JPH0432529A - Copper alloy having low constant mass temperature coefficient of electric resistance - Google Patents

Copper alloy having low constant mass temperature coefficient of electric resistance

Info

Publication number
JPH0432529A
JPH0432529A JP14031890A JP14031890A JPH0432529A JP H0432529 A JPH0432529 A JP H0432529A JP 14031890 A JP14031890 A JP 14031890A JP 14031890 A JP14031890 A JP 14031890A JP H0432529 A JPH0432529 A JP H0432529A
Authority
JP
Japan
Prior art keywords
copper alloy
electric resistance
constant mass
temp
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14031890A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
宮藤 元久
Isao Hosokawa
功 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14031890A priority Critical patent/JPH0432529A/en
Publication of JPH0432529A publication Critical patent/JPH0432529A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a copper alloy having a low constant mass temp. coefficient of electric resistance by incorporating each specified compsn. of Ni and Si into copper. CONSTITUTION:This copper alloy contains, by weight, 0.50 to 0.75% Ni, 0.10 to 0.16% Si and the balance Cu. In this copper alloy, the certain mass temp. coefficient of electric resistance is low, and the variation of resistance value caused by the change of environmental temp. is moreover low. Thus, at the time of using the copper alloy as the structural material for the electric circuit of automobiles, electronic equipment used in an environment high in the change of temp., the malfunction of the equipment can be suppressed, and the reliability on the equipment can be improved. In the above compsn., Ni and Si reduce the constant mass temp. coefficient in the electric resistance of the copper alloy as well as improve its strength, but in the case their content is less than the lower limit, the above effects are made insufficient. Furthermore, in the case their content exceeds the upper limit, its electric conductivity is reduced to >=35% IACS as well as its cold workability is damaged.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車及び温度変化が激しい環境において使用
される電子機器等に組み込まれる電気回路の通電材料と
して好適の電気抵抗の定質量温度係数が小さい銅合金に
関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a material having a constant mass temperature coefficient of electrical resistance that is suitable as a current-carrying material for electric circuits incorporated in automobiles and electronic devices used in environments with severe temperature changes. Concerning small copper alloys.

[従来の技術] 従来、一般的に、自動車、電子機器及び電気機器等に組
み込まれる電気回路においては、通電材料として、無酸
素銅又はリン脱酸銅等が使用されている。
[Prior Art] Conventionally, oxygen-free copper, phosphorus-deoxidized copper, or the like has been generally used as a current-carrying material in electric circuits incorporated in automobiles, electronic equipment, electrical equipment, and the like.

[発明が解決しようとする課題] しかしながら、上述した無酸素銅及びリン脱酸銅は電気
抵抗の定質量温度係数が太きいという欠点がある。この
ため、例えば自動車及び温度変化が激しい環境で使用さ
れる電子機器等のように、温度が著しく変動するような
場合には、それに組み込まれている電気回路の電気抵抗
が変動しやすく、回路中の電圧及び電流か安定しにくい
という欠点がある。その結果、機器が誤動作する場合か
ある等、通電材料の特性が電気回路の信頼性を低下させ
る要因になっている。また、このような不都合を回避す
るために制御回路を設け、この制御回路により電気回路
の動作を安定化させることもできるが、そうすると回路
が複雑になるという欠点がある。
[Problems to be Solved by the Invention] However, the above-mentioned oxygen-free copper and phosphorus-deoxidized copper have a drawback that the constant mass temperature coefficient of electrical resistance is large. For this reason, in cases where the temperature fluctuates significantly, such as in automobiles or electronic devices used in environments with rapid temperature changes, the electrical resistance of the electrical circuits built into them tends to fluctuate, causing damage to the circuit. The drawback is that the voltage and current are difficult to stabilize. As a result, the characteristics of current-carrying materials have become a factor that reduces the reliability of electrical circuits, such as equipment malfunctioning. Further, in order to avoid such inconveniences, a control circuit can be provided and the operation of the electric circuit can be stabilized by this control circuit, but this has the disadvantage that the circuit becomes complicated.

本発明はかかる問題点に鑑みてなされたものであって、
電気抵抗の定質量温度係数が小さくて環境温度の変化に
よる抵抗値の変動が少なく、電子機器等に組み込まれた
電気回路等の信頼性を向上させることができる電気抵抗
の泥質量温度係数が小さい銅合金を提供することを目的
とする。
The present invention has been made in view of such problems, and includes:
The constant mass temperature coefficient of electrical resistance is small, so there is little variation in resistance value due to changes in environmental temperature, which can improve the reliability of electrical circuits built into electronic devices, etc. The mud mass temperature coefficient of electrical resistance is small. The purpose is to provide copper alloys.

