JPH04324091A - Condenser - Google Patents

Condenser

Info

Publication number
JPH04324091A
JPH04324091A JP9504491A JP9504491A JPH04324091A JP H04324091 A JPH04324091 A JP H04324091A JP 9504491 A JP9504491 A JP 9504491A JP 9504491 A JP9504491 A JP 9504491A JP H04324091 A JPH04324091 A JP H04324091A
Authority
JP
Japan
Prior art keywords
region
section
steam
condenser
lanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9504491A
Other languages
Japanese (ja)
Inventor
Yoshio Mochida
芳雄 餅田
Shin Ogushi
大串 伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9504491A priority Critical patent/JPH04324091A/en
Publication of JPH04324091A publication Critical patent/JPH04324091A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a condenser capable of arranging heat transfer tubes with a high density while preventing the give-and-take of heat in the group of the same tubes from being spoiled due to the stagnation of steam. CONSTITUTION:A lanes section 21a is provided with cut-in sections 21b toward obliquely down and are connected to close pack sections 21c. Another lanes section 22a is provided with horizontal cut-in sections 22b and are connected to close pack sections 22c. The other lanes section 23a is provided with cut-in sections 23b obliquely and horizontally while being changed gradually and is connected to close pack sections 23c.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は復水器に係り、特に管群
を構成する伝熱管の配置密度の改良を図ることによって
コンパクト化を果たすのに好適な復水器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser, and more particularly to a condenser suitable for achieving compactness by improving the arrangement density of heat transfer tubes constituting a group of tubes.

【0003】0003

【従来の技術】一般に、復水器は蒸気タービンの排気を
凝縮させて復水として回収する機能を有しており、そこ
で蒸気は熱交換用管群に導かれてその伝熱管内を流れる
冷却水に熱を奪われて凝縮させられる。
[Prior Art] Generally, a condenser has the function of condensing the exhaust gas of a steam turbine and recovering it as condensate, where the steam is guided to a group of heat exchange tubes and flows through the heat exchange tubes for cooling. Heat is taken away by water and it condenses.

【0004】図2および図3はこの復水器の具体的構成
を示すもので、全体を符号1で示される復水器は、ほぼ
角形の非常に大きな容器胴体2を有し、この容器胴体2
の上部には蒸気タービン3が設置されており、またその
内部には数万本におよぶ伝熱管4が収められ、大きな管
群5を構成している。この管群5の両側には管板6a、
6bが垂設されており、ここから左右の両側に延びる水
室7a、7bが連設されている。容器胴体2の内部は図
3に示されるように、管群5全体があたかも釣鐘形の形
状として配設されており、この釣鐘形の形状を有する管
群5の下部には囲い枠体8で囲まれたガス冷却部9が形
成されている。管群5はレーンズセクション5a、クロ
ーズパックセクション5bより構成され、蒸気タービン
3の排気流はまずレーンズセクション5aへ導かれる。 管群5を通過する際の圧力損失を低減するとともに、蒸
気を滑らかに管群5に導くため、レーンズセクション5
aでは伝熱管4を配列しない切込み部5cが設けられて
いる。管配列の中央部にはクローズパックセクション5
bが配置され、この部分では伝熱管4は規則正しく配列
されている。この釣鐘形管配列においては蒸気は管群5
の上方部では斜め下向き方向、側部では水平方向に流れ
る構造となっている。管群5の上方部での斜め下向きの
蒸気流れと、側部の水平の蒸気流れとの干渉を防ぐため
に、この間にそらせ板11が挿入されている。したがっ
て、この部分には伝熱管4は配置できない。また、管群
5の内部中央領域は袋とじの空間部10となっており、
その中央に左右の管群5を区画する仕切板12が設けら
れている。なお、符号13は復水溜めを示している。
FIGS. 2 and 3 show the specific structure of this condenser. The condenser, which is designated as a whole by the reference numeral 1, has a very large container body 2 that is approximately rectangular. 2
A steam turbine 3 is installed in the upper part of the steam turbine 3, and tens of thousands of heat transfer tubes 4 are housed inside the steam turbine 3, forming a large tube group 5. On both sides of this tube group 5, tube plates 6a,
6b is installed vertically, and water chambers 7a and 7b extending from this to both left and right sides are connected. As shown in FIG. 3, inside the container body 2, the entire tube group 5 is arranged in a bell-shaped configuration, and an enclosure frame 8 is provided at the bottom of the bell-shaped tube group 5. An enclosed gas cooling section 9 is formed. The tube group 5 is composed of a lanes section 5a and a closed pack section 5b, and the exhaust flow of the steam turbine 3 is first guided to the lanes section 5a. Lanes section 5 is used to reduce pressure loss when passing through tube group 5 and to smoothly guide steam to tube group 5.
In section a, a notch 5c in which the heat exchanger tubes 4 are not arranged is provided. Close pack section 5 in the center of the tube arrangement
b, and the heat exchanger tubes 4 are regularly arranged in this part. In this bell-shaped tube arrangement, steam is transferred to tube group 5.
It has a structure in which the flow flows diagonally downward in the upper part and horizontally in the side part. In order to prevent the oblique downward steam flow in the upper part of the tube group 5 from interfering with the horizontal steam flow in the side part, a baffle plate 11 is inserted between them. Therefore, the heat exchanger tubes 4 cannot be placed in this portion. In addition, the inner central area of the tube group 5 is a bag-stitched space 10,
A partition plate 12 is provided at the center to partition the left and right tube groups 5. In addition, the code|symbol 13 has shown the condensate reservoir.

