JPH04324408A - Lens position detection device - Google Patents

Lens position detection device

Info

Publication number
JPH04324408A
JPH04324408A JP9437191A JP9437191A JPH04324408A JP H04324408 A JPH04324408 A JP H04324408A JP 9437191 A JP9437191 A JP 9437191A JP 9437191 A JP9437191 A JP 9437191A JP H04324408 A JPH04324408 A JP H04324408A
Authority
JP
Japan
Prior art keywords
lens
strain gauges
strain
lens group
lens position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9437191A
Other languages
Japanese (ja)
Inventor
Masayoshi Sekine
正慶 関根
Jun Tokumitsu
徳光 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9437191A priority Critical patent/JPH04324408A/en
Priority to US07/737,149 priority patent/US5289318A/en
Priority to EP91112761A priority patent/EP0469532B1/en
Priority to DE69124026T priority patent/DE69124026T2/en
Publication of JPH04324408A publication Critical patent/JPH04324408A/en
Priority to US08/200,885 priority patent/US5572372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Lens Barrels (AREA)

Abstract

PURPOSE:To obtain the device which can measure constituent elements in a short response time with high accuracy and can be incorporated in a very narrow space by providing strain gauges to a flexible and elastic deformation member coupled with a lens which is held movably. CONSTITUTION:Element lenses 1a-1c constitute a movable positive lens group. The strain gauges 11 and 12 are adhered to the top and reverse surfaces of part of a coil spring 10. Then detection amplifiers 20 and 21 of a signal processing system are connected to the strain gauges 11 and 12 in order and a differential amplifier 22 is connected to the detection amplifiers 20 and 21. The coil spring 10 expands and contracts as the lens group moves and is strained and the strain gauges 11 and 12 contacting the spring 10 detects its straining quantity. A normal strain gauge utilizes variation in resistance value when a semiconductor is strained, and the detection amplifiers 20 and 21 convert the resistance value into electric signals. Then the signals are inputted to a circuit which converts the strain value into a lens position signal and converted into the signal indicating the lens position.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、スチルカメラやビデオ
カメラ、観測装置等の光学機器のレンズ鏡筒内を移動す
る成分レンズの光軸上位置を測定するための装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the position on the optical axis of a component lens moving within a lens barrel of an optical instrument such as a still camera, a video camera, or an observation device.

【0002】0002

【従来の技術】従来よりスチルカメラやビデオカメラの
レンズ鏡筒に於て、DCモーターと送りネジやカムを使
用して、レンズを移動させ、実際のレンズ位置や移動速
度をポテンシヨメータや光エンコーダまたは可変容量コ
ンデンサーを用いて検出していた。
[Prior Art] Conventionally, in the lens barrel of still cameras and video cameras, the lens is moved using a DC motor, a feed screw, and a cam, and the actual lens position and movement speed are controlled by a potentiometer or a light source. Detection was done using an encoder or variable capacitor.

【0003】特に小型のリアフオーカス方式のズームレ
ンズにおいては、必要とするレンズ位置決め精度が高く
、例えば1/3′CCD撮像素子用の8倍ズームでは数
ミクロン程度の検出分解能を要求される場合もある。 また画像信号から合焦状態を判断する方式のオートフオ
ーカスでは、レンズの一部を高速に光軸方向に振動させ
る機構(ウオプリング)が要求されるので、検出応答性
も高い事が望まれる。
[0003] In particular, small rear focus zoom lenses require high lens positioning accuracy; for example, an 8x zoom for a 1/3' CCD image sensor may require a detection resolution of several microns. . Furthermore, autofocus, which determines the focus state from image signals, requires a mechanism (wop ring) that vibrates part of the lens in the optical axis direction at high speed, so high detection response is also desired.

【0004】殊にCCD等の撮像素子の小型化に伴いレ
ンズ内で発生するゴミが映像に与える影響が大きくなっ
たので、ゴミが発生しない機構が望まれている。
In particular, with the miniaturization of image pickup devices such as CCDs, the influence of dust generated within the lens on images has increased, so a mechanism that does not generate dust is desired.

