JPH04324066A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH04324066A
JPH04324066A JP12210991A JP12210991A JPH04324066A JP H04324066 A JPH04324066 A JP H04324066A JP 12210991 A JP12210991 A JP 12210991A JP 12210991 A JP12210991 A JP 12210991A JP H04324066 A JPH04324066 A JP H04324066A
Authority
JP
Japan
Prior art keywords
compressor
injection
valve
compression chamber
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12210991A
Other languages
Japanese (ja)
Inventor
Noriyasu Kawakatsu
川勝 紀育
Tetsuo Nakano
中野 哲男
Katsuyuki Sawai
沢井 克行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12210991A priority Critical patent/JPH04324066A/en
Publication of JPH04324066A publication Critical patent/JPH04324066A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate storage of refrigerant liquid in a compression chamber at the time of stopping a compressor in a refrigerator using the compressor having a liquid injection and to prevent compression of the liquid at the time of starting the compressor. CONSTITUTION:A bypass passage 13 branched from an injection tube 12 to a suction side 9 of a compressor 1, is provided, a first switching valve 21 is provided at a high pressure liquid tube 6 side from a branch 14 in the tube 12, a second switching valve 22 is provided in the passage 13, and control means 20 for stopping injection by both the valves 21, 22 at the time of stopping the compressor 1 and communicating a compression chamber 40 with the suction side 9 of the compressor 1, is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は冷凍装置に関し、特に圧
縮工程中の圧縮室と連通するインジェクションポートを
有する圧縮機を備えた冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system, and more particularly to a refrigeration system equipped with a compressor having an injection port communicating with a compression chamber during a compression process.

【0002】0002

【従来の技術】従来より、圧縮機から吐出される冷媒の
温度を下げるため、凝縮器から出た冷媒液を圧縮機の圧
縮室に必要に応じて制御弁の開閉によりインジェクショ
ンする方式は、特開平2ー82056号公報に記載され
ているように公知の技術である。
[Prior Art] Conventionally, in order to lower the temperature of refrigerant discharged from a compressor, there has been a special method in which refrigerant liquid discharged from a condenser is injected into the compression chamber of the compressor by opening and closing a control valve as necessary. This is a known technique as described in JP-A No. 2-82056.

【0003】0003

【発明が解決しようとする課題】圧縮機停止時には、イ
ンジェクションの制御弁は通常閉止されているが、多少
の漏れが生じるので圧縮機の圧縮室に冷媒液が溜まる。 あるいは圧縮機停止時に圧縮室にあった冷媒ガスが凝縮
して冷媒液が溜まる。この状態で圧縮機が起動すると液
圧縮となるので圧縮機が破損することがある。本発明は
かかる点に鑑みてなされたものであり、その目的は圧縮
機の起動時に液圧縮を防止することである。
When the compressor is stopped, the injection control valve is normally closed, but some leakage occurs and refrigerant liquid accumulates in the compression chamber of the compressor. Alternatively, the refrigerant gas in the compression chamber when the compressor is stopped condenses and refrigerant liquid accumulates. If the compressor is started in this state, it will compress the liquid, which may cause damage to the compressor. The present invention has been made in view of this problem, and its purpose is to prevent liquid compression when starting up a compressor.

【0004】0004

【課題を解決するための手段】前記目的を達成するため
本発明の解決手段は、圧縮工程中の圧縮室(40)と連
通するインジェクションポート(10)を備えた圧縮機
(1)、凝縮器(2)、膨張機構(3)及び蒸発器(4
)を順次接続し、前記凝縮器(2)の出口側の高圧液管
(6)と前記インジェクションポート(10)とを減圧
機構(11)を介設したインジェクション管(12)に
より接続した冷凍装置を前提とする。
[Means for Solving the Problem] In order to achieve the above object, the solution means of the present invention includes a compressor (1) equipped with an injection port (10) communicating with a compression chamber (40) during a compression process, and a condenser. (2), expansion mechanism (3) and evaporator (4)
) are sequentially connected, and the high-pressure liquid pipe (6) on the outlet side of the condenser (2) and the injection port (10) are connected by an injection pipe (12) with a pressure reducing mechanism (11) interposed. Assuming that.

【0005】第1の解決手段は、図1に示すように、前
記インジェクション管(12)から分岐し圧縮機(1)
の吸入側(9)に至るバイパス路(13)を設けるとと
もに、前記インジェクション管(12)におけるバイパ
ス路(13)の分岐部(14)よりも高圧液管(6)側
に第一開閉弁(21)を、バイパス路(13)に第二開
閉弁(22)をそれぞれ設け、前記圧縮機(1)のイン
ジェクション運転時に第一開閉弁(21)を開き、第二
開閉弁(22)を閉じ、前記圧縮機(1)の停止時に第
一開閉弁(21)を閉じ、第二開閉弁(22)を開く開
閉弁制御手段(20)を設けたものである。
The first solution, as shown in FIG. 1, is a compressor (1) branched from the injection pipe (12).
A bypass path (13) leading to the suction side (9) of the injection pipe (12) is provided, and a first on-off valve ( 21), a second on-off valve (22) is provided in the bypass path (13), and the first on-off valve (21) is opened and the second on-off valve (22) is closed during injection operation of the compressor (1). , an on-off valve control means (20) is provided which closes the first on-off valve (21) and opens the second on-off valve (22) when the compressor (1) is stopped.

【0006】第2の解決手段は、図2に示すように、前
記インジェクション管(12)から分岐し圧縮機(1)
の吸入側(9)に至るバイパス路(13)を設けるとと
もに、前記インジェクション管(12)とバイパス路(
13)との分岐部(14)に、インジェクション出口(
31)を液入口(32)とバイパス口(33)とに切換
連通する三方切換弁(34)を設け、前記圧縮機(1)
のインジェクション運転時に前記インジェクション出口
(31)と液入口(32)とを連通し、前記圧縮機(1
)の停止時にインジェクション出口(31)とバイパス
口(33)とを連通する切換弁制御手段(30)を設け
たものである。
As shown in FIG. 2, the second solution is to branch out from the injection pipe (12) and connect the compressor (1) to the compressor (1).
A bypass passage (13) leading to the suction side (9) of the injection pipe (12) and the bypass passage (13) are provided.
13) and the injection outlet (14).
31) between the liquid inlet (32) and the bypass port (33).
During the injection operation of the compressor (1), the injection outlet (31) and the liquid inlet (32) are communicated with each other.
) is provided with a switching valve control means (30) that communicates the injection outlet (31) and the bypass port (33) when the engine is stopped.