【0005】上記構成を有する復水器1において、蒸気
タービン3から容器胴体2に向かって流れる蒸気は水室
7aを経て伝熱管4内を通過する冷却水(この場合、海
水が多く使用されている)との間で熱の授受を行い、蒸
気はその潜熱を奪われて凝縮し、復水溜め13に集めら
れ、他方熱を吸収した冷却水は水室7bを経て海洋等に
戻される。
In the condenser 1 having the above configuration, steam flowing from the steam turbine 3 toward the vessel body 2 passes through the water chamber 7a and the cooling water (in this case, seawater is often used) which passes through the heat transfer tubes 4. The steam is deprived of its latent heat, condensed, and collected in the condensate reservoir 13, while the cooling water that has absorbed the heat is returned to the ocean or the like through the water chamber 7b.

【0006】上記のように、蒸気は管群5を通過する間
に冷却水に潜熱を奪われて次第に凝縮するが、その際、
不凝縮ガス濃度が次第に上昇するので、不凝縮ガス濃度
の高い蒸気は、一旦、空間部10に集められ、ここから
仕切板12に沿ってガス冷却部9に導かれた後、ガス抽
出装置(図示せず)によって器外に抽出されるようにな
っている。
As mentioned above, while passing through the tube group 5, the steam loses its latent heat to the cooling water and gradually condenses.
As the non-condensable gas concentration gradually increases, the vapor with a high non-condensable gas concentration is once collected in the space 10 and guided from there to the gas cooling section 9 along the partition plate 12, and then passed through the gas extraction device ( (not shown) to be extracted outside the vessel.

【0007】[0007]

【発明が解決しようとする課題】復水器のような大型の
熱交換器ではその容積および設置面積を可能な限り小さ
くしてコンパクト化を図ることが必要である。そのため
には管群を高密度に配列すればよい。ところで、復水器
のような多管式熱交換器において流体間の熱の授受が管
配列の巧拙により大きく左右されることが知られている
。一般に、復水器1では伝熱管4が高密度に並ぶことが
避けられず、流動抵抗の増加によって管群5の奥深い部
分では蒸気の流れが滞り易い。こうした流動抵抗は管配
列における密度を下げることによって小さくなるが、あ
る決められた容積に上記のような多数の伝熱管4を組込
む必要のある復水器1においては容易に解決できない問
題である。こうした流動抵抗が著しく大きくなると、そ
のときの圧力損失のために管群5の上流では熱の授受が
良好に保たれているにもかかわらず、その下流となった
領域では蒸気の流動が滞り、熱の授受は上流部と比べて
著しく減少することになる。
SUMMARY OF THE INVENTION In a large heat exchanger such as a condenser, it is necessary to make the volume and installation area as small as possible to make it more compact. To achieve this, the tube groups may be arranged in high density. By the way, it is known that in a multi-tubular heat exchanger such as a condenser, the transfer of heat between fluids is greatly influenced by the skill of arranging the tubes. Generally, in the condenser 1, it is unavoidable that the heat transfer tubes 4 are lined up in a high density manner, and the flow of steam tends to stagnate in deep parts of the tube group 5 due to an increase in flow resistance. Although such flow resistance can be reduced by lowering the density in the tube arrangement, it is a problem that cannot be easily solved in the condenser 1 where a large number of heat transfer tubes 4 as described above need to be incorporated into a certain determined volume. When this flow resistance becomes significantly large, the flow of steam becomes stagnant in the downstream region, even though heat exchange is maintained well upstream of the tube group 5 due to the pressure loss at that time. The exchange of heat will be significantly reduced compared to the upstream area.

