/demodulation device) that can improve the off (compatibility) problem.

【0008】[0008]

【課題を解決するための手段】本発明の並列スペクトル
拡散変調復調装置は、情報信号を直列/並列変換して低
速化したN個の低速化データを得、これらN個の低速化
データを夫々異なるN個の拡散符号でスペクトル拡散変
調を行ない、得られたN個のスペクトル拡散変調信号を
加算して複合スペクトル拡散変調信号として出力するよ
う構成したスペクトル拡散変調部と、複合スペクトル拡
散変調信号を入力して、入力信号のうち拡散符号のメイ
ンローブ帯域以上の高域干渉信号成分を除去する入力フ
ィルタを伝送させてからN個の復調回路に供給し、夫々
の信号を変調時に使用された拡散符号と夫々等価な拡散
符号にて逆拡散による復調を行なって得られたN個の低
速化データを並列/直列変換して元の情報信号を得るよ
う構成したスペクトル拡散復調部とを備えた並列スペク
トル拡散変調復調装置において、スペクトル拡散復調部
を構成するN個の逆拡散復調部に夫々独立した符号間干
渉ノイズ抑圧手段を設け、この抑圧手段にて符号間干渉
ノイズを低減してから各N個の逆拡散復調信号を並列/
直列変換して元の情報信号を得るよう構成することによ
り、上記課題を解決した。
[Means for Solving the Problems] The parallel spread spectrum modulation demodulation device of the present invention obtains N pieces of slowed-down data obtained by serial/parallel converting an information signal, and converts each of these N pieces of slowed-down data into A spread spectrum modulation unit configured to perform spread spectrum modulation using N different spreading codes, add the obtained N spread spectrum modulation signals, and output the resultant result as a composite spread spectrum modulation signal, and a composite spread spectrum modulation signal. The input signal is transmitted through an input filter that removes high-frequency interference signal components above the main lobe band of the spreading code, and then supplied to N demodulation circuits. A parallel spread spectrum demodulator configured to perform parallel/serial conversion on N slowed data obtained by performing demodulation by despreading using spreading codes equivalent to the respective codes to obtain the original information signal. In a spread spectrum modulation demodulation device, each of the N despreading demodulators constituting the spread spectrum demodulator is provided with an independent intersymbol interference noise suppression means, and after the intersymbol interference noise is reduced by this suppression means, each despread demodulated signals in parallel/
The above problem was solved by serially converting the signal to obtain the original information signal.

【0009】[0009]

【実施例】本発明の並列スペクトル拡散変調復調装置(
以下「並列SS変調復調装置」とも記載する)の一実施
例について、図面と共に説明する。図1は本発明の並列
SS変調復調装置1のブロック構成図であり、10は変
調部、40は復調部である。図中、2は直列/並列(シ
リパラ)変換器、3は加算器、4〜9は拡散符号発生回
路(PNG)、11〜22は乗算器、24及び25〜2
7は伝達関数HL (s) の夫々入力フィルタ及び等
化フィルタ(通常LPF)、37〜39は逆数回路、2
8〜30はLCF(ローカットフィルタ,高域濾波器)
、31〜33はHCF(ハイカットフィルタ,低域濾波
器)、41〜43はイコライザ回路、44〜46は減算
器、34〜36はLPF(低域濾波器)、47〜49は
波形整形回路、50は並列/直列(パラシリ)変換器で
ある。なお、イコライザ回路41〜43の特性は、例え
ば本出願人の先願である特願平2−253689号に開
示されたものと同等な特性で良い。
[Example] Parallel spread spectrum modulation demodulation device of the present invention (
An embodiment (hereinafter also referred to as "parallel SS modulation and demodulation device") will be described with reference to the drawings. FIG. 1 is a block diagram of a parallel SS modulation and demodulation apparatus 1 according to the present invention, in which 10 is a modulation section and 40 is a demodulation section. In the figure, 2 is a serial/parallel converter, 3 is an adder, 4 to 9 are spreading code generation circuits (PNG), 11 to 22 are multipliers, 24 and 25 to 2
7 is an input filter and an equalization filter (usually LPF) for the transfer function HL (s), 37 to 39 are reciprocal circuits, 2
8 to 30 are LCF (low cut filter, high pass filter)
, 31 to 33 are HCFs (high cut filters, low pass filters), 41 to 43 are equalizer circuits, 44 to 46 are subtracters, 34 to 36 are LPFs (low pass filters), 47 to 49 are waveform shaping circuits, 50 is a parallel/serial converter. The characteristics of the equalizer circuits 41 to 43 may be, for example, the same as those disclosed in Japanese Patent Application No. 2-253689, which is the applicant's earlier application.