口課題を解決するための手段] 本発明に係る電気抵抗の泥質量温度係数が小さい銅合金
は、0.50乃至0.75重量%のNi及び0.10乃
至0.16重量%のSiを含有し、残部がCu及び不可
避的不純物からなることを特徴とする。
[Means for Solving the Problems] The copper alloy having a small mud mass temperature coefficient of electrical resistance according to the present invention contains 0.50 to 0.75% by weight of Ni and 0.10 to 0.16% by weight of Si. The remainder consists of Cu and inevitable impurities.

この場合に、前記Ni及びSiの外に、O,IO乃至1
.0重量%のZnを含有してもよい。
In this case, in addition to the Ni and Si, O, IO to 1
.. It may contain 0% by weight of Zn.

[作用] 以下、本発明に係る電気抵抗の泥質量温度係数が小さい
銅合金の成分添加理由及び組成限定理由について説明す
る。
[Function] Hereinafter, the reason for adding a component of a copper alloy having a small mud mass temperature coefficient of electrical resistance and the reason for limiting the composition according to the present invention will be explained.

瓦1 Niは後述するSiと共に鋼中に固溶して、銅合金にお
ける電気抵抗の泥質量温度係数を低下させると共に、銅
合金の強度を向上させる作用がある。しかし、Ni含を
量が0.50重量%未満の場合は、上述の作用効果か不
十分である。また、Ni含有量が0.75重量%を超え
ると、導電率が35%IAC5(純銅焼鈍材の導電率を
100とした場合のもの)以下に低下すると共に、冷開
加工性も損なわれる。
Roof 1 Ni forms a solid solution in steel together with Si, which will be described later, and has the effect of lowering the mud mass temperature coefficient of electrical resistance in the copper alloy and improving the strength of the copper alloy. However, when the Ni content is less than 0.50% by weight, the above effects are insufficient. Further, when the Ni content exceeds 0.75% by weight, the electrical conductivity decreases to 35% IAC5 (when the electrical conductivity of pure copper annealed material is 100) or less, and cold-opening workability is also impaired.

従って、Ni含有量は0.50乃至0.75重量%さす
る。
Therefore, the Ni content is 0.50 to 0.75% by weight.

L Siには、前述の如< 、N rと共に鋼中に固溶して
、銅合金における電気抵抗の泥質量温度係数を低下させ
ると共に、銅合金の強度を向上させる作用がある。しか
し、Si含有量が0.10M1k%未満の場合は上述の
作用効果が不十分である。また、Si含有量が0.16
重量%を超えると、導電率が35%lAC3以下に低下
すると共に、冷間加工性(特に、製管時の加工性)が阻
害される。従ってNSISi含有量、IO乃至0.16
重量%とする。
As mentioned above, L Si forms a solid solution in steel together with N r and has the effect of lowering the mud mass temperature coefficient of electrical resistance in copper alloys and improving the strength of copper alloys. However, when the Si content is less than 0.10M1k%, the above effects are insufficient. In addition, the Si content is 0.16
When it exceeds % by weight, the electrical conductivity decreases to 35%lAC3 or less, and cold workability (particularly workability during pipe manufacturing) is inhibited. Therefore, the NSISi content, IO ~ 0.16
Weight%.

Z」− Znは銅合金により形成した電気回路の配線路に電子部
品等を半田付けする場合に、半田の密着性を向上させる
作用がある。このため、前述のNi及びSiを含有する
銅合金中にZnを含有させてもよい。しかし、Zn含有
量が0.10重量%未満の場合は、上述の効果を得るこ
とができない。
Z'' - Zn has the effect of improving solder adhesion when soldering electronic components, etc. to the wiring paths of an electric circuit formed of a copper alloy. For this reason, Zn may be included in the copper alloy containing Ni and Si. However, if the Zn content is less than 0.10% by weight, the above effects cannot be obtained.

また、Znn含有量旬月0重量%を超えると、」二連の
効果が飽和して無駄であるばかりでなく、導電率が著し
く低下する。従って、Znを含有する場合は、その含有
量を0.10乃至1.0重量%とする。
Furthermore, if the Znn content exceeds 0% by weight, not only the double effect is saturated and is wasted, but also the electrical conductivity decreases significantly. Therefore, when containing Zn, the content is set to 0.10 to 1.0% by weight.