【0008】また、管群5の上方部の斜め下向きの蒸気
流れと、側部の水平方向の蒸気流れとの干渉を防ぐため
に設置されているそらせ板11の両側には、上述の如く
伝熱管4を配置できないので、この両側の流路を蒸気タ
ービン3からの蒸気が高速で流れるために、そらせ板1
1近傍のクローズパックセクション5b内の蒸気の流動
が妨げられて、蒸気の滞留が発生し、復水器1の伝熱性
能が低下する原因となっている。
Furthermore, heat transfer tubes are installed on both sides of the baffle plate 11, which is installed to prevent interference between the diagonally downward steam flow in the upper part of the tube group 5 and the horizontal steam flow in the side part. Since steam from the steam turbine 3 flows at high speed through the flow paths on both sides, the baffle plate 1 cannot be placed.
The flow of steam in the closed pack section 5b near the condenser 1 is obstructed, causing steam stagnation, which causes the heat transfer performance of the condenser 1 to deteriorate.

【0009】そこで、本発明の目的は管群での熱の授受
が蒸気の滞留によって損なわれるのを防止しながら、高
密度に伝熱管を配置することができる復水器を提供する
ことにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a condenser in which heat transfer tubes can be arranged in a high density while preventing heat transfer in a tube group from being impaired by steam retention. .

【0010】[発明の構成][Configuration of the invention]

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明は、容器胴体に収容される多数の伝熱管からな
る管群を有する復水器において、管群は斜め下向き蒸気
流のための切込み部が斜め下方を向くレーンズセクショ
ンからなる第1の領域、水平蒸気流のための切込み部が
水平方向を向くレーンズセクションからなる第2の領域
および第1の領域と第2の領域の間にあって、切込み部
が斜め下方から水平方向へと漸次変化するレーンズセク
ションからなる第3の領域をもって構成される管配列を
備えていることを特徴とするものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a condenser having a tube group consisting of a large number of heat transfer tubes housed in a container body, in which the tube group is designed for diagonally downward steam flow. A first region consisting of a lanes section in which the notch for horizontal steam flow faces diagonally downward, a second region consisting of a lanes section in which the notch for horizontal steam flow faces horizontally, and a region between the first region and the second region. The pipe arrangement is characterized in that the cut portion includes a third region consisting of a lane section that gradually changes from diagonally downward to the horizontal direction.

