JPH04313711A - Optical fiber terminal with microlens - Google Patents

Optical fiber terminal with microlens

Info

Publication number
JPH04313711A
JPH04313711A JP1702291A JP1702291A JPH04313711A JP H04313711 A JPH04313711 A JP H04313711A JP 1702291 A JP1702291 A JP 1702291A JP 1702291 A JP1702291 A JP 1702291A JP H04313711 A JPH04313711 A JP H04313711A
Authority
JP
Japan
Prior art keywords
optical fiber
lens
optical
fiber
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1702291A
Other languages
Japanese (ja)
Other versions
JP2992093B2 (en
Inventor
Masato Tadenuma
蓼沼 正人
Yoshihiro Konno
良博 今野
Hiroshi Kume
久米 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP3017022A priority Critical patent/JP2992093B2/en
Publication of JPH04313711A publication Critical patent/JPH04313711A/en
Application granted granted Critical
Publication of JP2992093B2 publication Critical patent/JP2992093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the adjustment of an optical axis to be omitted and to obtain high coupling efficiency with less reflection losses by directly fusing a fiber lens to an optical fiber and improving the sphericity of the lens. CONSTITUTION:The tip of an optical fiber terminal is constituted of a non-doped silica fiber lens introducing part 7 at the terminal, a main single mode fiber 8, a ferrule 9 for protecting the tip part, and a tip spherical lens 10. Namely, the optical fiber 7 of the same outside diameter having the spherical lens 10 consisting of a single refractive index, having the length to become at least >=80mum the beam expanstion by Gauss diffustion at the exit end and having >=200mum radius of curvature is integrated by fusing at the tip of the optical fiber 8. The optical fiber terminal consists of the integral structure which is fused with the light introducing part 7 of the same outside diameter as the outside diameter of the single mode fiber 8 and focuses the exit light with the spherical lens 10 at the end on the opposite side in such a manner and, therefore, this terminal is excellent in terms of reliability and in addition, there is substantially no attenuation of reflection as there are no parallel boundaries in the ray passage.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光スイッチ,光合分波
器,光アイソレータ等各種光学部品用及び光コネクタ用
微小レンズ付光ファイバ端末の構造に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of an optical fiber terminal with a microlens for use in various optical components such as optical switches, optical multiplexers/demultiplexers, optical isolators, etc., and for optical connectors.

【0002】0002

【従来の技術】光通信の発達に伴って利用する光デバイ
ス,光学部品等の小型化が望まれており、光アイソレー
タ,光サーキュレータ,光合分波器等において光ファイ
バとの結合状態で小型化や構造の簡素化が要求されてい
る。また、近年光通信の高速・高密度システムに対して
後方反射に対して敏感ではあるが、極めて狭いスペクト
ル線幅をもつ分布帰還型レーザを用いているため、光フ
ァイバの端部が高反射減衰量をもつことも要求されるよ
うになってきた。
[Background Art] With the development of optical communications, there is a desire for miniaturization of optical devices, optical components, etc. used, and optical isolators, optical circulators, optical multiplexers/demultiplexers, etc. are miniaturized by being coupled with optical fibers. There is a need for simplification of the structure. In addition, in recent years, high-speed, high-density optical communication systems are sensitive to back reflections, but because they use distributed feedback lasers with extremely narrow spectral linewidths, the ends of optical fibers have high reflection attenuation. It has also come to be required to have quantity.

【0003】一般に、両端に光ファイバを伴うピッグテ
イル型光アイソレータの場合、図2に示すように光ファ
イバ1から出射された光は球レンズ2もしくは屈折率分
布型レンズ3で平行光として光学デバイス4へ入射させ
、出射後に同様にして光ファイバ1へ集光することによ
り光学結合を行っている。
Generally, in the case of a pigtail optical isolator with optical fibers at both ends, the light emitted from the optical fiber 1 is converted into parallel light by a ball lens 2 or a gradient index lens 3 and sent to an optical device 4, as shown in FIG. Optical coupling is performed by making the light incident on the optical fiber 1, and condensing the light onto the optical fiber 1 in the same manner after exiting.