【0005】一方、閉ループ構成ではなく、ステツピン
グモーターを使用したオープン・ループ制御のレンズ位
置調節装置も知られている。
On the other hand, there is also known a lens position adjustment device that does not have a closed-loop configuration but uses an open-loop control using a stepping motor.

【0006】先の閉ループ制御の装置では予めレンズの
光軸の位置を計測する必要があるが、例えばポテンシヨ
ンメーターについては、摺動による摩擦抵抗が大きく、
ゴミを発生しやすく、素子の寿命も短い。光を用いたエ
ンコーダについては構成部品が多いためコストも高く、
装置が大型化し易い。可変静電容量を用いたものは、電
極を広くとらなければならないため、やはり装置が大型
化することが多い。またステツピングモーターを用いた
オープンループ方式は、駆動力伝達のためのギヤ、ネジ
部でガタ、バツクラツシユを極限まで減らさなければな
らないので、このようなメカ部材のコストが高く形状も
大きい。またモーターが脱調した場合や撮影者がマニア
ルで操作する場合はレンズの位置は検出できない。
[0006] In the closed-loop control device described above, it is necessary to measure the position of the optical axis of the lens in advance, but for example, with respect to a potentiometer, the frictional resistance due to sliding is large;
It easily generates dust and the life of the element is short. Encoders that use light have many components and are therefore expensive.
The equipment tends to become larger. In devices using variable capacitance, the electrodes must be wide, so the device often becomes larger. Furthermore, in the open-loop system using a stepping motor, it is necessary to minimize play and backlash in the gears and threaded parts for transmitting driving force, so the cost of such mechanical parts is high and the shape is large. Additionally, if the motor goes out of step or if the photographer manually operates the lens, the position of the lens cannot be detected.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高精度で速
い応答時間で構成要素の位置を測定し得る装置を提供す
ることを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus capable of measuring the position of a component with high precision and quick response time.

【0008】[0008]

【課題を解決するための手段】移動可能に保持されたレ
ンズに連結された可撓弾性を持つ変形部材に歪ゲージを
設けてなる。
Means for Solving the Problems A strain gauge is provided on a flexible and elastic deformable member connected to a movably held lens.

【0009】尚、変形部材はレンズの移動に伴ない一部
又は全体が伸縮、曲折して組織に歪を生じるものとする
It is assumed that the deformable member partially or entirely expands, contracts, and bends as the lens moves, causing distortion in the tissue.

【0010】又歪ゲージは変形部材の歪量を測定するも
ので、変換電子回路内で予め求めておいた歪量とレンズ
位置との関係式に従った回路もしくはテーブルからレン
ズの位置に相当する信号を形成する。
[0010] Also, the strain gauge measures the amount of strain in the deformable member, and corresponds to the position of the lens from the circuit or table according to the relational expression between the amount of strain and the lens position determined in advance in the conversion electronic circuit. form a signal.

【0011】[0011]

【実施例】図1は本発明の一実施例を示し、図2はこの
装置を適用するに適したズームレンズの一例を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows an example of a zoom lens suitable for applying this device.

【0012】図2で、Aは固定の物体側正レンズ群、B
は変換のために光軸方向へ可動の負レンズ群、Cは固定
の正レンズ群、Dはズーミングの際の像面移動を保証と
フオーカシングそしてウオブリングのための可動の正レ
ンズ群である。なおレンズ群は1枚レンズの場合も含む
ものとする。
In FIG. 2, A is a fixed positive lens group on the object side, and B is a fixed positive lens group on the object side.
is a negative lens group movable in the optical axis direction for conversion, C is a fixed positive lens group, and D is a movable positive lens group for ensuring image plane movement during zooming, focusing, and wobbling. Note that the lens group includes a single lens.