【0007】第3の解決手段は、図5及び図6に示すよ
うに、第1又は第2の解決手段に加えて、インジェクシ
ョン管(12)におけるバイパス路(13)の分岐部(
14)よりもインジェクションポート(10)側に、上
方に突出したベント部(15)を設け、バイパス路(1
3)をベント部(15)の上端よりも下方に配設したも
のである。
As shown in FIGS. 5 and 6, a third solution means, in addition to the first or second solution means, includes a branch part (
A vent part (15) protruding upward is provided on the injection port (10) side of the bypass passage (14).
3) is arranged below the upper end of the vent part (15).

【0008】第4の解決手段は、第1、第2又は第3の
解決手段に加えて、圧縮機(1)が図7及び図8に示す
ような鏡板(41),(42)にラップ(43),(4
4)を立設した固定スクロール(45)と可動スクロー
ル(46)とを対向状に備えたスクロール型のものであ
る。
A fourth solution, in addition to the first, second or third solution, is that the compressor (1) is wrapped around end plates (41) and (42) as shown in FIGS. 7 and 8. (43), (4
4) is of a scroll type, comprising a fixed scroll (45) and a movable scroll (46) facing each other.

【0009】[0009]

【作用】以上の解決手段により、請求項1の発明では、
圧縮機(1)の停止時に第一開閉弁(21)を閉じ、第
二開閉弁(22)を開くことにより、閉止された第一開
閉弁(21)から漏れた冷媒液は、バイパス路(13)
を経由し圧縮機(1)の吸入側(9)に流れる。さらに
、圧縮機(1)の停止直後に、圧縮室(40)にある冷
媒も圧力差によって吸入側(9)に流れる。従って、圧
縮機(1)の停止時に圧縮室(40)に冷媒液が侵入す
ることはなく、また溜まることもない。
[Operation] With the above solution, in the invention of claim 1,
By closing the first on-off valve (21) and opening the second on-off valve (22) when the compressor (1) is stopped, the refrigerant liquid leaking from the closed first on-off valve (21) is transferred to the bypass path ( 13)
and flows to the suction side (9) of the compressor (1). Further, immediately after the compressor (1) is stopped, the refrigerant in the compression chamber (40) also flows to the suction side (9) due to the pressure difference. Therefore, when the compressor (1) is stopped, the refrigerant liquid does not enter the compression chamber (40) and does not accumulate therein.

【0010】請求項2の発明では、圧縮機(1)の停止
時に三方切換弁(34)のインジェクション出口(31
)とバイパス口(33)とを切換連通することにより、
三方切換弁(34)から冷媒液が漏れてもバイパス口(
33)に漏れ、バイパス路(13)を通り圧縮機(1)
の吸入側(9)に流れる。さらに、圧縮機(1)の停止
直後に、圧縮室(40)にある冷媒も圧力差によって吸
入側(9)に流れる。従って、圧縮機(1)の停止時に
、圧縮室(40)に冷媒液が侵入することはなく、また
溜まることもない。
In the invention of claim 2, when the compressor (1) is stopped, the injection outlet (31) of the three-way switching valve (34) is closed.
) and the bypass port (33).
Even if refrigerant liquid leaks from the three-way switching valve (34), the bypass port (
33) and passes through the bypass path (13) to the compressor (1).
flows to the suction side (9) of the Further, immediately after the compressor (1) is stopped, the refrigerant in the compression chamber (40) also flows to the suction side (9) due to the pressure difference. Therefore, when the compressor (1) is stopped, refrigerant liquid does not enter the compression chamber (40) and does not accumulate therein.

【0011】請求項3の発明では、請求項1又は請求項
2の発明に加えて、ベント部(15)の上端よりも下方
にバイパス路(13)が設けられるので、圧縮機(1)
の停止時に、閉止された第一開閉弁(21)又はインジ
ェクション出口(31)とバイパス口(33)とが連通
された三方切換弁(34)から漏れた冷媒液は、ベント
部(15)で妨げられ、圧縮機(1)の圧縮室(40)
に侵入しないで、分岐部(14)とバイパス路(13)
とを経由して、 圧縮機(1)の吸入側(9)に流れる
In the invention of claim 3, in addition to the invention of claim 1 or claim 2, since the bypass passage (13) is provided below the upper end of the vent part (15), the compressor (1)
When the engine is stopped, the refrigerant liquid leaking from the closed first on-off valve (21) or from the three-way switching valve (34) in which the injection outlet (31) and the bypass port (33) are communicated is discharged to the vent part (15). Compression chamber (40) of the compressor (1)
branch (14) and bypass path (13).
and flows to the suction side (9) of the compressor (1).

【0012】請求項4の発明では、請求項1、請求項2
又は請求項3の発明に加えて、圧縮機(1)がスクロー
ル型であることにより、圧縮機(1)の停止時に、ラッ
プ(43),(44)により形成された圧縮室(40)
に冷媒液が溜まらない。
[0012] In the invention of claim 4, claims 1 and 2
Or, in addition to the invention of claim 3, since the compressor (1) is of a scroll type, when the compressor (1) is stopped, the compression chamber (40) formed by the wraps (43) and (44)
Refrigerant liquid does not accumulate in the .

【0013】[0013]

【実施例】以下、添付の図面を参照して本願発明の好適
な実施例を説明する。請求項1の発明に係る実施例を図
1に基づいて説明する。冷凍装置は、圧縮室(40)と
連通するインジェクションポート(10)を備えた圧縮
機(1)、凝縮器(2)、膨張機構(3)及び蒸発器(
4)を順次接続してなる冷媒回路を備えている。なお、
圧縮機(1)と凝縮器(2)とは高圧ガス管(5)で接
続され、凝縮器(2)と膨張機構(3)とは高圧液管(
6)で接続され、膨張機構(3)と蒸発器(4)とは低
圧液管(7)で接続され、蒸発器(4)と圧縮機(1)
とは低圧ガス管(8)で接続され、さらに高圧液管(6
)と圧縮機(1)のインジェクションポート(10)と
は減圧機構(11)及び電磁式の第一開閉弁(21)を
介してインジェクション管(12)で接続され、インジ
ェクション管(12)と圧縮機(1)の吸入側(9)と
は電磁式の第二開閉弁(22)を介してバイパス路(1
3)で接続され、前記第一開閉弁(21)はインジェク
ション管(12)におけるバイパス路(13)の分岐部
(14)よりも前記高圧液管(6)側に設けられている
。また、圧縮機(1)の吐出側に、所定温度より高いと
き閉路し、所定温度より低いとき開路するサーモスタッ
ト(23)が設けられている。そして、第一開閉弁(2
1)と第二開閉弁(22)は、開閉弁制御手段(20)
により制御されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. An embodiment according to the invention of claim 1 will be described based on FIG. The refrigeration system includes a compressor (1) equipped with an injection port (10) communicating with a compression chamber (40), a condenser (2), an expansion mechanism (3), and an evaporator (
4) are connected in sequence. In addition,
The compressor (1) and the condenser (2) are connected by a high-pressure gas pipe (5), and the condenser (2) and the expansion mechanism (3) are connected by a high-pressure liquid pipe (
The expansion mechanism (3) and the evaporator (4) are connected by a low pressure liquid pipe (7), and the evaporator (4) and the compressor (1) are connected by a low pressure liquid pipe (7).
is connected by a low-pressure gas pipe (8), and is further connected to a high-pressure liquid pipe (6).
) and the injection port (10) of the compressor (1) are connected by an injection pipe (12) via a pressure reducing mechanism (11) and an electromagnetic first on-off valve (21). The suction side (9) of the machine (1) is connected to the bypass passage (1) via a second electromagnetic on-off valve (22).
3), and the first on-off valve (21) is provided closer to the high-pressure liquid pipe (6) than the branch part (14) of the bypass path (13) in the injection pipe (12). Furthermore, a thermostat (23) is provided on the discharge side of the compressor (1), which closes when the temperature is higher than a predetermined temperature and opens when the temperature is lower than a predetermined temperature. Then, the first on-off valve (2
1) and the second on-off valve (22) are on-off valve control means (20).
controlled by.