【0004】0004

【発明が解決しようとする課題】図2に示すような従来
の光学結合系では光ファイバとレンズの光軸位置調整が
サブミクロンの範囲で調整しなければならない問題があ
り、組立装置等に費用がかかり、光ファイバコリメータ
製品や光ファイバ結合系を含む光学システム製品として
高価になっていた。また従来方法では、図3に示すよう
に有機物質による屈折率整合剤5を用いて反射防止を行
っているため、耐候性,耐熱性に欠点があった。
[Problems to be Solved by the Invention] In the conventional optical coupling system as shown in FIG. 2, there is a problem in that the optical axis position of the optical fiber and the lens must be adjusted within a submicron range, which increases the cost of assembly equipment, etc. This makes optical system products including optical fiber collimators and optical fiber coupling systems expensive. Furthermore, in the conventional method, as shown in FIG. 3, antireflection is performed using a refractive index matching agent 5 made of an organic substance, which has disadvantages in weather resistance and heat resistance.

【0005】また、図3における光の入出射面6では反
射防止膜を表面に形成するために光ファイバ線を付着し
た状態で実施しなければならず、したがって光ファイバ
部分の耐熱性やガス発生のため一般に堅固な反射膜を形
成するのに用いられる約300℃に加熱しながら実施さ
れるハードコートが利用できず、イオンアシスト等によ
り補強しながら行われる低温蒸着しかできず、耐久性,
均一性,低価格化を妨げる要因になっていた。
Furthermore, in order to form an anti-reflection film on the light entrance/exit surface 6 in FIG. 3, it is necessary to attach an optical fiber wire to the surface. Therefore, the hard coating that is generally performed while heating to about 300°C, which is used to form a strong reflective film, cannot be used, and only low-temperature deposition can be performed while reinforcing it with ion assist, etc., and the durability and
This was a factor that hindered uniformity and price reduction.

【0006】加えて、光デバイスの小型化の面から十分
に光束の細い、例えば200μm以下のコリメータ光が
必要とされているが、従来技術では結合損失が大きくな
るため、細くても300μm程度しか実際的でなかった
。さらに従来の光学結合系では平行端面が必ずあり、反
射減衰量が−27dB程度までしか得られず、実際には
ファイバ先端に角度をつけてレンズ系とカップリングし
たり、結合自体複雑な構造にしなければならなかった。
In addition, from the standpoint of miniaturizing optical devices, a collimator light with a sufficiently narrow luminous flux, for example, 200 μm or less, is required, but with conventional technology, the coupling loss increases, so the collimator light is only about 300 μm at the most. It wasn't practical. Furthermore, in conventional optical coupling systems, there is always a parallel end face, and return loss can only be obtained up to about -27 dB.In reality, the fiber tip must be coupled to a lens system at an angle, or the coupling itself must have a complicated structure. I had to.

【0007】以上のような従来の光学結合系の欠点を解
決するため、近年微小ファイバコリメータ光を形成する
試みがなされている。Journal of Ligh
twave Technology Vol. LT−
5 No.9(1987)にはWilliam L.E
mkey等による単一モードファイバ(以下SMFとい
う)に多モード屈折率分布ファイバ(以下GIF)を融
着し、およそ40μmの平行光線までの微小ファイバコ
リメータ光の結合を提案しており、約3mmの空間を0
.1〜1.6dBの結合損失で光学結合が得られること
を報告している。
In order to solve the above-mentioned drawbacks of conventional optical coupling systems, attempts have been made in recent years to form microfiber collimated light. Journal of Light
twave Technology Vol. LT-
5 No. 9 (1987) by William L. E
proposed coupling of microfiber collimator light up to a parallel beam of approximately 40 μm by fusing a multimode gradient index fiber (hereinafter referred to as GIF) to a single mode fiber (hereinafter referred to as SMF) by Mkey et al. space to 0
.. It has been reported that optical coupling can be obtained with a coupling loss of 1 to 1.6 dB.