【0013】図1で成分レンズ1a,1b,1cは可動
の正レンズ群Dを構成するもので、2はレンズ保持筒で
正レンズ群Dを示す。3はスリーブで、レンズ保持筒2
に連結されている。4は案内バーで、スリーブ3を貫通
する。5はレンズ鏡筒の外筒で、案内バー4はそこに固
設されている。
In FIG. 1, component lenses 1a, 1b, and 1c constitute a movable positive lens group D, and 2 is a lens holding cylinder which indicates the positive lens group D. 3 is a sleeve, and lens holding tube 2
is connected to. A guide bar 4 passes through the sleeve 3. Reference numeral 5 denotes an outer tube of the lens barrel, and the guide bar 4 is fixed thereto.

【0014】一方、6は伝導モータで、7は送りネジで
あり、モータ6の回動軸に連結されているものとする。 8はナツトで、送りネジ7に螺合すると共にレンズ保持
筒2に結合されている。
On the other hand, 6 is a transmission motor, and 7 is a feed screw, which are connected to the rotating shaft of the motor 6. A nut 8 is screwed onto the feed screw 7 and coupled to the lens holding cylinder 2.

【0015】9は固体撮像素子で、成分レンズ1a,1
b,1cを射出した光束を受像する。10は図3の様な
コイルバネで矩形断面を持ち、レンズ保持筒2とレンズ
鏡筒5の後側凸部との間に圧入されている。
Reference numeral 9 denotes a solid-state image sensor, which includes component lenses 1a, 1
The beams emitted from the beams b and 1c are received. 10 is a coil spring having a rectangular cross section as shown in FIG. 3, and is press-fitted between the lens holding tube 2 and the rear convex portion of the lens barrel 5.

【0016】11と12は共に歪ゲージで、コイルバネ
10の一部の表裏面に図4の様に夫々接着されている。
Both strain gauges 11 and 12 are bonded to the front and back surfaces of a portion of the coil spring 10, respectively, as shown in FIG.

【0017】次に信号処理系の内、20と21は検出ア
ンプで順に歪ゲージ11と12に夫々結線されている。 22と24は差動型アンプ回路で、22の方は検出アン
プ20と21に接続されている。23は直線性補正回路
、25は制御回路、26はパワーアンプ回路である。
Next, in the signal processing system, 20 and 21 are detection amplifiers which are connected to strain gauges 11 and 12 in order, respectively. 22 and 24 are differential amplifier circuits, and 22 is connected to the detection amplifiers 20 and 21. 23 is a linearity correction circuit, 25 is a control circuit, and 26 is a power amplifier circuit.

【0018】以上の構成で、モータ6が回転すれば送り
ネジ7が回転し、これに螺合するナツト8が軸方向へ移
動する。その際、コイルバネ10はスリーブ3とバー4
との間や送りネジ7とナツト8との間のガタツキやバツ
クラツシユを解消するためのバイアスバネとして役立つ
With the above configuration, when the motor 6 rotates, the feed screw 7 rotates, and the nut 8 screwed into the feed screw 7 moves in the axial direction. At that time, the coil spring 10 is connected to the sleeve 3 and the bar 4.
It serves as a bias spring to eliminate backlash and bumpiness between the feed screw 7 and the nut 8.

【0019】更にコイル・バネ10はレンズ群の移動に
従って伸縮し、その際、バネの組織は歪を生じたことに
なる。バネに密着している歪ゲージ11と12はこの歪
量を検出する。通常の歪ゲージは半導体に歪が加わった
際に抵抗値が変化する性質を利用するもので、検出アン
プ20、21で抵抗値を電気信号に変換する。
Furthermore, the coil spring 10 expands and contracts as the lens group moves, and at this time the structure of the spring becomes distorted. Strain gauges 11 and 12 in close contact with the spring detect this amount of strain. A typical strain gauge utilizes the property that the resistance value changes when strain is applied to a semiconductor, and the detection amplifiers 20 and 21 convert the resistance value into an electrical signal.

【0020】尚、基本的には歪ゲージは片側で済むわけ
である。但し温度変化が抵抗値に与える影響を除くため
の一法として2つの歪ゲージを使用して相殺する方法を
採用しているがこの方法に限らない。また鏡筒全体が受
けた振動によってコイルバネが変形し、それによって歪
ゲージの抵抗値が変化することがある。従って要求され
る性能によってはこの様な対処が必要になる場合がある
[0020] Basically, only one strain gauge is required. However, as a method for eliminating the influence of temperature changes on the resistance value, a method of canceling by using two strain gauges is adopted, but the method is not limited to this. In addition, the coil spring may be deformed due to vibrations received by the entire lens barrel, which may change the resistance value of the strain gauge. Therefore, such measures may be necessary depending on the required performance.