【0010】次に、本発明の並列SS変調復調装置1の
機能,動作について、図2のスペクトル図を併せ参照し
て説明する。まず変調部10においては、入力端子In
1 よりデータ等の情報信号d(t) を直列/並列変
換器2に供給して低速化情報d1(t),d2(t),
d3(t)に変換する。変換された低速化情報d1(t
)〜d3(t)は夫々のSS変調部を構成する乗算器1
1〜13に供給される。一方、入力端子In2,〜In
4 からはクロック信号C(t) が夫々PNG4〜6
に供給されており、これらPNG4〜6はこのクロック
信号を基に互いに異なる拡散符号P1(t)〜P3(t
)(通常は擬似雑音符号)を生成して、夫々乗算器11
〜13の他方の入力端子に供給している。
Next, the functions and operations of the parallel SS modulation and demodulation apparatus 1 of the present invention will be explained with reference to the spectrum diagram shown in FIG. First, in the modulation section 10, the input terminal In
1 supplies the information signal d(t) such as data to the serial/parallel converter 2 to obtain the speed reduction information d1(t), d2(t),
d3(t). Converted speed reduction information d1(t
) to d3(t) are multipliers 1 constituting each SS modulation section.
1 to 13. On the other hand, input terminals In2, ~In
4, the clock signal C(t) is PNG4 to PNG6 respectively.
These PNG4-6 are supplied with different spreading codes P1(t)-P3(t) based on this clock signal.
) (usually a pseudo-noise code), and each multiplier 11
~13 is supplied to the other input terminal.

【0011】乗算器11〜13では、夫々低速化情報d
1(t)〜d3(t)の拡散符号P1(t)〜P3(t
)との乗算によるSS変調を夫々行ない、SS信号SS
1(t){図2(A)参照},SS2(t),SS3(
t),即ちP1(t)d1(t)〜P3(t)d3(t
)を生成する。それら3個のSS信号は加算器3にて加
算,合成されて、加算SS信号Sm(t){図2(B)
参照}となって、出力端子Out1を介して例えばアン
テナ(図示せず)より出力される。従って、加算SS信
号Sm(t)は、次式   Sm(t)=P1(t)d1(t)+P2(t)d
2(t)+P3(t)d3(t)  ………………… 
(1) で表わされる。
Multipliers 11 to 13 each receive speed reduction information d.
1(t) to d3(t) spreading codes P1(t) to P3(t
), SS signal SS is
1(t) {see Figure 2(A)}, SS2(t), SS3(
t), that is, P1(t)d1(t) to P3(t)d3(t
) is generated. These three SS signals are added and combined in adder 3, and the summed SS signal Sm(t) {Figure 2(B)
reference} and is output from, for example, an antenna (not shown) via the output terminal Out1. Therefore, the added SS signal Sm(t) is calculated by the following formula: Sm(t)=P1(t)d1(t)+P2(t)d
2(t)+P3(t)d3(t) …………………
(1) It is expressed as:

【0012】次に、復調部40側の機能,動作について
、図2の周波数スペクトル図を併せ参照し乍ら説明する
。なお、乗算器14,17,20から夫々波形整形回路
47,48,49に至る各逆拡散復調部の構成及び動作
原理は同等なので、乗算器14から波形整形回路47に
至る1つの逆拡散復調部について主に説明する。但し、
PNG7〜9で生成される拡散符号は互いに異なり、P
NG7,8,9の拡散符号は夫々P1(t),P2(t
),P3(t){即ち夫々PNG4,5,6で生成され
る拡散符号と同じ}である。
Next, the functions and operations of the demodulator 40 will be explained with reference to the frequency spectrum diagram of FIG. 2. Note that since the configuration and operating principle of each despreading demodulator from the multipliers 14, 17, 20 to the waveform shaping circuits 47, 48, 49 are the same, one despreading demodulation unit from the multiplier 14 to the waveform shaping circuit 47 This section will mainly be explained. however,
The spreading codes generated by PNG7 to PNG9 are different from each other, and PNG
The spreading codes of NG7, 8, and 9 are P1(t) and P2(t
), P3(t) {that is, the same as the spreading codes generated by PNG4, 5, and 6, respectively}.