【0008】しかしSMFとGIFを用いる構造では、
光束の拡大幅はGIFのコア直径以上には理論的に不可
能であり、50〜62.5μm が最大限界でこれ以上
に大きくとれず、3mm以上の距離では大幅な結合損失
劣化を生じるため光学結合距離の自由度がなく、また製
造工程においてGIFの屈折率分布状態や波長ピッチの
調整を個々に測定しながら製作しなければならず、価格
的に高価となり量産には不適当である。これに対して、
特開昭61−264304号公報にはKevin J.
 WarbrickがSMFと非ドープシリカファイバ
レンズ光学系を提案している。
However, in the structure using SMF and GIF,
It is theoretically impossible to expand the luminous flux beyond the core diameter of the GIF, and the maximum limit is 50 to 62.5 μm, and it cannot be increased further than this, and a distance of 3 mm or more will cause significant coupling loss deterioration, so optical There is no flexibility in the coupling distance, and the GIF must be manufactured while individually measuring the refractive index distribution state and wavelength pitch adjustment during the manufacturing process, making it expensive and unsuitable for mass production. On the contrary,
In JP-A-61-264304, Kevin J.
Warbrick proposes SMF and undoped silica fiber lens optics.

【0009】しかしこの場合もレンズ部分の曲率を、回
折損失の理由からレンズ半径を62.5μmに制限して
いるため、得られる光束は約60μm程度であり、構造
的にシリカファイバ直径の高々80%程度が限界であり
、光学デバイスを挿入するには狭すぎる。すなわち60
μm程度の光束では逆に細すぎてガウシァンビームを結
合するのに適さない。したがって60〜200μmの光
線をいかに実現するかが実際上の課題となる。
However, in this case as well, the curvature of the lens portion is limited to 62.5 μm for reasons of diffraction loss, so the obtained luminous flux is approximately 60 μm, which is structurally at most 80 μm of the diameter of the silica fiber. %, which is too narrow to insert an optical device. i.e. 60
On the other hand, a luminous flux on the order of μm is too narrow and is not suitable for combining Gaussian beams. Therefore, the practical problem is how to realize a light beam of 60 to 200 μm.

【0010】0010

【課題を解決するための手段】本発明は、実質的にはS
MFと非ドープシリカファイバ光線拡大部分及び非ドー
プシリカ球レンズから構成される光学結合用光ファイバ
端末を提案するものである。具体的な構造は、第一の光
ファイバとコア部分の屈折率と等価で同一外径からなる
第二の光ファイバを接合することから構成される。第二
の光ファイバは、先端にその外径よりも大きな直径を有
する球レンズが形成されており、球レンズ部分を透過す
る段階で光束を少なくとも光ファイバ直径の半分以上で
ある62.5μm、好ましくは80μm以上に拡大し、
また球レンズ曲面部から平行光束もしくは用途に応じた
出射角度をもつ光に変換する作用を示すため、曲率半径
が少なくとも200μmであることから構成する。
[Means for Solving the Problems] The present invention essentially consists of S
An optical fiber terminal for optical coupling is proposed, which is composed of an MF, an undoped silica fiber beam expanding section, and an undoped silica ball lens. A specific structure is constructed by joining a first optical fiber and a second optical fiber having the same outer diameter and equivalent to the refractive index of the core portion. The second optical fiber has a spherical lens formed at its tip having a diameter larger than its outer diameter, and when it passes through the spherical lens, the light beam is transmitted to at least 62.5 μm, which is at least half the diameter of the optical fiber, preferably 62.5 μm. expands to more than 80 μm,
Further, in order to exhibit the effect of converting the curved surface portion of the spherical lens into a parallel beam or light having an emission angle depending on the application, the radius of curvature is at least 200 μm.

【0011】[0011]

【実施例】図1(a)は本発明の光ファイバ端末先端部
の断面図である。先端の非ドープシリカファイバレンズ
導入部7、SMFファイバ本線8、先端部保護用フェル
ール9、先端球レンズ10から構成する。図1(b)は
光の透過状態を示し、SMFを出射した光のビームウェ
ィスト点までの距離をzとすれば、波長λにおけるSi
O2の屈折率をnとして、ファイバレンズ導入部および
球レンズ部分を伝播することによるガウシアンビームの
広がり度合いは数1で示される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1(a) is a sectional view of the tip end of an optical fiber according to the present invention. It consists of an undoped silica fiber lens introduction section 7 at the tip, a main SMF fiber 8, a ferrule 9 for protecting the tip, and a spherical lens 10 at the tip. FIG. 1(b) shows the transmission state of light. If the distance to the beam waist point of the light emitted from the SMF is z, then the Si
Assuming that the refractive index of O2 is n, the degree of spread of the Gaussian beam by propagating through the fiber lens introduction section and the ball lens section is expressed by equation 1.