【0021】そこで本実施例は歪ゲージをバネを挟んで
配置し、両者の影響が対称である点を利用し、出力の差
分を作動アンプ回路22で検出することで、温度変化や
鏡筒全体の振動の影響を除去している。
Therefore, in this embodiment, strain gauges are arranged with a spring in between, and the difference in output is detected by the operating amplifier circuit 22, taking advantage of the fact that the effects of the two are symmetrical, thereby controlling temperature changes and the entire lens barrel. The effects of vibration are removed.

【0022】続く直線性補正回路23で作動アンプ回路
22の出力をレンズ位置を示す信号に変換して出力する
。以上の動作によりレンズ群の光軸上の位置は電気信号
として求まったことになる。
Subsequently, the linearity correction circuit 23 converts the output of the operational amplifier circuit 22 into a signal indicating the lens position and outputs the signal. Through the above operations, the position of the lens group on the optical axis is determined as an electrical signal.

【0023】一般に歪ゲージは、素子自体がノイズを発
生しないことから、原理的に分解能が高く、再現性も高
い。従って本装置の位置検出分解能は10−4〜10−
5mmオーダが得られ、カメラのレンズ位置決めに充分
な特性である。
In general, strain gauges have high resolution and high reproducibility in principle because the elements themselves do not generate noise. Therefore, the position detection resolution of this device is 10-4 to 10-
A diameter of the order of 5 mm was obtained, which is sufficient for positioning the lens of a camera.

【0024】また素子自体に摺動やガタを生じる要因が
ないため、検出の応答も速く、駆動状態に影響を与える
ことがない。
Furthermore, since there are no factors that cause sliding or rattling in the element itself, the detection response is fast and the driving state is not affected.

【0025】そして図1の回路24、25、26を用い
ることにより、レンズ駆動系を閉ループで組んでおり、
所望の命令値に対して高速に位置決めできるシステムを
構成することも可能である。そのため例えば固体撮影素
子の出力を使ったオートフオーカスのための高速ウオプ
リング等も可能になっている。
By using the circuits 24, 25, and 26 shown in FIG. 1, the lens drive system is constructed in a closed loop.
It is also possible to construct a system that can perform high-speed positioning for a desired command value. Therefore, for example, high-speed wobbling for autofocus using the output of a solid-state imaging device is also possible.

【0026】以上歪ゲージは半導体タイプのものを例に
上げたが、圧電素子を利用したものでもよい。また、歪
ゲージを2組以上設け、多方向の振動をキヤンセルする
ように設定するとよい。歪ゲージ自体をエツチング等に
より弾性バネ10と一体で製造することもよい。
Although a semiconductor type strain gauge has been exemplified above, a strain gauge using a piezoelectric element may also be used. Further, it is preferable to provide two or more sets of strain gauges so as to cancel vibrations in multiple directions. It is also possible to manufacture the strain gauge itself integrally with the elastic spring 10 by etching or the like.

【0027】以上説明した様に第1の実施例に係る装置
は、バイアスバネと位置検出機構を兼用しており、小型
で安価に製造可能である。また位置検出分解能は高く応
答性も速いので電子光学機器に適したレンズ位置検出装
置である。
As explained above, the device according to the first embodiment serves both as a bias spring and a position detection mechanism, and can be manufactured in a small size and at low cost. Furthermore, since the position detection resolution is high and the response is fast, this lens position detection device is suitable for electro-optical equipment.

【0028】続いて図5、図6を使って第2実施例を説
明する。図5は図6の直径上断面に相当する。
Next, a second embodiment will be explained using FIGS. 5 and 6. FIG. 5 corresponds to the diametrical cross section of FIG.