なお、本発明に係る電気抵抗の泥質量温度係数か小さい
銅合金は、電気部品及び電子部品に組み込まれた電気回
路並びに各部品間を接続する配線材等のような通電材と
しての適用の外に、磁場又は電場に対するシールド材と
しても適用することができる。
In addition, the copper alloy with a small mud mass temperature coefficient of electrical resistance according to the present invention is not applicable as a current-carrying material such as an electric circuit incorporated in an electric component or an electronic component, or a wiring material connecting each component. It can also be applied as a shielding material against magnetic or electric fields.

また、本発明に係る銅合金は、リード等の外、コイル状
を始めとして、管、棒、線、板、条及び箔等のいずれの
形状で電気回路に使用してもよく、形状により限定され
るものではない。
In addition, the copper alloy according to the present invention may be used in an electric circuit in any shape such as a coil shape, a tube, a rod, a wire, a plate, a strip, and a foil, in addition to leads etc., and there are limitations depending on the shape. It is not something that will be done.

し実施例] 次に、本発明の実施例について、その特許請求の範囲か
ら外れる比較例と比較して説明する。
Examples] Next, examples of the present invention will be described in comparison with comparative examples that fall outside the scope of the claims.

先ず、下記第1表に示す成分組成の銅合金を大気溶解か
で溶解した後、厚さが50mm、幅が85mm、長さが
200mmの鋳塊を製造した。そして、これらの鋳塊を
900℃に加熱した後、厚さカ月5mmになるように熱
間圧延処理を施して、熱間圧延材を得た。
First, a copper alloy having the composition shown in Table 1 below was melted by atmospheric melting, and then an ingot having a thickness of 50 mm, a width of 85 mm, and a length of 200 mm was produced. After heating these ingots to 900° C., they were hot-rolled to a thickness of 5 mm to obtain hot-rolled materials.

但し、比較例1及び比較例2は夫々純度が99.99重
量%の純銅及びリン脱酸銅であり、いずれも従来電気回
路用材料として使用されているものである。
However, Comparative Examples 1 and 2 are pure copper and phosphorus-deoxidized copper with a purity of 99.99% by weight, respectively, and both are conventionally used as materials for electric circuits.

第1表 次に、これらの熱間圧延材を硫酸水(濃度が20容量%
)で酸洗して表面の酸化物を除去した後、冷間圧延加工
を施して、厚さが1mmの板材を得た。
Table 1 Next, these hot rolled materials were mixed with sulfuric acid water (concentration 20% by volume).
) to remove surface oxides, cold rolling was performed to obtain a plate with a thickness of 1 mm.

そして、この板材を600°Cの温度に1時間加熱し、
その後15℃/秒以上の冷却速度で水冷した。
Then, this plate material was heated to a temperature of 600°C for 1 hour,
Thereafter, it was water-cooled at a cooling rate of 15° C./second or more.

次いで、この板材を前記硫酸水で酸洗した後、冷間圧延
加工を施して、その厚さを0.5mmにした。
Next, this plate material was pickled with the sulfuric acid water, and then cold-rolled to a thickness of 0.5 mm.

このようにして得た実施例及び比較例の各圧延材の導電
率をJIS H0505に基づく4端子法により測定し
た。このときの試料温度は0°C540°C160℃及
び80℃である。その結果を下記第2表に示す。
The electrical conductivity of each of the thus obtained rolled materials of Examples and Comparative Examples was measured by a four-probe method based on JIS H0505. The sample temperatures at this time were 0°C, 540°C, 160°C, and 80°C. The results are shown in Table 2 below.

第2表 この第2表から明らかなように、本発明に係る実施例1
乃至5はいずれも比較例II 2に比して電気抵抗の定
質量温度係数が約1/2乃至!/3と低い。従って、こ
の実施例1乃至5合金は温度変化に対して電気抵抗値の
変動が少なく、このため温度変化が激しい環境下で使用
される機器の電気回路用材料等として好適である。
Table 2 As is clear from this Table 2, Example 1 according to the present invention
In all of 5 to 5, the constant mass temperature coefficient of electrical resistance is about 1/2 to that of Comparative Example II 2! /3 is low. Therefore, the alloys of Examples 1 to 5 have little variation in electrical resistance with respect to temperature changes, and are therefore suitable as materials for electrical circuits of devices used in environments with severe temperature changes.