【0014】上記のような構成による冷凍装置について
以下に動作を説明する。圧縮機(1)の運転中において
、圧縮機(1)の吐出側温度が上昇し、サーモスタット
(23)が所定温度になると、開閉弁制御手段(20)
により、第一開閉弁(21)が開き、第二開閉弁(22
)が閉じ、高圧液管(6)の冷媒液がインジェクション
管(12)を通って、減圧機構(11)で減圧され、イ
ンジェクションポート(10)から圧縮機(1)の圧縮
室(40)にインジェクションされるので、圧縮室(4
0)及び吐出ガスが冷却される。また、圧縮機(1)の
吐出側温度が下降し、サーモスタット(23)が所定温
度よりも低くなると、開閉弁制御手段(20)により、
第一開閉弁(21)及び第二開閉弁(22)が閉じ、冷
媒液のインジェクションは止まるので、圧縮室(40)
及び吐出ガスの冷却も止まる。そして、圧縮機(1)の
停止時において開閉弁制御手段(20)により第一開閉
弁(21)が閉じ、第二開閉弁(22)が開くので、圧
縮室(40)と吸入側(9)とが連通される。 このとき吸入側(9)は圧縮室(40)より圧力が低い
ので、圧縮室(40)にあった冷媒は吸入側(9)へ移
動する。また、電磁弁は閉じた状態でも多少の漏れが生
じることがあるが、第一開閉弁(21)から冷媒液が漏
れても、圧縮室(40)には侵入しないで、吸入側(9
)に流れる。
The operation of the refrigeration system constructed as described above will be explained below. During operation of the compressor (1), when the discharge side temperature of the compressor (1) rises and the thermostat (23) reaches a predetermined temperature, the on-off valve control means (20)
As a result, the first on-off valve (21) opens and the second on-off valve (22
) is closed, the refrigerant liquid in the high-pressure liquid pipe (6) passes through the injection pipe (12), is depressurized by the pressure reducing mechanism (11), and enters the compression chamber (40) of the compressor (1) from the injection port (10). Since it is injected, the compression chamber (4
0) and the discharge gas are cooled. Further, when the discharge side temperature of the compressor (1) decreases and the thermostat (23) becomes lower than a predetermined temperature, the on-off valve control means (20)
Since the first on-off valve (21) and the second on-off valve (22) are closed and the injection of refrigerant liquid is stopped, the compression chamber (40)
And the cooling of the discharged gas also stops. When the compressor (1) is stopped, the first on-off valve (21) is closed by the on-off valve control means (20) and the second on-off valve (22) is opened, so that the compression chamber (40) and the suction side (9 ) are communicated. At this time, since the suction side (9) has a lower pressure than the compression chamber (40), the refrigerant that was in the compression chamber (40) moves to the suction side (9). In addition, some leakage may occur even when the solenoid valve is closed, but even if refrigerant liquid leaks from the first on-off valve (21), it will not enter the compression chamber (40) and will not enter the suction side (9).
).

【0015】ここで図3に基づき該開閉弁制御手段(2
0)の実施例としての制御回路を説明する。該制御回路
は、圧縮機(1)のモーター(MC)に接続されている
3相の結線のうちS相及びR相に、それぞれヒューズ(
FUS),(FUR)を介して接続されている。そして
、該制御回路は、圧縮機(1)の吐出側に設けられた所
定温度よりも高いとき閉じ低いとき開くサーモスタット
(23)と、圧縮機(1)の運転スイッチ(S)と、圧
縮機(1)のモーター(MC)を運転するための、三つ
の常開接点(88C1),(88C2),(88C3)
を持つ電磁開閉器(88C)と、通電開である第一開閉
弁(21)の電磁コイル(SV1)と、通電閉である第
二開閉弁(22)の電磁コイル(SV2)とを備え、圧
縮機(1)の運転スイッチ(S)と電磁開閉器(88C
)とが直列に接続されたものと、第二常開接点(88C
2)、サーモスタット(23)及び第一開閉弁(21)
の電磁コイル(SV1)とが直列に接続されたものと、
第三常開接点(88C3)と第二開閉弁の電磁コイル(
SV2)とが直列に接続されたものが並列に接続されて
いる。
Here, based on FIG. 3, the on-off valve control means (2
A control circuit as an example of 0) will be explained. The control circuit includes fuses (
FUS) and (FUR). The control circuit includes a thermostat (23) provided on the discharge side of the compressor (1) that closes when the temperature is higher than a predetermined temperature and opens when the temperature is lower than a predetermined temperature; Three normally open contacts (88C1), (88C2), (88C3) for driving the motor (MC) in (1)
The electromagnetic switch (88C) has a solenoid switch (88C), an electromagnetic coil (SV1) of the first on-off valve (21) that is energized open, and an electromagnetic coil (SV2) of the second on-off valve (22) that is energized closed, Compressor (1) operation switch (S) and electromagnetic switch (88C)
) are connected in series, and the second normally open contact (88C
2), thermostat (23) and first on-off valve (21)
An electromagnetic coil (SV1) connected in series,
The third normally open contact (88C3) and the electromagnetic coil of the second on-off valve (
SV2) are connected in series and connected in parallel.