【0029】図5でレンズ群1a,1b,1c、保持筒
2、鏡筒5は図1と同様である。
In FIG. 5, the lens groups 1a, 1b, 1c, holding tube 2, and lens barrel 5 are the same as in FIG.

【0030】31、32は共にジンバルバネで、図6に
正面形状を示す様にバネ板を斜線部を残して打ち抜いて
形成されており、ジンバル機構の特性を前後方向の移動
の自由が付与されている。保持筒2は前後がジンバルバ
ネ31と32で鏡筒に指示されている。
Reference numerals 31 and 32 are both gimbal springs, which are formed by punching out a spring plate leaving the hatched part as shown in the front view in FIG. There is. The holding tube 2 is directed to the lens barrel at the front and rear by gimbal springs 31 and 32.

【0031】33a,33bは夫々、環形を4半円程度
切り取りN極とS極を密着させた永久磁石を示し、34
a,34bそして35a,35bは内外のヨークである
。37は環状のボビン、36は電磁コイルである。
[0031] 33a and 33b are permanent magnets each having an annular shape cut out by about four semicircles and having their N and S poles brought into close contact with each other;
a, 34b and 35a, 35b are inner and outer yokes. 37 is an annular bobbin, and 36 is an electromagnetic coil.

【0032】一方、41から44、45から48は各々
歪ゲージである。
On the other hand, 41 to 44 and 45 to 48 are strain gauges, respectively.

【0033】本例は全例のDCモータや送りネジ機構の
代りに電磁誘導によって直接レンズ群を移動する構造と
なっており、ヨーク34a,34b,35a,35b、
永久磁石33a,33b、コイル36によって閉磁系の
ボイスコイル型リニア・アクチユエータを構成している
This example has a structure in which the lens group is directly moved by electromagnetic induction instead of the DC motor and feed screw mechanism of all examples, and the yokes 34a, 34b, 35a, 35b,
The permanent magnets 33a, 33b and the coil 36 constitute a closed magnetic voice coil type linear actuator.

【0034】前記電磁コイル36はボビン37上に巻か
れているものとし、ボビンはレンズ保持筒2に結合され
ている。上で触れた様にジンバルバネ31、32の一部
内側の帯はレンズ保持筒2に結合され、外縁は鏡筒5に
接合されている。従ってジンバルバネ31、32と保持
筒の組合せによりレンズ群を光軸方向のみに直線案内す
ることができる。
It is assumed that the electromagnetic coil 36 is wound on a bobbin 37, and the bobbin is connected to the lens holding cylinder 2. As mentioned above, some of the inner bands of the gimbal springs 31 and 32 are joined to the lens holding tube 2, and the outer edges are joined to the lens barrel 5. Therefore, the combination of the gimbal springs 31 and 32 and the holding cylinder allows the lens group to be linearly guided only in the optical axis direction.

【0035】またコイル36に電流を流すと、レンズ群
は光軸方向に推進力を受けることになる。
Furthermore, when a current is passed through the coil 36, the lens group receives a propulsive force in the optical axis direction.

【0036】図7と図8は、レンズ群を指示しているジ
ンバルバネ31、32の中立状態と変形状態を比較でき
る様に描かれている。図8はレンズ保持筒2に矢印方向
の力が加わった場合である。
FIGS. 7 and 8 are drawn so that the neutral state and the deformed state of the gimbal springs 31 and 32, which direct the lens groups, can be compared. FIG. 8 shows a case where a force is applied to the lens holding cylinder 2 in the direction of the arrow.

【0037】図示の様な構造になっているため摺動する
処がなく、摩擦の悪影響を回避できるので高い効率でか
つ高速の駆動が可能となる。
With the structure shown in the figure, there is no place for sliding, and the negative effects of friction can be avoided, making it possible to drive with high efficiency and high speed.