【0013】復調部40の入力端子In5 から、加算
SS信号Sm(t)を入力フィルタ24に供給し、ここ
で不要な周波数帯域の雑音成分{拡散信号のメインロー
ブ以外の周波数成分}等を除去した後、各逆拡散復調部
へ伝送する。その際、加算SS信号Sm(t)は入力フ
ィルタ24でその情報の一部が損われて、Sm’(t)
 となる。即ち、と表わされる。即ち、P1’(t)*
d1(t),P2’(t)*d2(t),P3’(t)
*d3(t)が損失情報であり、かかる加算SS信号S
m’(t) は、逆拡散用の乗算器14,17,及び2
0に供給される。
The added SS signal Sm(t) is supplied from the input terminal In5 of the demodulator 40 to the input filter 24, where noise components in unnecessary frequency bands {frequency components other than the main lobe of the spread signal}, etc. are removed. After that, it is transmitted to each despreading demodulator. At that time, part of the information of the added SS signal Sm(t) is lost in the input filter 24, and Sm'(t)
becomes. That is, it is expressed as. That is, P1'(t)*
d1(t), P2'(t)*d2(t), P3'(t)
*d3(t) is the loss information, and the added SS signal S
m'(t) is multiplier 14, 17, and 2 for despreading.
0.

【0014】一方、入力端子In6 〜In8 からの
クロック信号C(t) を基にPNG7〜9で生成され
る拡散符号P1(t)〜P3(t)は、夫々変調時の拡
散符号P1(t)〜P3(t)と同時間に同一符号とし
て発生しているものである。拡散符号P1(t)は、上
記入力フィルタ24と伝達関数の等しい等化フィルタ2
5を通過した際、その特性によりP1(t)−P1’(
t) となって、逆数回路37と乗算器15に供給され
る。そして、逆数回路37からは 1/{P1(t)−
P1’(t)}なる逆数信号が出力され、逆拡散用の乗
算器14及び16に供給される。従って、乗算器14の
出力SD1(t) は、 となる。この式で、右辺第1項は復調された低速化情報
d1(t)であり、同第2項は他のSS信号との同期の
とれない拡散信号成分である{図2(C)参照}。
On the other hand, the spreading codes P1(t) to P3(t) generated in PNGs 7 to 9 based on the clock signals C(t) from the input terminals In6 to In8 are the spreading codes P1(t) during modulation, respectively. ) to P3(t) at the same time and with the same code. The spreading code P1(t) is an equalization filter 2 having the same transfer function as the input filter 24.
5, P1(t)-P1'(
t) and is supplied to the reciprocal circuit 37 and the multiplier 15. Then, from the reciprocal circuit 37, 1/{P1(t)-
P1'(t)} is output and supplied to multipliers 14 and 16 for despreading. Therefore, the output SD1(t) of the multiplier 14 is as follows. In this equation, the first term on the right side is the demodulated speed reduction information d1(t), and the second term is the spread signal component that cannot be synchronized with other SS signals {see Figure 2 (C)} .

【0015】かかる逆拡散出力SD1(t) は、減算
器44に供給されると共に、情報除去用のLCF28に
供給されて、ここで低速化情報d1(t)と、この周波
数帯域に含まれる拡散成分の一部が、図2(D) に曲
線aで示す如く除去される。その除去成分をU(t) 
とすると、LCF28の出力S1(t)は、 となる。かかるフィルタ出力S1(t)は、乗算器15
にて上記補正された拡散符号P1(t)−P1’(t)
 を乗算されて、次式のような出力S2(t)が得られ
る。
The despreading output SD1(t) is supplied to the subtracter 44 and also to the LCF 28 for information removal, where the despreading output SD1(t) and the spread information included in this frequency band are supplied to the LCF 28 for information removal. A portion of the component is removed as shown by curve a in FIG. 2(D). The removed component is U(t)
Then, the output S1(t) of the LCF 28 is as follows. The filter output S1(t) is outputted by the multiplier 15
The above corrected spreading code P1(t)-P1'(t)
An output S2(t) as shown in the following equation is obtained.