【数1】[Math 1]

【0012】すなわち、第二の光ファイバの長さLを制
御することから光ファイバ直径もしくは球レンズ部分の
広がりも考慮すれば、それ以上の出射光束にまで拡大で
き、結果としてビームウェィスト距離を大きくしても僅
かな結合損失で光学結合が達成できるようになる。図4
は最大結合効率がとれる球レンズの曲率半径R,Lおよ
びビームウェィストまでの距離zを算出したものである
。この図から分かるように、z=2.5mm以上(すな
わちレンズ間距離:2z=5mm以上)が実現できるの
は、L≧1000μmで、球レンズの曲率Rも250μ
m以上の条件が満たされるときである。このとき、出射
光の光束は90μm以上となり、従来のファイバコリメ
ータより光束が太くできるので、それだけレンズ間距離
が広げられる。
In other words, by controlling the length L of the second optical fiber and taking into consideration the diameter of the optical fiber or the spread of the spherical lens part, it is possible to expand the emitted light flux to a greater extent, and as a result, the beam waist distance can be reduced. Even if the size is increased, optical coupling can be achieved with a small coupling loss. Figure 4
are the calculated radii of curvature R and L of the spherical lens and the distance z to the beam waist, which provide the maximum coupling efficiency. As can be seen from this figure, z = 2.5 mm or more (i.e. distance between lenses: 2z = 5 mm or more) can be achieved when L≧1000 μm and the curvature R of the spherical lens is also 250 μm.
This is when conditions equal to or more than m are satisfied. At this time, the luminous flux of the emitted light is 90 μm or more, and the luminous flux can be made thicker than that of a conventional fiber collimator, so that the distance between the lenses can be increased accordingly.

【0013】以上から、実質的にはレンズ出射端でガウ
ス分布光の光束の直径が80μm以上であれば本発明の
目的とする高結合効率を得ることが可能となり、その光
を平行光線もしくは有限のビームウェィストをもつよう
に集束するには、光集束用球レンズの曲率半径が少なく
とも200μmであることが必要である。これは図1(
b)においてSMFからビームウェィストまでの光の光
線行列から推定でき、数2の関係式から導かれる。
From the above, if the diameter of the Gaussian distribution light beam at the exit end of the lens is 80 μm or more, it is possible to obtain the high coupling efficiency that is the objective of the present invention, and the light can be converted into parallel rays or finite beams. In order to focus the beam to have a beam waist of , it is necessary that the radius of curvature of the light focusing ball lens be at least 200 μm. This is shown in Figure 1 (
In b), it can be estimated from the ray matrix of the light from the SMF to the beam waist, and is derived from the relational expression of Equation 2.

【数2】[Math 2]

【0014】さらにガウシアンビームの光線式から数3
となり、ビームウェィストまでの距離zが算定できる。
Furthermore, from the ray equation of the Gaussian beam, equation 3
Then, the distance z to the beam waist can be calculated.

【数3】 ただし、a=λ/πnw02である。さらに、数2,数
3およびガウシアンビームの光線式から、
[Formula 3] However, a=λ/πnw02. Furthermore, from equations 2 and 3 and the Gaussian beam ray formula,

【数4】 が導入でき、図4の結果が得られる。[Math 4] can be introduced, and the result shown in FIG. 4 can be obtained.

【0015】図5は球レンズ出射後のZ軸方向のビーム
半径を示す。R=165μmでは出射端で60μmであ
るが、ビームウェィスト位置の光束(=2Wz)は約3
0μmに絞られ本発明の主旨からそれるが、R=200
μm以上では適度な光束となり、例えばR=265μm
では2Wz=92μm、2z=5.2mmとなり、さら
にR=340μmでは2Wz=118μm、2z=9.
0mmとなり、必要な条件が満たされる。
FIG. 5 shows the beam radius in the Z-axis direction after exiting from the ball lens. When R=165μm, the beam at the exit end is 60μm, but the luminous flux at the beam waist position (=2Wz) is about 3
Although it is narrowed down to 0 μm and deviates from the gist of the present invention, R = 200
Above μm, the luminous flux becomes moderate, for example, R = 265 μm.
Then, 2Wz=92μm, 2z=5.2mm, and further, when R=340μm, 2Wz=118μm, 2z=9.
0 mm, and the necessary conditions are met.