【0038】一方、本例では歪ゲージ41から48は直
交線上の4ケ所に、ジンバルバネを挟んで表裏一対づつ
接着してバネの変形量を測定している。この内、4ケ所
に配置したのはジンバルバネの変形が回転対称にならな
い場合を考慮したためで、基本的には1ケ所もしくは直
交線上の各1ケ所に配置すれば良い。但し精密な位置検
出を行なうには4組の平均をとるのが望ましい、表裏に
歪ゲージを設けた理由は、前述したものと同様である。
On the other hand, in this example, the strain gauges 41 to 48 are bonded at four locations on orthogonal lines, one pair each on the front and back sides with the gimbal spring in between, to measure the amount of deformation of the spring. The reason why they are placed at four of these locations is to take into consideration the case where the deformation of the gimbal spring is not rotationally symmetrical; basically, they may be placed at one location or at each location on the orthogonal line. However, in order to perform precise position detection, it is desirable to take the average of four sets.The reason for providing strain gauges on the front and back surfaces is the same as that described above.

【0039】以上の通り本装置は駆動部も位置検出部も
摺動による摩擦を生じる部分が全くなく、高速かつ正確
な位置決めが可能で、又摩擦に伴なうゴミ発生も全くな
い。またレンズ位置検出装置は、特にボイスコイルアク
チユエータ等を用いた駆動系において、摺動部が全く悪
いという意味で有効である。
As described above, in this device, neither the driving section nor the position detecting section has any parts that cause friction due to sliding, and high-speed and accurate positioning is possible, and there is no generation of dust due to friction. Further, the lens position detection device is particularly effective in a drive system using a voice coil actuator or the like, in the sense that there are no sliding parts at all.

【0040】[0040]

【発明の効果】以上述べた本発明は、小型化と云う最近
求められている最も大きな要望に答えることができ、ま
た殊に安価である。更に小型で安価と云う制約があるに
も拘らず、高い応答速度で高精度の検出を行なうことが
できる効果がある。
The present invention described above can meet the most recent demand for miniaturization, and is particularly inexpensive. Furthermore, despite the limitations of being small and inexpensive, it has the advantage of being able to perform highly accurate detection with a high response speed.

【0041】また本発明に付随して温度変化や振動等の
外乱による影響を受難い装置、更には摺動や摩擦がなく
ゴミを発生しない装置の構成が可能である。
Further, according to the present invention, it is possible to construct a device that is not easily affected by external disturbances such as temperature changes and vibrations, and furthermore, a device that does not generate sliding or friction and does not generate dust.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明を適用するのに適したズームレンズの概
念図。
FIG. 2 is a conceptual diagram of a zoom lens suitable for applying the present invention.

【図3】実施例の部分を示す図。FIG. 3 is a diagram showing a part of an example.

【図4】実施例の部分を示す図。FIG. 4 is a diagram showing a part of an example.

【図5】別の実施例を示す断面図。FIG. 5 is a sectional view showing another embodiment.

【図6】図5の構成を軸方向から見た正面図。FIG. 6 is a front view of the configuration shown in FIG. 5, viewed from the axial direction.

【図7】実施例の構成要素の中立状態を示す斜視図。FIG. 7 is a perspective view showing the components of the embodiment in a neutral state.

【図8】実施例の構成要素の変形状態を示す斜視図。FIG. 8 is a perspective view showing a deformed state of the constituent elements of the embodiment.

【符号の説明】[Explanation of symbols]