【0016】   この乗算出力S2(t)は、図2(E) に示すよ
うなスペクトルとなるが、この図において、曲線b,c
,dは夫々{P2(t)−P2’(t)}d2(t),
{P3(t)−P3’(t)}d3(t),及び{P1
(t)−P1’(t)}U(t)(破線は負成分である
ことを表わす)を示している。かかる乗算出力S2(t
)を次段のHCF31に供給すると、HCF31は図2
(F) から察せられるように、SS周波数帯域のメイ
ンローブの高域に遮断周波数を有するフィルタなので、
これにより、上記信号成分b,c,dは夫々図2(F)
 のe,f,gとなり、数式で表現すると、 となる。
[0016] This multiplication output S2(t) has a spectrum as shown in Fig. 2(E), in which curves b and c
, d are respectively {P2(t)-P2'(t)}d2(t),
{P3(t)-P3'(t)}d3(t), and {P1
(t)-P1'(t)}U(t) (the broken line represents a negative component). This multiplication output S2(t
) is supplied to the next stage HCF31, HCF31 becomes as shown in Figure 2.
As can be seen from (F), the filter has a cutoff frequency above the main lobe of the SS frequency band, so
As a result, the above signal components b, c, and d are respectively shown in FIG. 2(F).
e, f, g, and when expressed in a mathematical formula, it becomes.

【0017】かかるHCF出力S3(t)は乗算器16
に供給されて、ここで上記逆数回路37からの逆数化拡
散符号1/{P1(t)−P1’(t)}との乗算が行
なわれ、その出力としてS4(t)が得られる{図2(
G) 参照}。これを数式で表現すると、   第7式中、右辺の第3項は希望しない信号成分であ
り、G(t) を1にすれば、この第3項は0にできる
The HCF output S3(t) is sent to the multiplier 16
Here, multiplication with the reciprocal spreading code 1/{P1(t)-P1'(t)} from the reciprocal circuit 37 is performed, and S4(t) is obtained as the output {Fig. 2(
G) Reference}. Expressing this mathematically, the third term on the right side of the seventh equation is an undesired signal component, and if G(t) is set to 1, this third term can be set to 0.

【0018】即ち、第10式において、拡散符号P1(
t)のパワースペクトルを1とし、等化フィルタ25に
より削られる成分P1’(t) を0.2 、HCF3
1により除かれる成分P1”(t) を0.3 とすれ
ば、合計した値は0.375 となり、G(t) を2
.67倍すればG(t) =1となる。次段のイコライ
ザ回路41はG(t) の値を1にする働きを有し、従
って、イコライザ回路41の出力S5(t)は、S5(
t)=[{P2(t)−P2’(t)}d2(t)−V
1(t)]/{P1(t)−P1’(t)}+[{P3
(t)−P3’(t)}d3(t)−V2(t)]/{
P1(t)−P1’(t)}……(11)となる。要す
るに、情報除去用のフィルタであるLCF28により拡
散成分の一部がU(t) として失われるが、G(t)
 =1にすればU(t) =0となり、失われた拡散成
分が図2(H) に示すように生成されたことを意味し
、情報除去用のLCF28の低域遮断周波数fc より
も低い周波数帯域を2.67倍増強する特性をこのイコ
ライザ回路41に持たせて、G(t) =1となるよう
にしているわけである。なお、第11式中のV1(t)
及びV2(t)は、第8,9式に夫々示されるような拡
散成分であり、そのパワースペクトルは図2(H) に
破線kで示したように非常に小さいので、近似的に省略
しても良い。
That is, in equation 10, the spreading code P1(
t) is 1, the component P1'(t) removed by the equalization filter 25 is 0.2, HCF3
If the component P1''(t) removed by 1 is 0.3, the total value is 0.375, and G(t) is 2
.. Multiplying by 67 gives G(t) = 1. The equalizer circuit 41 at the next stage has the function of setting the value of G(t) to 1, so the output S5(t) of the equalizer circuit 41 is S5(
t)=[{P2(t)-P2'(t)}d2(t)-V
1(t)]/{P1(t)-P1'(t)}+[{P3
(t)-P3'(t)}d3(t)-V2(t)]/{
P1(t)-P1'(t)}...(11). In short, some of the diffused components are lost as U(t) due to the LCF28, which is a filter for information removal, but G(t)
= 1, U(t) = 0, which means that the lost diffuse component is generated as shown in Figure 2 (H), which is lower than the low cutoff frequency fc of the LCF 28 for information removal. This equalizer circuit 41 has a characteristic of increasing the frequency band by 2.67 times, so that G(t)=1. In addition, V1(t) in the 11th equation
and V2(t) are the diffuse components shown in Equations 8 and 9, respectively, and their power spectra are very small as shown by the broken line k in Figure 2 (H), so they are omitted for approximation. It's okay.