【0016】図6は本発明のL=950μm、R=26
5μm、2z=7.0mmの球レンズシリカファイバを
コア直径10μmのSMFに融着した一対の光フアイバ
端末を対向させ、X軸方向の変位に対する結合損失を実
測したものである。互いに反射防止膜を実装しない状態
で最小0.4dBであり、前後20μm程度の位置ずれ
は許容できることが確認できた。反射減衰量は図1(c
)のように反射防止膜11と屈折率整合剤5を施して−
45dBが達成でき、従来の無反射コネクターと同等な
数値が得られた。このとき、従来の無反射コネクターは
互いに物理的につき合わせるため何度も脱着を繰り返す
と性能劣化が生じるが、本発明のファイバ系では光線を
空間伝播させるので物理的な損傷はまったく生じない。
FIG. 6 shows that L=950 μm and R=26 according to the present invention.
A pair of optical fiber terminals in which a spherical lens silica fiber of 5 μm and 2z=7.0 mm is fused to an SMF with a core diameter of 10 μm are faced, and the coupling loss with respect to displacement in the X-axis direction is actually measured. It was confirmed that the minimum difference was 0.4 dB when no antireflection film was mounted on each other, and that a positional deviation of about 20 μm from front to back was acceptable. The return loss is shown in Figure 1 (c
), the anti-reflection film 11 and the refractive index matching agent 5 are applied.
45dB was achieved, which is equivalent to the conventional non-reflection connector. At this time, conventional non-reflection connectors physically abut each other and performance deteriorates when they are repeatedly connected and disconnected, but in the fiber system of the present invention, the light beam is propagated through space, so no physical damage occurs at all.

【0017】また、従来の微小ファイバコリメータは、
高い結合効率で伝播できる距離が3mm以下程度であり
、本発明の3〜10mmの実際的な距離よりも短い上に
、図7,図8に示されるようにレンズ曲率の小さい光束
の細い条件ほど許容位置ずれが狭くなっており、本発明
の数値範囲において光線方向(Z軸方向)のみならず光
線と直角な方向(XY軸)に対して広い許容領域がとれ
る効果と相反する。すなわち、図7はレンズ曲率が大き
いほどZ軸方向の結合損失に対する許容位置が緩やかで
あることが前述の計算式から推定できる。
[0017] Furthermore, the conventional microfiber collimator is
The distance that can be propagated with high coupling efficiency is about 3 mm or less, which is shorter than the practical distance of 3 to 10 mm according to the present invention, and as shown in FIGS. The permissible positional deviation is narrow, which is contrary to the effect that a wide permissible region can be obtained in the numerical range of the present invention not only in the direction of the light beam (Z-axis direction) but also in the direction perpendicular to the light beam (XY-axis). That is, in FIG. 7, it can be estimated from the above calculation formula that the larger the lens curvature, the gentler the allowable position for the coupling loss in the Z-axis direction.

【0018】図8は同じく、レンズ曲率とX軸方向の位
置ずれに関する許容範囲を表す。明らかに曲率が大きく
なるにつれて許容位置が緩やかとなり、製造が容易にな
る。図9は、上記本発明光学系のX軸方向位置ずれに対
する結合損失を実測したもので■、計算から推定した場
合■と比較して図示したものである。なお同時に市販の
屈折率分布型レンズを用いたコリメータ系の場合■も図
示した。本発明の結合系の方が自由度が狭いが、市販の
光学系では光束が700μmもあり、本発明とは主旨が
まったく異なるものである。この図で分かることは、本
発明の結合系が市販のコリメータ結合系と比較して結合
損失が同等もしくはそれ以下にもできることである。
Similarly, FIG. 8 shows the tolerance range regarding the lens curvature and positional deviation in the X-axis direction. Obviously, as the curvature increases, the permissible positions become looser and manufacturing becomes easier. FIG. 9 shows the actually measured coupling loss of the optical system of the present invention with respect to the positional shift in the X-axis direction, and compares it with the case (2) estimated from calculation. At the same time, a case (2) of a collimator system using a commercially available gradient index lens is also illustrated. Although the coupling system of the present invention has a narrower degree of freedom, commercially available optical systems have a luminous flux of as much as 700 μm, which is completely different in spirit from the present invention. What can be seen from this figure is that the coupling system of the present invention can achieve a coupling loss equal to or lower than that of a commercially available collimator coupling system.