【0012】0012

【作用】管群は斜め下向き蒸気流のための第1の領域、
水平蒸気流のための第2の領域、双方の領域の間を結ぶ
第3の領域に分割される。タービン排気蒸気の一部はレ
ーンズセクションに斜め下方を向く切込み部を有する第
1の領域に流入して凝縮し、残りの蒸気はレーンズセク
ションに斜め下方から水平方向へと漸次変化する切込み
部を有する第3の領域に流入して凝縮し、さらに残りの
蒸気はレーンズセクションに水平方向を向く切込み部を
有する第2の領域に流入して凝縮する。これにより、こ
れまで伝熱管を配置できなかった斜め下向き蒸気流と水
平蒸気流部を隔てるそらせ板の部分にも伝熱管を配置で
きるので、管群を高密度に構成することができる。
[Operation] The tube group is the first region for diagonally downward steam flow;
It is divided into a second region for horizontal steam flow and a third region connecting both regions. A portion of the turbine exhaust steam flows into the first region in which the lanes section has a notch facing diagonally downward and condenses therein, and the remaining steam has a notch in the lanes section which gradually changes from diagonally downward to horizontal. The remaining vapor flows into a third region where it condenses, and the remaining vapor flows into a second region having horizontally oriented cuts in the lanes section where it condenses. As a result, heat transfer tubes can be arranged even in the portion of the baffle plate that separates the obliquely downward steam flow and the horizontal steam flow section, where heat transfer tubes could not be placed heretofore, so that the tube group can be configured with high density.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1において、第1の領域21はレーンズセク
ション21aに斜め下方を向く切込み部21bを有し、
レーンズセクション21aはクローズパックセクション
21cに接続する。また、第2の領域22はレーンズセ
クション22aに水平方向の切込み部22bを有し、レ
ーンズセクション22aはクローズパックセクション2
2cに接続する。一方、第3の領域23はレーンズセク
ション23aに斜め下方から水平方向へと漸次変化する
切込み部23bを有し、レーンズセクション23aはク
ローズパックセクション23cに接続する。上記の第3
の領域23以外の構成は従来技術によるものと基本的に
同じであり、これらについては説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the first region 21 has a notch 21b facing diagonally downward in the lanes section 21a,
Lanes section 21a connects to close pack section 21c. Further, the second region 22 has a horizontal cut portion 22b in the lanes section 22a, and the lanes section 22a has a closed pack section 22b.
Connect to 2c. On the other hand, the third region 23 has a notch 23b in the lanes section 23a that gradually changes from diagonally downward to the horizontal direction, and the lanes section 23a is connected to the closed pack section 23c. 3rd above
The configuration other than the area 23 is basically the same as that according to the prior art, and a description thereof will be omitted.

【0014】次に、上記構成によるところの作用を説明
する。タービン3の排気蒸気のうち、一部は第1の領域
21に流入する。すなわち、レーンズセクション21a
に流入する蒸気は、斜め下方を向く切込み部21bによ
り斜め下向きに流入し、そこで凝縮して減速され、さら
に密な管配列域であるクローズパックセクション21c
に流入してその大半が凝縮する。凝縮しきれなかった蒸
気は仕切り板12に沿って下降し、空気冷却部9に至る
Next, the operation of the above configuration will be explained. A portion of the exhaust steam from the turbine 3 flows into the first region 21 . That is, the lanes section 21a
The steam flowing into the section flows diagonally downward through the notch 21b facing diagonally downward, where it is condensed and decelerated, and then flows into the closed pack section 21c, which is a denser tube arrangement area.
most of it is condensed. The steam that has not been completely condensed descends along the partition plate 12 and reaches the air cooling section 9.

【0015】一方、第1の領域21に流入することなく
、その周囲を巡って下方に流れた蒸気は、流入方向を斜
め下方から水平方向へと向き変えながら、第3の領域2
3に流入する。すなわち、レーンズセクション23aに
流入する蒸気は、斜め下方から水平方向へと漸次変化す
る切込み部23bにより流入し、そこで凝縮して減速さ
れ、さらに密な管配列であるクローズパックセクション
23cに流入してその大半が凝縮する。凝縮しきれなか
った蒸気は仕切り板12に沿って下降し、空気冷却部9
に至る。
On the other hand, the steam that has not flowed into the first region 21 but has flowed downward around the first region 21 changes its inflow direction from diagonally downward to horizontal direction and flows into the third region 21.
3. That is, the steam flowing into the lanes section 23a flows through the cut portion 23b that gradually changes from diagonally downward to the horizontal direction, is condensed and decelerated there, and further flows into the closed pack section 23c, which is a dense pipe arrangement. Most of it is condensed. The steam that has not been completely condensed descends along the partition plate 12 and reaches the air cooling section 9.
leading to.