【0019】以上の動作原理により、イコライザ回路4
1の出力S5(t)は、 となる。即ち、これは前記第3式の右辺第2項と同じ値
であり、これを次段の減算器44に供給して、前記逆拡
散復調出力SD1(t) と引算することにより拡散成
分は打消されて、ほぼ低速化情報d1(t)のみが得ら
れる。この引算出力には、実際には情報周波数帯域以外
の雑音も、図2(I) に破線lで示すように含まれて
いるので、この不要な雑音成分lを次段のLPF34で
除去している。 そして、次段の波形整形回路47でロジック信号として
波形を整形した後、並列/直列変換器50に供給し、こ
こで波形整形回路48及び49からの低速化情報d2(
t)及びd3(t)を時系列的に加算,合成して、元の
復調情報データd(t) を復元し、出力端子Out2
より出力するわけである。
According to the above operating principle, the equalizer circuit 4
The output S5(t) of 1 is as follows. That is, this is the same value as the second term on the right side of the third equation, and by supplying this to the subtracter 44 at the next stage and subtracting it from the despread demodulation output SD1(t), the spread component is As a result, only the speed reduction information d1(t) is obtained. This subtraction output actually includes noise outside the information frequency band, as shown by the broken line l in Figure 2 (I), so this unnecessary noise component l is removed by the next stage LPF 34. ing. Then, after shaping the waveform as a logic signal in the waveform shaping circuit 47 at the next stage, it is supplied to the parallel/serial converter 50, where the speed reduction information d2 (
t) and d3(t) in time series to restore the original demodulated information data d(t), and output the output terminal Out2.
In other words, it outputs more.

【0020】なお、前記したように、乗算器17,20
から夫々波形整形回路48,49に至る各逆拡散復調部
の基本的動作は、以上の乗算器14乃至波形整形回路4
7の動作原理と同等なので、その説明を省略する。また
、以上の説明においては、低速化データの数Nを3とし
たが、変調部10の拡散復調部の数と復調部40の逆拡
散復調部の数が等しければ、3に限らず他の数でも良い
Note that, as mentioned above, the multipliers 17 and 20
The basic operation of each despreading demodulator from the multiplier 14 to the waveform shaping circuit 48 and 49, respectively, is as follows.
Since the principle of operation is the same as that of No. 7, the explanation thereof will be omitted. In addition, in the above explanation, the number N of speed reduction data is set to 3, but if the number of spread demodulators of the modulator 10 and the number of despread demodulators of the demodulator 40 are equal, the number N is not limited to 3, but other numbers can be used. A number is also fine.