【0019】[0019]

【発明の効果】本発明は、SMFと同一外径の光導入部
で融着し、反対側端部の球レンズで出射光を集束する一
体構造からなり、接着方式の従来の結合系とは信頼性の
面で優れているほか、光線通路に平行界面がないので反
射減衰量がほとんどない。また、一体構造であるからフ
ァイバ−レンズ間の光軸調整が必要なく、他の光学系へ
結合するのが容易であるため、特に光アイソレータ,光
サーキュレータ,光スイッチ,光合分波器,光コネクタ
等に最適である。さらに、曲率を調整することから光フ
ァィバアレイ結合部にも適用でき、広範な用途に応用で
きる。
[Effects of the Invention] The present invention has an integrated structure in which the SMF is fused at the light introduction part with the same outer diameter and the emitted light is focused by the ball lens at the opposite end, and is different from the conventional bonding system. In addition to being superior in terms of reliability, there is almost no return loss because there are no parallel interfaces in the optical path. In addition, since it is an integral structure, there is no need to adjust the optical axis between the fiber and lens, and it is easy to connect to other optical systems, so it is especially useful for optical isolators, optical circulators, optical switches, optical multiplexers and demultiplexers, and optical connectors. It is most suitable for etc. Furthermore, since the curvature can be adjusted, it can be applied to optical fiber array coupling parts, and can be applied to a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の光ファイバ端末を示す断面図。FIG. 1 is a sectional view showing an optical fiber terminal of the present invention.

【図2】光フアイバ光学系の概略図。FIG. 2 is a schematic diagram of a fiber optic system.

【図3】従来の光ファイバコリメータの断面図。FIG. 3 is a cross-sectional view of a conventional optical fiber collimator.

【図4】本発明における最大結合効率がとれる光ファイ
バコリメータの計算値を示す。
FIG. 4 shows calculated values for an optical fiber collimator that provides maximum coupling efficiency in the present invention.

【図5】本発明の球レンズ出射後のZ軸方向のビーム半
径を示す。
FIG. 5 shows the beam radius in the Z-axis direction after exiting from the ball lens of the present invention.

【図6】本発明の光ファイバコリメータのX軸方向の変
位に対する結合損失の実測値を示す。
FIG. 6 shows actual measured values of coupling loss with respect to displacement in the X-axis direction of the optical fiber collimator of the present invention.

【図7】本発明によるレンズ曲率とZ軸方向の位置ずれ
に対する結合損失の計算値を示す。
FIG. 7 shows calculated values of coupling loss with respect to lens curvature and positional deviation in the Z-axis direction according to the present invention.

【図8】本発明によるレンズ曲率とX軸方向の位置ずれ
に対する結合損失の計算値を示す。
FIG. 8 shows calculated values of coupling loss with respect to lens curvature and positional deviation in the X-axis direction according to the present invention.

【図9】本発明による光学系のX軸方向位置ずれに対す
る結合損失の計算値と実測値の比較を示す。
FIG. 9 shows a comparison between calculated values and actual values of coupling loss with respect to positional deviation in the X-axis direction of the optical system according to the present invention.

【符号の説明】[Explanation of symbols]