【0016】かかる制御回路の動作を以下に説明する。 圧縮機(1)の運転スイッチ(S)及びサーモスタット
(23)が閉路しているとき、電磁開閉器(88C)の
第一常開接点(88C1)、第二常開接点(88C2)
及び第三常開接点(88C3)は閉路し、両電磁コイル
(SV1),(SV2)は励磁されて、第一開閉弁(2
1)は開かつ第二開閉弁(22)は閉となる。圧縮機(
1)の運転スイッチ(S)が閉じかつサーモスタット(
23)が開路すると、電磁開閉器(88C)の三つの常
開接点(88C1),(88C2),(88C3)は閉
路し、第一開閉弁(21)の電磁コイル(SV1)は消
磁されかつ第二開閉弁(22)の電磁コイル(SV2)
は励磁されて、第一開閉弁(21)及び第二開閉弁(2
2)は閉となる。圧縮機(1)の運転スイッチ(S)が
開くと、電磁開閉器(88C)の三つの常開接点(88
C1),(88C2),(88C3)は開路し、第一開
閉弁(21)の電磁コイル(SV1)及び第二開閉弁(
22)の電磁コイル(SV2)は消磁されて、第一開閉
弁(21)は閉かつ第二開閉弁(22)は開となる。
The operation of such a control circuit will be explained below. When the operation switch (S) and thermostat (23) of the compressor (1) are closed, the first normally open contact (88C1) and the second normally open contact (88C2) of the electromagnetic switch (88C)
and the third normally open contact (88C3) are closed, both electromagnetic coils (SV1) and (SV2) are excited, and the first on-off valve (2
1) is opened and the second on-off valve (22) is closed. Compressor (
1) The operation switch (S) is closed and the thermostat (
23) is opened, the three normally open contacts (88C1), (88C2), and (88C3) of the electromagnetic switch (88C) are closed, and the electromagnetic coil (SV1) of the first on-off valve (21) is demagnetized and Electromagnetic coil (SV2) of the second on-off valve (22)
is excited, and the first on-off valve (21) and the second on-off valve (2
2) is closed. When the operation switch (S) of the compressor (1) opens, the three normally open contacts (88C) of the electromagnetic switch (88C) open.
C1), (88C2), and (88C3) are opened, and the electromagnetic coil (SV1) of the first on-off valve (21) and the second on-off valve (
The electromagnetic coil (SV2) of 22) is demagnetized, the first on-off valve (21) is closed, and the second on-off valve (22) is opened.

【0017】かかる構成により、圧縮機(1)の停止時
に冷媒が圧縮室(40)で溜まることがなくなり、圧縮
機(1)の起動時に液圧縮による破損を防止できる。な
お、本請求項に係る発明において、圧縮機(1)は液イ
ンジェクション方式のためのインジェクションポート(
10)を備えた圧縮機(1)であればよく、レシプロ型
、ロータリー型、スクリュー型、スクロール型等に係わ
らず適用可能である。また、減圧機構(11)は第一開
閉弁(21)及び分岐部(14)に対して高圧液管(6
)側であるかインジェクションポート(10)側である
かを問わない。さらに、両開閉弁(21),(22)、
分岐部(14)、バイパス路(13)及び吸入側(9)
が圧縮機(1)の本体内部にあってもよい。
[0017] With this configuration, refrigerant does not accumulate in the compression chamber (40) when the compressor (1) is stopped, and damage due to liquid compression when the compressor (1) is started can be prevented. In addition, in the invention according to this claim, the compressor (1) has an injection port (
10), and any compressor (1) including reciprocating type, rotary type, screw type, scroll type, etc. is applicable. Further, the pressure reducing mechanism (11) is connected to the first on-off valve (21) and the branch part (14) through the high pressure liquid pipe (6).
) side or the injection port (10) side. Furthermore, both on-off valves (21), (22),
Branch (14), bypass path (13) and suction side (9)
may be located inside the main body of the compressor (1).

【0018】次に請求項2に係る発明の実施例を図2に
基づき説明する。本実施例の冷凍装置の冷媒回路は、請
求項1に係る発明の実施例とほぼ同様の冷媒回路を備え
たものであるが、第一開閉弁(21)及び第二開閉弁(
22)に係る部分に変更を加えたものである。以下変更
に係る部分の構成について説明する。高圧液管(6)と
圧縮機(1)のインジェクションポート(10)とは減
圧機構(11)を介してインジェクション管(12)で
接続され、インジェクション管(12)と圧縮機(1)
の吸入側(9)とはバイパス路(13)で接続され、イ
ンジェクション管(12)とバイパス路(13)との分
岐部(14)には電磁式の三方切換弁(34)が設けら
れている。該三方切換弁(34)は、インジェクション
出口(31)をインジェクションポート(10)側に備
え、バイパス口(33)をバイパス路(13)側に備え
、液入口(32)を高圧液管(6)側に備えた構成にお
いて、インジェクション出口(31)を液入口(32)
とバイパス口(33)とに切換連通する。そして三方切
換弁(34)は切換弁制御手段(30)により制御され
ている。
Next, an embodiment of the invention according to claim 2 will be explained based on FIG. The refrigerant circuit of the refrigeration system of this embodiment is equipped with a refrigerant circuit that is almost the same as the embodiment of the invention according to claim 1, but the first on-off valve (21) and the second on-off valve (
This is a modification of the part related to 22). The configuration of the parts related to the changes will be explained below. The high pressure liquid pipe (6) and the injection port (10) of the compressor (1) are connected by the injection pipe (12) via the pressure reducing mechanism (11), and the injection pipe (12) and the compressor (1)
It is connected to the suction side (9) of the fuel injection pipe through a bypass passage (13), and an electromagnetic three-way switching valve (34) is provided at the branch part (14) between the injection pipe (12) and the bypass passage (13). There is. The three-way switching valve (34) has an injection outlet (31) on the injection port (10) side, a bypass port (33) on the bypass path (13) side, and a liquid inlet (32) on the high pressure liquid pipe (6). ) side, the injection outlet (31) is connected to the liquid inlet (32).
and the bypass port (33). The three-way switching valve (34) is controlled by switching valve control means (30).