【0016】また、第1の領域21、第3の領域23に
流入することなくその周囲を巡って下方に流れた蒸気は
、水平方向に流れの向きを変えて第2の領域22に流入
する。すなわち、レーンズセクション22aに流入する
蒸気は、水平方向に向けられた切込み部22bにより水
平に流入し、そこで凝縮して減速され、さらに密な管配
列域であるクローズパックセクション22cに流入して
その大半が凝縮する。凝縮しきれなかった蒸気は仕切り
板12に沿って下降し、空気冷却部9に至る。
[0016] Furthermore, the steam that flows downward around the first region 21 and the third region 23 without flowing into them changes its flow direction horizontally and flows into the second region 22. . That is, the steam flowing into the lanes section 22a flows horizontally through the horizontally oriented cut portion 22b, where it is condensed and decelerated, and further flows into the close pack section 22c, which is a dense pipe arrangement area, where it is decelerated. Most of it is condensed. The steam that has not been completely condensed descends along the partition plate 12 and reaches the air cooling section 9.

【0017】このように管群20を斜め下向き蒸気流の
ための第1の領域21、斜め下方から水平方向へと漸次
変化する蒸気流のための第3の領域23、水平蒸気流の
ための第2の領域22に分割して構成したので、従来の
釣鐘形管配列において欠くことができなかった、斜め下
向き蒸気流と水平蒸気流とを区画するための仕切り板1
1が不要となり、この部分に伝熱管4を配置することが
可能になる。したがって、従来の管配列よりも配置密度
を上げることができ、復水器をコンパクトに構成するこ
とが可能である。
In this way, the tube group 20 is divided into a first region 21 for a diagonally downward steam flow, a third region 23 for a steam flow that gradually changes from diagonally downward to the horizontal direction, and a third region 23 for a horizontal steam flow. Since the partition plate 1 is divided into the second region 22, the partition plate 1 is used to separate the diagonally downward steam flow and the horizontal steam flow, which is indispensable in the conventional bell-shaped pipe arrangement.
1 becomes unnecessary, and it becomes possible to arrange the heat exchanger tube 4 in this part. Therefore, the arrangement density can be increased compared to the conventional pipe arrangement, and the condenser can be configured more compactly.

【0018】[0018]

【発明の効果】以上の説明から明らかなように本発明は
多数の伝熱管からなる管群を斜め下向き蒸気流のための
第1の領域、水平蒸気流のための第2の領域、双方の領
域間を結ぶ斜め下向き蒸気流から水平蒸気流のための第
3の領域をもって構成したので、斜め下向き蒸気流と水
平蒸気流部とを隔離するそらせ板が不要となる。
Effects of the Invention As is clear from the above description, the present invention enables a tube group consisting of a large number of heat transfer tubes to be divided into a first region for diagonally downward steam flow and a second region for horizontal steam flow. Since the third region is provided for the horizontal steam flow from the diagonal downward steam flow connecting the regions, there is no need for a baffle plate to separate the diagonal downward steam flow from the horizontal steam flow section.

【0019】また、そらせ板の代わりに第3の領域を配
置したことから、これまでそらせ板の両側に発生してい
た高速の蒸気流れがなくなり、クローズパックセクショ
ン部での蒸気の滞留による復水器の性能低下を防ぐこと
ができる。
[0019] Furthermore, since the third region is placed in place of the baffle plate, the high-speed steam flow that previously occurred on both sides of the baffle plate is eliminated, and condensation due to steam accumulation in the closed pack section is eliminated. This can prevent the performance of the device from deteriorating.

【0020】したがって、本発明によれば、管群の大き
さを小さくして伝熱管の配置密度を上げることができる
ので、復水器をコンパクトに構成できるという優れた効
果を奏する。
Therefore, according to the present invention, it is possible to reduce the size of the tube group and increase the arrangement density of the heat exchanger tubes, thereby achieving the excellent effect that the condenser can be constructed compactly.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による復水器の一実施例を示す構成図で
ある。
FIG. 1 is a configuration diagram showing an embodiment of a condenser according to the present invention.

【図2】従来の復水器の一例を示す構成図である。FIG. 2 is a configuration diagram showing an example of a conventional condenser.