【0021】[0021]

【発明の効果】叙上の如く、本発明の並列スペクトル拡
散変調復調装置によれば、干渉波や妨害波,雑音等の抑
圧効果を持たせ乍ら、情報速度と符号間干渉とのトレー
ドオフを大幅に改善し得、高速化を可能とした並列SS
変調復調装置を実現できる。これにより、SS通信装置
の復調用として幅広い応用が可能となり、例えば車載用
無線電話機やコードレステレホン等の普及,発展にも寄
与し得るという優れた特長を有する。
[Effects of the Invention] As described above, the parallel spread spectrum modulation demodulation device of the present invention has the effect of suppressing interference waves, jamming waves, noise, etc., while making a trade-off between information speed and intersymbol interference. Parallel SS that can significantly improve speed and speed up
A modulation/demodulation device can be realized. This enables a wide range of applications for demodulating SS communication devices, and has the excellent feature of contributing to the spread and development of in-vehicle radio telephones, cordless telephones, etc., for example.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の並列スペクトル拡散変調復調装置の一
実施例のブロック図である。
FIG. 1 is a block diagram of an embodiment of a parallel spread spectrum modulation and demodulation device of the present invention.

【図2】本発明の並列SS変調復調装置の動作説明用信
号スペクトル図である。
FIG. 2 is a signal spectrum diagram for explaining the operation of the parallel SS modulation and demodulation device of the present invention.

【符号の説明】[Explanation of symbols]