【0019】上記のような構成の冷凍装置について以下
動作を説明する。圧縮機(1)の運転中において、三方
切換弁(34)の液入口(32)とインジェクション出
口(31)とが連通し、高圧液管(6)の冷媒液がイン
ジェクション管(12)を通って、減圧機構(11)で
減圧され、インジェクションポート(10)から圧縮機
(1)の圧縮室(40)にインジェクションされ、圧縮
室(40)及び吐出ガスが冷却される。そして、圧縮機
(1)の停止時において、切換弁制御手段(30)によ
り三方切換弁(34)のインジェクション出口(31)
とバイパス口(33)が連通され、圧縮室(40)と吸
入側(9)とが連通される。このとき吸入側(9)は圧
縮室(40)より圧力が低くなっているので、圧縮室(
40)にあった冷媒は吸入側(9)へ移動する。また、
三方切換弁(34)から冷媒液が漏れても、圧縮室(4
0)には侵入しないで、吸入側(9)に流れる。
The operation of the refrigeration system configured as described above will be explained below. During operation of the compressor (1), the liquid inlet (32) of the three-way switching valve (34) and the injection outlet (31) communicate with each other, and the refrigerant liquid in the high-pressure liquid pipe (6) passes through the injection pipe (12). Then, the pressure is reduced by the pressure reducing mechanism (11), and the gas is injected from the injection port (10) into the compression chamber (40) of the compressor (1), thereby cooling the compression chamber (40) and the discharged gas. When the compressor (1) is stopped, the injection outlet (31) of the three-way switching valve (34) is controlled by the switching valve control means (30).
The bypass port (33) communicates with the compression chamber (40), and the suction side (9) communicates with the compression chamber (40). At this time, the pressure on the suction side (9) is lower than that in the compression chamber (40), so the pressure in the compression chamber (
The refrigerant that was at 40) moves to the suction side (9). Also,
Even if refrigerant liquid leaks from the three-way switching valve (34), the compression chamber (4
0), but flows to the suction side (9).

【0020】ここで図4に基づき該切換弁制御手段(3
0)の実施例としての制御回路を説明する。該制御回路
は、圧縮機(1)のモーター(MC)に接続されている
3相の結線のうちS相及びR相に、それぞれヒューズ(
FUS),(FUR)を介して接続されている。そして
、該制御回路は、圧縮機(1)の運転スイッチ(S)と
、圧縮機(1)のモーター(MC)を運転するための、
二つの常開接点(88C1),(88C2)を持つ電磁
開閉器(88C)と、通電により液入口(32)とイン
ジェクション出口(31)とが連通し、非通電によりバ
イパス口(33)とインジェクション出口(31)とが
連通する三方切換弁(34)の電磁コイル(SV3)と
を備え、圧縮機(1)の運転スイッチ(S)と電磁開閉
器(88C)とが直列に接続されたものと、第二常開接
点(88C2)と三方切換弁(34)の電磁コイル(S
V3)とが直列に接続されたものが並列に接続されてい
る。
Here, based on FIG. 4, the switching valve control means (3
A control circuit as an example of 0) will be explained. The control circuit includes fuses (
FUS) and (FUR). The control circuit includes a drive switch (S) for the compressor (1) and a motor (MC) for the compressor (1).
An electromagnetic switch (88C) with two normally open contacts (88C1) and (88C2) communicates with the liquid inlet (32) and injection outlet (31) when energized, and communicates with the bypass port (33) and injection when not energized. It is equipped with an electromagnetic coil (SV3) of a three-way switching valve (34) that communicates with the outlet (31), and the operation switch (S) of the compressor (1) and the electromagnetic switch (88C) are connected in series. and the second normally open contact (88C2) and the electromagnetic coil (S) of the three-way switching valve (34).
V3) are connected in series and connected in parallel.

【0021】かかる制御回路の動作を以下に説明する。 圧縮機(1)の運転スイッチ(S)が閉じると、電磁開
閉器(88C)の第一常開接点(88C1)及び第二常
開接点(88C2)は閉路し、三方切換弁(34)の電
磁コイル(SV3)は励磁されて、三方切換弁(34)
の液入口(32)とインジェクション出口(31)とが
連通する。圧縮機(1)の運転スイッチ(S)が開くと
、電磁開閉器(88C)の二つの常開接点(88C1)
,(88C2)は開路し、三方切換弁(34)の電磁コ
イル(SV3)は消磁されて、三方切換弁(34)のバ
イパス口(33)とインジェクション出口(31)とが
連通する。
The operation of such a control circuit will be explained below. When the operation switch (S) of the compressor (1) is closed, the first normally open contact (88C1) and the second normally open contact (88C2) of the electromagnetic switch (88C) are closed, and the three-way switching valve (34) is closed. The electromagnetic coil (SV3) is energized and the three-way switching valve (34)
The liquid inlet (32) and the injection outlet (31) communicate with each other. When the operation switch (S) of the compressor (1) opens, the two normally open contacts (88C1) of the electromagnetic switch (88C) open.
, (88C2) are opened, the electromagnetic coil (SV3) of the three-way switching valve (34) is demagnetized, and the bypass port (33) of the three-way switching valve (34) and the injection outlet (31) communicate with each other.

【0022】かかる構成により、圧縮機(1)の停止時
に冷媒が圧縮室(40)で溜まることがなくなり、圧縮
機(1)の起動時に液圧縮による破損を防止できる。な
お、本請求項に係る発明において、圧縮機(1)は液イ
ンジェクション方式のためのインジェクションポート(
10)を備えた圧縮機(1)であればよく、レシプロ型
、ロータリー型、スクリュー型、スクロール型等に係わ
らず適用可能である。また、減圧機構(11)は分岐部
(14)に対して高圧液管(6)側であるかインジェク
ションポート(10)側であるかを問わない。さらに、
三方切換弁(34)、分岐部(14)、バイパス路(1
3)及び吸入側(9)が圧縮機(1)の本体内部にあっ
てもよく、また本実施例の圧縮機(1)は、運転時常に
インジェクションを必要とするものについて説明したが
、インジェクション管(12)又はバイパス路(13)
に、電磁式の開閉弁を追加し、制御回路を変更すること
により、圧縮機(1)の運転時において必要なときにイ
ンジェクションするようにしてもよい。
[0022] With this configuration, refrigerant does not accumulate in the compression chamber (40) when the compressor (1) is stopped, and damage due to liquid compression when the compressor (1) is started can be prevented. In addition, in the invention according to this claim, the compressor (1) has an injection port (
10), and any compressor (1) including reciprocating type, rotary type, screw type, scroll type, etc. is applicable. Moreover, it does not matter whether the pressure reducing mechanism (11) is on the high pressure liquid pipe (6) side or the injection port (10) side with respect to the branch part (14). moreover,
Three-way switching valve (34), branch part (14), bypass path (1
3) and the suction side (9) may be located inside the main body of the compressor (1), and although the compressor (1) of this embodiment has been described as one that always requires injection during operation, injection Pipe (12) or bypass line (13)
By adding an electromagnetic on-off valve and changing the control circuit, injection may be performed when necessary during operation of the compressor (1).