1a,1b,1c  成分レンズ 2  レンズ保持筒 10  コイルバネ 11、12  歪ゲージ 20、21  検出アンプ回路 22  差動アンプ回路 23  直線性補正回路 1a, 1b, 1c component lens 2 Lens holding tube 10 Coil spring 11, 12 Strain gauge 20, 21 Detection amplifier circuit 22 Differential amplifier circuit 23 Linearity correction circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  移動可能なレンズに連結され変形自在
な部材と変形自在な部材の歪を測定するための測定手段
を有することを特徴とするレンズ位置検出装置。
1. A lens position detection device comprising: a deformable member connected to a movable lens; and a measuring means for measuring distortion of the deformable member.
【請求項2】  測定手段は2つあって、変形自在な部
材の歪の符号が逆になる位置に設けていることを特徴と
する請求項1のレンズ位置検出装置。
2. The lens position detecting device according to claim 1, wherein there are two measuring means, and the two measuring means are provided at positions where the signs of distortion of the deformable member are opposite.
JP9437191A 1990-07-31 1991-04-24 Lens position detection device Pending JPH04324408A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9437191A JPH04324408A (en) 1991-04-24 1991-04-24 Lens position detection device
US07/737,149 US5289318A (en) 1990-07-31 1991-07-29 Optical apparatus provided with a driving unit for moving a lens
EP91112761A EP0469532B1 (en) 1990-07-31 1991-07-30 Optical apparatus provided with a driving unit for moving a lens
DE69124026T DE69124026T2 (en) 1990-07-31 1991-07-30 Optical device with a drive unit for adjusting a lens
US08/200,885 US5572372A (en) 1990-07-31 1994-02-22 Optical apparatus provided with a driving unit for moving a lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9437191A JPH04324408A (en) 1991-04-24 1991-04-24 Lens position detection device

Publications (1)

Publication Number Publication Date
JPH04324408A true JPH04324408A (en) 1992-11-13

Family

ID=14108461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9437191A Pending JPH04324408A (en) 1990-07-31 1991-04-24 Lens position detection device

Country Status (1)

Country Link
JP (1) JPH04324408A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058662A (en) * 2004-08-20 2006-03-02 Shicoh Eng Co Ltd Lens driving device and compact camera
CN103119493A (en) * 2010-07-15 2013-05-22 新港公司 Optical adjustable mounts with absolute position feedback
US9425711B2 (en) 2014-04-15 2016-08-23 Newport Corporation Integral preload mechanism for piezoelectric actuator
US10161560B2 (en) 2015-01-29 2018-12-25 Newport Corporation Integrated picomotor mount

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058662A (en) * 2004-08-20 2006-03-02 Shicoh Eng Co Ltd Lens driving device and compact camera
CN103119493A (en) * 2010-07-15 2013-05-22 新港公司 Optical adjustable mounts with absolute position feedback
JP2013532843A (en) * 2010-07-15 2013-08-19 ニューポート・コーポレイション Optical mount adjustable using absolute position feedback
US9425711B2 (en) 2014-04-15 2016-08-23 Newport Corporation Integral preload mechanism for piezoelectric actuator
US10389276B2 (en) 2014-04-15 2019-08-20 Newport Corporation Integral preload mechanism for piezoelectric actuator
US10161560B2 (en) 2015-01-29 2018-12-25 Newport Corporation Integrated picomotor mount

Similar Documents

Publication Publication Date Title
US5289318A (en) Optical apparatus provided with a driving unit for moving a lens
US7725014B2 (en) Actuator for linear motion and tilting motion
US5146071A (en) Optical lens system-driving control apparatus for microscopically driving a plurality of lens groups
KR102163416B1 (en) Aperture module and camera module including the same
JP4764075B2 (en) Image blur correction device and lens barrel provided with the image blur correction device
US8582205B2 (en) Lens barrel and optical apparatus including the same
JP2021103271A (en) Imaging apparatus with camera-shake correction function
JP2006184543A (en) Method for assembling group lens, group lens assembled by the method and imaging apparatus
CN117270142A (en) Optical system
JP2013250468A (en) Lens drive device
JPH07104166A (en) Optical apparatus
US8824071B2 (en) Lens barrel and camera
JP5483988B2 (en) Image blur correction device
JP6376801B2 (en) Image blur correction device, lens barrel, and optical apparatus
JP3173315B2 (en) Drives and cameras and optical equipment
JPH04324408A (en) Lens position detection device
JP2011100045A (en) Image blurring-correcting device
KR20210041947A (en) Camera actuator and camera device comprising the same
US20210271104A1 (en) Lens apparatus and image pickup apparatus
US7839578B2 (en) Optical apparatus
JPH01265215A (en) Automatic focusing device for video camera
CN110165932B (en) Vibration wave motor and driving device including the same
JPH11149030A (en) Lens driving device and lens barrel
KR100247347B1 (en) Linear motor location control apparatus
JP2006178006A (en) Photographing lens unit