[発明の効果] 以上説明したように本発明によれば、Ni及びSiを夫
々所定の構成で含有し、更に必要に応じてZnを所定の
含有量で添加したから、電気抵抗の定質量温度係数が小
さい銅合金を得ることができる。そして、この銅合金を
自動車及び温度変化が大きい環境において使用される電
子機器等の電気回路構成材料として使用すると、機器の
誤動作を抑制することができ、機器の信頼性を向上させ
ることができる。従って、本発明に係る銅合金は、例え
ば自動車に搭載される電子機器及び温度変化が激しい環
境下で使用される電子機器等に組み込まれた電気回路の
構成材料として極めて有益である。
[Effects of the Invention] As explained above, according to the present invention, Ni and Si are contained in predetermined compositions, and Zn is further added in a predetermined content as necessary, so that the constant mass temperature of electrical resistance A copper alloy with a small coefficient can be obtained. When this copper alloy is used as an electric circuit constituent material for automobiles and electronic devices used in environments with large temperature changes, malfunctions of the devices can be suppressed and the reliability of the devices can be improved. Therefore, the copper alloy according to the present invention is extremely useful as a constituent material of electric circuits incorporated in, for example, electronic devices installed in automobiles and electronic devices used in environments with severe temperature changes.

Claims (2)

【特許請求の範囲】[Claims] (1)0.50乃至0.75重量%のNi及び0.10
乃至0.16重量%のSiを含有し、残部がCu及び不
可避的不純物からなることを特徴とする電気抵抗の定質
量温度係数が小さい銅合金。
(1) 0.50 to 0.75% by weight of Ni and 0.10% by weight
A copper alloy having a small constant mass temperature coefficient of electrical resistance, characterized in that it contains 0.16% by weight of Si, and the remainder consists of Cu and unavoidable impurities.
(2)0.10乃至1.0重量%のZnを含有すること
を特徴とする請求項1に記載の電気抵抗の定質量温度係
数が小さい銅合金。
(2) The copper alloy having a small constant mass temperature coefficient of electrical resistance according to claim 1, characterized in that it contains 0.10 to 1.0% by weight of Zn.
JP14031890A 1990-05-30 1990-05-30 Copper alloy having low constant mass temperature coefficient of electric resistance Pending JPH0432529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14031890A JPH0432529A (en) 1990-05-30 1990-05-30 Copper alloy having low constant mass temperature coefficient of electric resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14031890A JPH0432529A (en) 1990-05-30 1990-05-30 Copper alloy having low constant mass temperature coefficient of electric resistance

Publications (1)

Publication Number Publication Date
JPH0432529A true JPH0432529A (en) 1992-02-04

Family

ID=15266024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14031890A Pending JPH0432529A (en) 1990-05-30 1990-05-30 Copper alloy having low constant mass temperature coefficient of electric resistance

Country Status (1)

Country Link
JP (1) JPH0432529A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677065A (en) * 1992-05-22 1994-03-18 Yokokawa Koku Denki Kk Differential transformer
US6377441B1 (en) 1998-07-31 2002-04-23 Masako Ohya Electric double-layer capacitor with collectors of two or more stacked collector sheets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677065A (en) * 1992-05-22 1994-03-18 Yokokawa Koku Denki Kk Differential transformer
US6377441B1 (en) 1998-07-31 2002-04-23 Masako Ohya Electric double-layer capacitor with collectors of two or more stacked collector sheets

Similar Documents

Publication Publication Date Title
JP2002294368A (en) Copper alloy for terminal and connector and production method therefor
EP0222406B1 (en) Copper alloy excellent in migration resistance
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH0673474A (en) Copper alloy excellent in strength, electric conductivity and migration resistance
JPS59170231A (en) High tension conductive copper alloy
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JP3222550B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JPS63307232A (en) Copper alloy
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JPH0432529A (en) Copper alloy having low constant mass temperature coefficient of electric resistance
JPS6239218B2 (en)
JPS6215622B2 (en)
JPS594493B2 (en) Copper alloy for lead material of semiconductor equipment
JP2756021B2 (en) Copper alloy with low constant mass temperature coefficient of electrical resistance
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same
JPH04231432A (en) Electrifying material
JPH01165733A (en) High strength and high electric conductive copper alloy
JPS64449B2 (en)
JP2585347B2 (en) Method for producing highly conductive copper alloy with excellent migration resistance
JP2002003966A (en) Copper alloy for electronic and electric apparatus excellent in solder weldnability
JPH0499838A (en) Conductive material
JPH04231444A (en) Production of electrifying material
JPH088056B2 (en) Copper alloy for fuse terminal material
JPH04231445A (en) Production of electrifying material
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material