【0023】次に請求項3の発明に係る実施例を図5及
び図6に基づき説明する。図5は請求項1の発明に、ま
た図6は請求項2の発明にそれぞれ対応する請求項3の
発明に係る実施例である。インジェクション管(12)
おける分岐部(14)よりもインジェクションポート(
10)側に上方に突き出したベント部(15)を備え、
前記バイパス路(13)をベント部(15)の上端より
下方に設けられている。これにより、閉止された第一開
閉弁(21)又はインジェクション口(31)とバイパ
ス口(33)とが連通された三方切換弁(34)から漏
れた冷媒液は落差で圧縮機(1)の吸入側(9)に流れ
る。
Next, an embodiment according to the invention of claim 3 will be explained based on FIGS. 5 and 6. FIG. 5 shows an embodiment according to the invention of claim 3, which corresponds to the invention of claim 1, and FIG. 6 corresponds to the invention of claim 2. Injection tube (12)
The injection port (
10) has a vent part (15) protruding upward on the side;
The bypass passage (13) is provided below the upper end of the vent part (15). As a result, the refrigerant liquid leaking from the closed first on-off valve (21) or the three-way switching valve (34) in which the injection port (31) and the bypass port (33) are communicated with each other is transferred to the compressor (1) by the head. It flows to the suction side (9).

【0024】次に請求項4の発明に係る実施例を図7及
び図8に基づき説明する。本請求項に係る発明は、前記
各請求項において圧縮機(1)を特にスクロール型にし
たものであり、図7及び図8はかかるスクロール型の圧
縮機(1)の実施例を示すものである。密閉ケーシング
(47)の内方上部に、鏡板(41)にラップ(43)
を立設してなる固定スクロール(45)と、同じく鏡板
(42)にラップ(44)を立設して成る可動スクロー
ル(46)を上下対向状に配設するとともに、該各スク
ロール(45),(46)の下部側に、この可動スクロ
ール(46)に連結される駆動軸(48)をもったモー
ター(MC)を配設する。そして本圧縮機(1)の吸入
側は低圧ガス管(8)と接続され、吐出側は高圧ガス管
(5)と接続されて冷凍装置の冷媒回路に組み込まれる
Next, an embodiment according to the invention of claim 4 will be explained based on FIGS. 7 and 8. In the invention according to this claim, the compressor (1) in each of the above claims is particularly of a scroll type, and FIGS. 7 and 8 show an embodiment of such a scroll type compressor (1). be. At the inner upper part of the sealed casing (47), wrap (43) on the end plate (41).
A fixed scroll (45) consisting of a wrap (44) erected on an end plate (42) and a movable scroll (46) consisting of a wrap (44) erected on an end plate (42) are disposed vertically opposite each other, and each scroll (45) , (46) is provided with a motor (MC) having a drive shaft (48) connected to the movable scroll (46). The suction side of the compressor (1) is connected to a low pressure gas pipe (8), the discharge side is connected to a high pressure gas pipe (5), and the compressor (1) is incorporated into a refrigerant circuit of a refrigeration system.

【0025】前記モーター(MC)の駆動に伴う駆動軸
(48)の回転により、前記可動スクロール(46)を
固定スクロール(45)に対し公転駆動させて、低圧ガ
ス管(8)から導入させる冷媒ガスを、前記各ラップ(
43),(44)間に形成される圧縮室(40)で圧縮
して、この高圧側圧縮室(40)から前記固定スクロー
ル(45)の中心に設けた吐出ポート(51)を経て、
高圧ガス管(5)に吐出させるようにしている。さらに
、前記各請求項の発明に係る実施例中のインジェクショ
ン管(12)に接続され、固定スクロール(45)の鏡
板(41)における圧縮工程中の圧縮室(40)と連通
するインジェクションポート(10)を備え、圧縮工程
中の圧縮室(40)に冷媒液をインジェクションさせる
ようにしている。
The movable scroll (46) is driven to revolve around the fixed scroll (45) by the rotation of the drive shaft (48) as the motor (MC) is driven, and the refrigerant is introduced from the low pressure gas pipe (8). Gas, said each wrap (
It is compressed in a compression chamber (40) formed between 43) and (44), and from this high pressure side compression chamber (40) passes through a discharge port (51) provided at the center of the fixed scroll (45).
The gas is discharged into a high pressure gas pipe (5). Further, an injection port (10) connected to the injection pipe (12) in the embodiment according to the invention of each claim and communicating with the compression chamber (40) during the compression process in the end plate (41) of the fixed scroll (45). ) to inject refrigerant liquid into the compression chamber (40) during the compression process.

【0026】圧縮機(1)が上記のようなスクロール型
の場合においては、圧縮室(40)を形成するラップ(
43),(44)は薄く折れ易いのものであるので、液
圧縮により破損し易いが、本請求項のごとく請求項1、
請求項2又は請求項3に係る発明をスクロール型圧縮機
(1)に適用することにより、ラップ(43),(44
)の破損を防止でき、圧縮機(1)の信頼性が向上し、
特に効果が顕著である。
When the compressor (1) is of the scroll type as described above, the wrap (40) forming the compression chamber (40) is
43) and (44) are thin and easily broken, so they are easily damaged by liquid compression, but as in the present claim, claim 1,
By applying the invention according to claim 2 or claim 3 to the scroll compressor (1), the wraps (43), (44
), the reliability of the compressor (1) is improved,
The effect is particularly remarkable.

【0027】[0027]

【発明の効果】請求項1の発明では、圧縮機(1)の停
止時に、第一開閉弁(21)を閉じ、第二開閉弁(22
)を開くよう開閉弁制御手段(20)が制御することに
より、第一開閉弁(21)から漏れた冷媒液は、バイパ
ス路(13)を経由し圧縮機(1)の吸入側(9)に流
すことができる。さらに、圧縮機(1)の停止直後に圧
縮室(40)にある冷媒も圧力差によって吸入側(9)
に流すことができる。従って、圧縮機(1)の停止時に
圧縮室(40)に冷媒液が侵入することはなく、また溜
まることもないので、圧縮機(1)の起動時の液圧縮を
防止できる。
Effects of the Invention In the invention of claim 1, when the compressor (1) is stopped, the first on-off valve (21) is closed and the second on-off valve (22) is closed.
) is controlled by the on-off valve control means (20) to open the refrigerant liquid leaking from the first on-off valve (21) via the bypass path (13) to the suction side (9) of the compressor (1). can be passed to. Furthermore, immediately after the compressor (1) stops, the refrigerant in the compression chamber (40) also flows to the suction side (9) due to the pressure difference.
can be passed to. Therefore, the refrigerant liquid does not enter or accumulate in the compression chamber (40) when the compressor (1) is stopped, so that liquid compression when the compressor (1) is started can be prevented.