1  並列スペクトル拡散変調復調装置2  直列/並
列変換器 3  加算器 4〜9  拡散符号発生回路(PNG)11〜22  
乗算器 24  入力フィルタ 25〜27  等化フィルタ 28〜30  LCF(ローカットフィルタ)31〜3
3  HCF(ハイカットフィルタ)34〜36  L
PF(低域濾波器) 37〜39  逆数回路 44〜46  減算器 41〜43  イコライザ回路 47〜49  波形整形回路 50  並列/直列変換器。
1 Parallel spread spectrum modulation demodulation device 2 Serial/parallel converter 3 Adders 4 to 9 Spreading code generation circuit (PNG) 11 to 22
Multiplier 24 Input filters 25 to 27 Equalization filters 28 to 30 LCF (low cut filter) 31 to 3
3 HCF (high cut filter) 34~36L
PF (low pass filter) 37-39 Reciprocal circuits 44-46 Subtracters 41-43 Equalizer circuits 47-49 Waveform shaping circuit 50 Parallel/serial converter.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】データ等の情報信号を直列/並列変換して
低速化したN個(Nは2以上の整数)の低速化データを
得、該得られたN個の低速化データを夫々異なるN個の
拡散符号でスペクトル拡散変調を行ない、該得られたN
個のスペクトル拡散変調信号を加算して複合スペクトル
拡散変調信号として出力するよう構成したスペクトル拡
散変調部と、複合スペクトル拡散変調信号を入力して、
該入力信号のうち拡散符号のメインローブ帯域以上の高
域干渉信号成分を除去する入力フィルタを伝送させてか
らN個の復調回路に供給し、夫々の信号を変調時に使用
された拡散符号と夫々等価な拡散符号にて逆拡散による
復調を行なって得られたN個の低速化データを並列/直
列変換して元の情報信号を得るよう構成したスペクトル
拡散復調部とを備えた並列スペクトル拡散変調復調装置
であって、上記スペクトル拡散復調部を構成するN個の
逆拡散復調部に夫々独立した符号間干渉ノイズ抑圧手段
を設け、該抑圧手段にて符号間干渉ノイズを低減してか
ら各N個の逆拡散復調信号を並列/直列変換して元の情
報信号を得るよう構成したことを特徴とする、並列スペ
クトル拡散変調復調装置。
Claim 1: Obtaining N pieces of slowed-down data (N is an integer of 2 or more) by serial/parallel converting information signals such as data, and each of the N pieces of slowed-down data obtained is different from each other. Spread spectrum modulation is performed using N spreading codes, and the obtained N
a spread spectrum modulation section configured to add up the spread spectrum modulation signals and output the resultant spread spectrum modulation signal as a composite spread spectrum modulation signal;
The input signal is transmitted through an input filter that removes high-frequency interference signal components above the main lobe band of the spreading code, and then supplied to N demodulation circuits, and each signal is combined with the spreading code used during modulation. Parallel spread spectrum modulation comprising a spread spectrum demodulator configured to perform parallel/serial conversion of N slowed data obtained by demodulating by despreading using an equivalent spreading code to obtain the original information signal. The demodulator is provided with independent inter-symbol interference noise suppression means for each of the N despreading demodulators constituting the spread spectrum demodulation section, and after the inter-symbol interference noise is reduced by the suppression means, each of the N 1. A parallel spread spectrum modulation demodulation device, characterized in that it is configured to perform parallel/serial conversion on despread demodulated signals to obtain an original information signal.
【請求項2】スペクトル拡散復調部を構成する複数の逆
拡散復調部における符号間干渉ノイズ抑圧手段として、
逆拡散用の拡散符号を上記入力フィルタと略等しい伝達
関数を有する等化フィルタと、拡散符号発生回路からの
拡散符号信号を該等化フィルタを伝送させることにより
得られる補正拡散符号の逆数をとる逆数回路と、該逆数
回路の出力を上記入力フィルタの出力信号に乗算するこ
とにより逆拡散を行なう第1の乗算器と、該乗算器の出
力信号のうち復調情報信号成分を除去するローカットフ
ィルタと、該ローカットフィルタの出力に上記補正拡散
符号を乗算する第2の乗算器と、該第2の乗算器の出力
のうち高域周波数成分を除去するハイカットフィルタと
、該ハイカットフィルタの出力に上記逆数回路の出力を
乗算する第3の乗算器と、該第3の乗算器で得られた拡
散干渉信号のスペクトルを上記第1の乗算器出力中の拡
散干渉信号のスペクトルに略等しくなるよう補正するイ
コライザ回路と、該イコライザ回路の出力と上記第1の
乗算器出力との減算を行なう減算器と、該減算器出力の
うち上記復調情報信号以上の高域周波数成分を除去する
低域濾波器とを備えて構成したことを特徴とする、請求
項1記載の並列スペクトル拡散変調復調装置。
2. As an intersymbol interference noise suppression means in a plurality of despreading demodulation units constituting a spread spectrum demodulation unit,
The reciprocal of the corrected spreading code obtained by transmitting the spreading code for despreading to an equalizing filter having a transfer function substantially equal to that of the input filter and the spreading code signal from the spreading code generating circuit through the equalizing filter is taken. a reciprocal circuit; a first multiplier that performs despreading by multiplying the output signal of the input filter by the output of the reciprocal circuit; and a low-cut filter that removes demodulated information signal components from the output signal of the multiplier. , a second multiplier that multiplies the output of the low-cut filter by the corrected spreading code, a high-cut filter that removes high frequency components from the output of the second multiplier, and a reciprocal of the output of the high-cut filter. a third multiplier that multiplies the output of the circuit; and correcting the spectrum of the spread interference signal obtained by the third multiplier so that it is approximately equal to the spectrum of the spread interference signal in the output of the first multiplier. an equalizer circuit, a subtracter that performs subtraction between the output of the equalizer circuit and the output of the first multiplier, and a low-pass filter that removes high frequency components higher than the demodulated information signal from the output of the subtracter. 2. A parallel spread spectrum modulation demodulation device according to claim 1, characterized in that said parallel spread spectrum modulation demodulation device comprises:
JP12540291A 1990-12-28 1991-04-26 Parallel spread spectrum modulation demodulator Expired - Lifetime JP2600518B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12540291A JP2600518B2 (en) 1991-04-26 1991-04-26 Parallel spread spectrum modulation demodulator
US07/813,735 US5239556A (en) 1990-12-28 1991-12-27 Demodulation system for spread spectrum communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12540291A JP2600518B2 (en) 1991-04-26 1991-04-26 Parallel spread spectrum modulation demodulator

Publications (2)

Publication Number Publication Date
JPH04328921A true JPH04328921A (en) 1992-11-17
JP2600518B2 JP2600518B2 (en) 1997-04-16

Family

ID=14909242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12540291A Expired - Lifetime JP2600518B2 (en) 1990-12-28 1991-04-26 Parallel spread spectrum modulation demodulator

Country Status (1)