【図3】従来の復水器の管配列を示す説明図である。FIG. 3 is an explanatory diagram showing the pipe arrangement of a conventional condenser.

【符号の説明】[Explanation of symbols]

2……容器胴体 4……伝熱管 5……管群 9……ガス冷却部 11……そらせ板 20……管群 21……第1の領域 21a…第1の領域のレーンズセクション21b…第1
の領域の切込み部 21c…1の領域のクローズパックセクション22……
2の領域 22a…2の領域のレーンズセクション22b…2の領
域の切込み部 22c…2の領域のクローズパックセクション23……
3の領域 23a…3の領域のレーンズセクション23b…3の領
域の切込み部
2... Container body 4... Heat transfer tubes 5... Tube group 9... Gas cooling section 11... Deflector plate 20... Tube group 21... First region 21a... Lanes section 21b of the first region... 1
Notch portion 21c in the area...Close pack section 22 in the area 1...
2 area 22a...Lane's section 22b in 2 area...Notch part 22c in 2 area...Close pack section 23 in 2 area...
Region 23a of 3...Lane section 23b of region 3...Notch part of region 3

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  容器胴体内に収容される多数の伝熱管
からなる管群を有する復水器において、前記管群は斜め
下向き蒸気流のための切込み部が斜めの下方に向くレー
ンズセクションからなる第1の領域、水平蒸気流のため
の切込み部が水平方向を向くレーンズセクションからな
る第2の領域および前記第1の領域と前記第2の領域の
間にあって、切込み部が斜め下方から水平方向へと漸次
変化するレーンズセクションからなる第3の領域をもっ
て構成される管配列を備えていることを特徴とする復水
器。
Claim 1: A condenser having a tube group consisting of a large number of heat transfer tubes housed in a container body, wherein the tube group is comprised of a lanes section in which a notch for diagonally downward steam flow is directed diagonally downward. a first region, a second region consisting of a lanes section in which a notch for horizontal steam flow faces horizontally; and a second region located between the first region and the second region, in which the notch extends diagonally from below in the horizontal direction; A condenser characterized in that it comprises a tube arrangement comprising a third region consisting of lanes sections that gradually change to .
JP9504491A 1991-04-25 1991-04-25 Condenser Withdrawn JPH04324091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9504491A JPH04324091A (en) 1991-04-25 1991-04-25 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9504491A JPH04324091A (en) 1991-04-25 1991-04-25 Condenser

Publications (1)

Publication Number Publication Date
JPH04324091A true JPH04324091A (en) 1992-11-13

Family

ID=14127073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9504491A Withdrawn JPH04324091A (en) 1991-04-25 1991-04-25 Condenser

Country Status (1)

Country Link
JP (1) JPH04324091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481264B2 (en) 2004-05-28 2009-01-27 Kabushiki Kaisha Toshiba Steam condenser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481264B2 (en) 2004-05-28 2009-01-27 Kabushiki Kaisha Toshiba Steam condenser

Similar Documents

Publication Publication Date Title
KR100194778B1 (en) Avenger
JP2576292B2 (en) Condenser and power plant using the same
EP0049116A2 (en) Feedwater heater
KR100658126B1 (en) Condenser
US4967833A (en) Steam condenser
JPH04324091A (en) Condenser
US4047562A (en) Heat exchanger utilizing a vaporized heat-containing medium
US4417619A (en) Air-cooled heat exchanger
US4537248A (en) Air-cooled heat exchanger
JP2018009723A (en) Condenser
AU712064B2 (en) Steam condenser
JP3314599B2 (en) Condenser and power plant
CN111442657A (en) Low-pressure vacuum condenser
JP4607664B2 (en) Condenser
AU2005202325B2 (en) Steam condenser
CN212378536U (en) Low-pressure vacuum condenser
CA1144150A (en) Air-cooled heat exchanger
CA2340503A1 (en) Condenser
JPS61114087A (en) Condenser
JPH04110595A (en) Condenser
JP2005326083A (en) Condenser and its operation method
SU954697A2 (en) Regenerative heater
JPH09196507A (en) Heat exchanger for air conditioning
JPH1019476A (en) Condenser
JPS6232395B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711