【0028】請求項2の発明では、圧縮機(1)の停止
時に、インジェクション出口(31)とバイパス口(3
3)とを連通切換することにより、三方切換弁(21)
から漏れた冷媒液は、バイパス路(13)を経由し圧縮
機(1)の吸入側(9)に流すことができる。さらに、
圧縮機(1)の停止直後に圧縮室(40)にある冷媒も
圧力差によって吸入側(9)に流すことができる。従っ
て、圧縮機(1)の停止時に、圧縮室(40)に冷媒液
が侵入することはなく、また溜まることもないので、圧
縮機(1)の起動時の液圧縮を防止できる。
In the invention of claim 2, when the compressor (1) is stopped, the injection outlet (31) and the bypass port (3
3), the three-way switching valve (21)
The refrigerant liquid leaking from the compressor (1) can flow to the suction side (9) of the compressor (1) via the bypass path (13). moreover,
Immediately after the compressor (1) is stopped, the refrigerant in the compression chamber (40) can also flow to the suction side (9) due to the pressure difference. Therefore, when the compressor (1) is stopped, the refrigerant liquid does not enter or accumulate in the compression chamber (40), so that liquid compression when the compressor (1) is started can be prevented.

【0029】請求項3の発明では、請求項1又は請求項
2の発明の効果に加えて、ベント部(15)の上端より
も下方にバイパス路(13)を設けられるので、圧縮機
(1)の停止時に、閉止された第一開閉弁(21)又イ
ンジェクション出口(31)とバイパス口(33)とが
連通された三方切換弁(34)から漏れた冷媒液を、ベ
ント部(15)で妨げることができて、圧縮機(1)の
圧縮室(40)に侵入させないで、分岐部(14)とバ
イパス路(13)とを経由して、圧縮機(1)の吸入側
(9)に流すことができる。従って、圧縮機(1)の起
動時の液圧縮を防止できる。
In the invention of claim 3, in addition to the effects of the invention of claim 1 or claim 2, since the bypass passage (13) is provided below the upper end of the vent part (15), the compressor (1 ), the refrigerant liquid leaking from the closed first on-off valve (21) or the three-way switching valve (34) in which the injection outlet (31) and the bypass port (33) are communicated is transferred to the vent part (15). can be prevented from entering the compression chamber (40) of the compressor (1), and the suction side (9 ). Therefore, it is possible to prevent liquid compression when starting up the compressor (1).

【0030】請求項4の発明では、圧縮機(1)がスク
ロール型であるので、圧縮室(40)を形成するラップ
(43),(44)が薄く破損し易いものであるが、圧
縮機(1)の停止時に圧縮室(40)に冷媒液が溜まら
ないので、起動時に液圧縮が生ぜず、圧縮室(40)を
形成していたラップ(43),(44)の破損が防止で
きる。
In the invention of claim 4, since the compressor (1) is of scroll type, the wraps (43) and (44) forming the compression chamber (40) are thin and easily damaged. Since refrigerant liquid does not accumulate in the compression chamber (40) when (1) is stopped, liquid compression does not occur during startup, and damage to the wraps (43) and (44) that formed the compression chamber (40) can be prevented. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】請求項1の発明の実施例を示す冷媒回路である
FIG. 1 is a refrigerant circuit showing an embodiment of the invention according to claim 1.

【図2】請求項2の発明の実施例を示す冷媒回路である
FIG. 2 is a refrigerant circuit showing an embodiment of the invention according to claim 2.

【図3】請求項1の発明の実施例を示す制御回路である
FIG. 3 is a control circuit showing an embodiment of the invention according to claim 1.

【図4】請求項2の発明の実施例を示す制御回路である
FIG. 4 is a control circuit showing an embodiment of the invention according to claim 2.

【図5】請求項3の発明の実施例を示す要部概略図であ
る。
FIG. 5 is a schematic diagram of main parts showing an embodiment of the invention of claim 3.

【図6】請求項3の発明の実施例を示す要部概略図であ
る。
FIG. 6 is a schematic diagram of main parts showing an embodiment of the invention according to claim 3.

【図7】請求項4の発明の実施例を示すスクロール型圧
縮機の一部切欠縦断面図である。
FIG. 7 is a partially cutaway longitudinal cross-sectional view of a scroll compressor showing an embodiment of the invention according to claim 4;

【図8】請求項4の発明の実施例を示すスクロール型圧
縮機の圧縮作用を表す圧縮室とその近傍の概略図である
FIG. 8 is a schematic diagram of a compression chamber and its vicinity showing a compression action of a scroll compressor according to an embodiment of the invention;

【符号の説明】[Explanation of symbols]

1  圧縮機 2  凝縮器 3  膨張機構 4  蒸発器 6  高圧液管 9  吸入側 10  インジェクションポート 11  減圧機構 12  インジェクション管 13  バイパス路 14  分岐部 15  ベント部 20  開閉弁制御手段 21  第一開閉弁 22  第二開閉弁 23  サーモスタット 30  切換弁制御手段 31  インジェクション出口 32  液入口 33  バイパス口 34  三方切換弁 40  圧縮室 41  鏡板 42  鏡板 43  ラップ 44  ラツプ 45  固定スクロール 46  可動スクロール 1 Compressor 2 Condenser 3. Expansion mechanism 4 Evaporator 6 High pressure liquid pipe 9 Suction side 10 Injection port 11 Pressure reduction mechanism 12 Injection tube 13 Bypass road 14 Branch part 15 Vent part 20 Opening/closing valve control means 21 First on-off valve 22 Second on-off valve 23 Thermostat 30 Switching valve control means 31 Injection outlet 32 Liquid inlet 33 Bypass port 34 Three-way switching valve 40 Compression chamber 41 End plate 42 End plate 43 Rap 44 Lap 45 Fixed scroll 46 Movable scroll