Country Link
JP (1) JP2600518B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347599A (en) * 1992-06-15 1993-12-27 Matsushita Electric Ind Co Ltd High speed data transmitting device
JPH06164536A (en) * 1992-11-18 1994-06-10 Rohm Co Ltd High peed communication method and wired or radio unit system using the method
JPH06268630A (en) * 1993-03-11 1994-09-22 Kokusai Denshin Denwa Co Ltd <Kdd> Cellular mobile communications system
JPH09153843A (en) * 1995-11-30 1997-06-10 Nec Corp Code multiplex communication equipment
JPH10178413A (en) * 1996-12-17 1998-06-30 Nec Corp Multi-code transmitter of cdma system
JPH10224322A (en) * 1997-02-05 1998-08-21 Y R P Ido Tsushin Kiban Gijutsu Kenkyusho:Kk Spread spectrum multiplex transmitter
JPH10233752A (en) * 1997-02-19 1998-09-02 Nec Corp Message transmission system
US6744807B1 (en) * 2000-05-31 2004-06-01 University Of Pretoria Multi-dimensional spread spectrum modem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148540A (en) * 1982-03-01 1983-09-03 Nippon Telegr & Teleph Corp <Ntt> Interference eliminating system in spread spectrum communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148540A (en) * 1982-03-01 1983-09-03 Nippon Telegr & Teleph Corp <Ntt> Interference eliminating system in spread spectrum communication system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347599A (en) * 1992-06-15 1993-12-27 Matsushita Electric Ind Co Ltd High speed data transmitting device
JPH06164536A (en) * 1992-11-18 1994-06-10 Rohm Co Ltd High peed communication method and wired or radio unit system using the method
JPH06268630A (en) * 1993-03-11 1994-09-22 Kokusai Denshin Denwa Co Ltd <Kdd> Cellular mobile communications system
JPH09153843A (en) * 1995-11-30 1997-06-10 Nec Corp Code multiplex communication equipment
JPH10178413A (en) * 1996-12-17 1998-06-30 Nec Corp Multi-code transmitter of cdma system
JPH10224322A (en) * 1997-02-05 1998-08-21 Y R P Ido Tsushin Kiban Gijutsu Kenkyusho:Kk Spread spectrum multiplex transmitter
JPH10233752A (en) * 1997-02-19 1998-09-02 Nec Corp Message transmission system
US6744807B1 (en) * 2000-05-31 2004-06-01 University Of Pretoria Multi-dimensional spread spectrum modem

Also Published As

Publication number Publication date
JP2600518B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
EP1816774B1 (en) Orthogonal complex spreading method for multichannel and apparatus thereof
JP2781333B2 (en) CDMA receiver
JP2785489B2 (en) Composite waveform forming method and apparatus
EP0807345B1 (en) Cdma data transmission method, transmitter, and receiver using a super symbol for interference elimination
US6246715B1 (en) Data transmitter and receiver of a DS-CDMA communication system
JP4072910B2 (en) Method and apparatus for increasing data rate in a spread spectrum communication system
JP3024750B2 (en) DS-CDMA multi-user interference canceller and DS-CDMA communication system
JP3603187B2 (en) Transmission method and reception method using spread modulation scheme in spread spectrum communication scheme, and transmission apparatus and reception apparatus
US6781980B1 (en) CDMA transmitter and method generating combined high-rate and low-rate CDMA signals
JPH11154904A (en) Transmitter in mobile communication system, band spread signal device and method for generating band spread signal
JPH04328921A (en) Parallel spread spectrum modulator-demodulator
JPH04132327A (en) Spread spectrum modulation demodulation system
KR100423724B1 (en) Apparatus and method for processing data using CQPSK of wireless communication system
JP2011510576A (en) Coding and decoding method and apparatus for reducing interference in simultaneous signal transmission and multi-user systems
JP2523410B2 (en) Spread spectrum demodulator
JP3976442B2 (en) Parallel interference canceller for CDMA receiver
JPH01206747A (en) Multiple communication system by spread spectrum
JP3908853B2 (en) Interference signal regeneration device
JP2002247007A (en) Interference removing part, radio terminal equipment and method for removing interference
JPH04365237A (en) Spread spectrum demodulator
JPH03145832A (en) Spread spectrum modulator/demodulator
JPH1041918A (en) Transmitter for spread spectrum communication
JPH02154545A (en) Spread spectrum demodulation system
JPH11275061A (en) Interference eliminating receiver
JPS58148540A (en) Interference eliminating system in spread spectrum communication system