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  圧縮工程中の圧縮室(40)と連通す
るインジェクションポート(10)を備えた圧縮機(1
)、凝縮器(2)、膨張機構(3)及び蒸発器(4)を
順次接続し、前記凝縮器(2)の出口側の高圧液管(6
)と前記インジェクションポート(10)とを減圧機構
(11)を介設したインジェクション管(12)により
接続した冷凍装置において、前記インジェクション管(
12)から分岐し圧縮機(1)の吸入側(9)に至るバ
イパス路(13)を設けるとともに、前記インジェクシ
ョン管(12)におけるバイパス路(13)の分岐部(
14)よりも高圧液管(6)側に第一開閉弁(21)を
、バイパス路(13)に第二開閉弁(22)をそれぞれ
設け、前記圧縮機(1)のインジェクション運転時に第
一開閉弁(21)を開き、第二開閉弁(22)を閉じ、
前記圧縮機(1)の停止時に第一開閉弁(21)を閉じ
、第二開閉弁(22)を開く開閉弁制御手段(20)を
設けたことを特徴とする冷凍装置。
Claim 1: A compressor (1) equipped with an injection port (10) communicating with a compression chamber (40) during a compression process.
), a condenser (2), an expansion mechanism (3) and an evaporator (4) are connected in sequence, and a high pressure liquid pipe (6) on the outlet side of the condenser (2) is connected in sequence.
) and the injection port (10) are connected to each other by an injection pipe (12) with a pressure reducing mechanism (11) interposed therein, the injection pipe (
A bypass passage (13) is provided which branches from the injection pipe (12) and reaches the suction side (9) of the compressor (1), and a branch part (
14), a first on-off valve (21) is provided on the high-pressure liquid pipe (6) side, and a second on-off valve (22) is provided on the bypass path (13). Open the on-off valve (21), close the second on-off valve (22),
A refrigeration system comprising an on-off valve control means (20) that closes a first on-off valve (21) and opens a second on-off valve (22) when the compressor (1) is stopped.
【請求項2】  圧縮工程中の圧縮室(40)と連通す
るインジェクションポート(10)を備えた圧縮機(1
)、凝縮器(2)、膨張機構(3)及び蒸発器(4)を
順次接続し、前記凝縮器(2)の出口側の高圧液管(6
)と前記インジェクションポート(10)とを減圧機構
(11)を介設したインジェクション管(12)により
接続した冷凍装置において、前記インジェクション管(
12)から分岐し圧縮機(1)の吸入側(9)に至るバ
イパス路(13)を設けるとともに、前記インジェクシ
ョン管(12)とバイパス路(13)との分岐部(14
)に、インジェクション出口(31)を液入口(32)
とバイパス口(33)とに切換連通する三方切換弁(3
4)を設け、前記圧縮機(1)のインジェクション運転
時に前記インジェクション出口(31)と液入口(32
)とを連通し、前記圧縮機(1)の停止時にインジェク
ション出口(31)とバイパス口(33)とを連通する
切換弁制御手段(30)を設けたことを特徴とする冷凍
装置。
Claim 2: A compressor (1) equipped with an injection port (10) communicating with a compression chamber (40) during a compression process.
), a condenser (2), an expansion mechanism (3) and an evaporator (4) are connected in sequence, and a high pressure liquid pipe (6) on the outlet side of the condenser (2) is connected in sequence.
) and the injection port (10) are connected to each other by an injection pipe (12) with a pressure reducing mechanism (11) interposed therein, the injection pipe (
A bypass passage (13) is provided which branches from the injection pipe (12) and reaches the suction side (9) of the compressor (1), and a branch part (14) between the injection pipe (12) and the bypass passage (13) is provided.
), connect the injection outlet (31) to the liquid inlet (32)
and the bypass port (33).
4), and the injection outlet (31) and liquid inlet (32) are provided during injection operation of the compressor (1).
), and a switching valve control means (30) which communicates the injection outlet (31) and the bypass port (33) when the compressor (1) is stopped.
【請求項3】  インジェクション管(12)における
バイパス路(13)の分岐部(14)よりもインジェク
ションポート(10)側に、上方に突出したベント部(
15)を設け、バイパス路(13)をベント部(15)
の上端よりも下方に配設したことを特徴とする請求項1
又は請求項2記載の冷凍装置。
3. An upwardly protruding vent portion (
15), and connect the bypass passage (13) to the vent part (15).
Claim 1 characterized in that it is arranged below the upper end of the
Or the refrigeration device according to claim 2.
【請求項4】  圧縮機(1)が鏡板(41),(42
)にラップ(43),(44)を立設した固定スクロー
ル(45)と可動スクロール(46)とを対向状に備え
たスクロール型であることを特徴とする請求項1、請求
項2又は請求項3記載の冷凍装置。
Claim 4: The compressor (1) has end plates (41), (42
) and a fixed scroll (45) having wraps (43) and (44) erected thereon, and a movable scroll (46) facing each other. Item 3. Refrigeration device according to item 3.
JP12210991A 1991-04-23 1991-04-23 Refrigerator Pending JPH04324066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12210991A JPH04324066A (en) 1991-04-23 1991-04-23 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12210991A JPH04324066A (en) 1991-04-23 1991-04-23 Refrigerator

Publications (1)

Publication Number Publication Date
JPH04324066A true JPH04324066A (en) 1992-11-13

Family

ID=14827867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12210991A Pending JPH04324066A (en) 1991-04-23 1991-04-23 Refrigerator

Country Status (1)

Country Link
JP (1) JPH04324066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125654A (en) * 2016-01-14 2017-07-20 三菱重工業株式会社 Refrigeration cycle device and bypass valve leak determination control method for refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125654A (en) * 2016-01-14 2017-07-20 三菱重工業株式会社 Refrigeration cycle device and bypass valve leak determination control method for refrigeration cycle device
WO2017122479A1 (en) * 2016-01-14 2017-07-20 三菱重工サーマルシステムズ株式会社 Refrigeration cycle device and control method for determination of leaks in bypass valve of refrigeration cycle device

Similar Documents

Publication Publication Date Title
KR100323564B1 (en) Scroll compressor with unloader valve between economizer and suction
EP0203477A1 (en) Refrigerant gas injection system for refrigeration cycle having a screw compressor
JPWO2003004948A1 (en) Heat pump equipment
JPH04324066A (en) Refrigerator
JP3594570B2 (en) Two-stage compression type compressor and refrigeration system using the same
JP2757689B2 (en) Refrigeration equipment
JPH0821665A (en) Method and device for controlling discharge gas temperature of scroll compressor of refrigerating device
JPH10132401A (en) Control for multi-stage refrigerant compressor
JP2001263832A (en) Refrigerating cycle of refrigerator
JPH07146014A (en) Refrigeration cycle control method in liquid cooling device, and liquid cooling device
JPS592454Y2 (en) Heat pump refrigeration equipment
JP2506141B2 (en) Refrigeration equipment
JPH05187723A (en) Refrigerating plant
JP3505209B2 (en) Refrigeration equipment
JPH02187567A (en) Freezing device
JP2671559B2 (en) Scroll compressor
JP2628057B2 (en) Control system for starting and operating the refrigerator
JPS5885041A (en) Air conditioning system
JPH0448451Y2 (en)
JPH026983B2 (en)
JPH0579712A (en) Operation controller of refrigerator
JPH04203755A (en) Freezing device
JPH10115468A (en) Refrigerator
JPH06147660A (en) Method for operating freezer device
JPH1194368A (en) Freezing cycle device