1  光ファイバ 2  球レンズ 3  屈折率分布型レンズ 4  光学デバイス 5  屈折率整合剤 7  SiO2ファイバレンズ 8  ピッグテールファイバ本線 9  先端部保護用フェルール 10  先端レンズ 11  反射防止膜 1 Optical fiber 2. Ball lens 3. Gradient index lens 4. Optical device 5 Refractive index matching agent 7 SiO2 fiber lens 8 Pigtail fiber main line 9 Ferrule for tip protection 10 Tip lens 11 Anti-reflection film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  第一の光ファイバと、この光ファイバ
のコア部と等価で単一屈折率をもち同一外径からなる光
導入部と光集束用球レンズ部で形成された第二の光ファ
イバが、第一の光ファイバとその光導入側で融着された
構造において、第二の光ファイバの長さが、これを伝播
してきたガウス分布光の光束が出射端で少なくとも80
μm以上に拡大する長さを有し、かつ光集束用球レンズ
の曲率半径が200μm以上であることを特徴とした微
小レンズ付光ファイバ端末。
Claim 1: A second light beam formed by a first optical fiber, a light introduction part that is equivalent to the core part of this optical fiber, has a single refractive index, and has the same outer diameter, and a light focusing ball lens part. In a structure in which the fiber is fused to the first optical fiber on its light introduction side, the length of the second optical fiber is such that the luminous flux of the Gaussian distribution light propagated through it is at least 80% at the output end.
1. An optical fiber terminal with a microlens, which has a length that expands to more than μm, and has a radius of curvature of a light focusing ball lens of 200 μm or more.
JP3017022A 1991-01-16 1991-01-16 Optical fiber terminal with micro lens Expired - Fee Related JP2992093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017022A JP2992093B2 (en) 1991-01-16 1991-01-16 Optical fiber terminal with micro lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017022A JP2992093B2 (en) 1991-01-16 1991-01-16 Optical fiber terminal with micro lens

Publications (2)

Publication Number Publication Date
JPH04313711A true JPH04313711A (en) 1992-11-05
JP2992093B2 JP2992093B2 (en) 1999-12-20

Family

ID=11932373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017022A Expired - Fee Related JP2992093B2 (en) 1991-01-16 1991-01-16 Optical fiber terminal with micro lens

Country Status (1)

Country Link
JP (1) JP2992093B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528347A (en) * 2000-03-17 2003-09-24 コーニング インコーポレイテッド Optical waveguide lens and fabrication method
WO2008117517A1 (en) * 2007-03-27 2008-10-02 Mitsubishi Cable Industries, Ltd. Optical fiber for laser guide and laser guide including the same
US10946481B2 (en) 2016-09-14 2021-03-16 Kabushiki Kaisha Toshiba Laser processing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528347A (en) * 2000-03-17 2003-09-24 コーニング インコーポレイテッド Optical waveguide lens and fabrication method
WO2008117517A1 (en) * 2007-03-27 2008-10-02 Mitsubishi Cable Industries, Ltd. Optical fiber for laser guide and laser guide including the same
JP2008242012A (en) * 2007-03-27 2008-10-09 Mitsubishi Cable Ind Ltd Laser guide optical fiber and laser guide equipped with the same
US8023785B2 (en) 2007-03-27 2011-09-20 Mitsubishi Cable Industries, Ltd. Laser guide optical fiber and laser guide including the same
US10946481B2 (en) 2016-09-14 2021-03-16 Kabushiki Kaisha Toshiba Laser processing device

Also Published As

Publication number Publication date
JP2992093B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
US5293438A (en) Microlensed optical terminals and optical system equipped therewith, and methods for their manufacture, especially an optical coupling method and optical coupler for use therewith
US9983361B2 (en) GRIN-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby
US4213677A (en) Light coupling and branching device using light focusing transmission body
US20030081897A1 (en) Aspherical rod lens and method of manufacturing aspherical rod lens
US6816652B1 (en) Pump fiber bundle coupler for double-clad fiber devices
US6546169B1 (en) Pump couplers for double-clad fiber devices
US6130972A (en) Lensed optical fiber and laser module
Shiraishi et al. A fiber lens with a long working distance for integrated coupling between laser diodes and single-mode fibers
US20050220401A1 (en) Fiber collimating lenses and method
JPH04333808A (en) Photosemiconductor module
EP1395862A2 (en) Tapered lensed fiber for focusing and condenser applications
JPH01260405A (en) Optical fiber
Shiraishi et al. A new lensed-fiber configuration employing cascaded GI-fiber chips
Takahata et al. High reliability fan-in/fan-out device with isolator for multi-core fibre based on free space optics
JPS63249118A (en) Method and connector plug for accessing optical fiber line
JP3135979B2 (en) Optical fiber terminal optical device with micro lens
JPH04313711A (en) Optical fiber terminal with microlens
JP3274691B2 (en) Manufacturing method of optical fiber terminal with micro lens
JP2560148B2 (en) Optical fiber terminal with microlens and manufacturing method thereof
JPH0544643B2 (en)
JP6540310B2 (en) Fiber optic terminal
JPH07281054A (en) Optical fiber terminal
JPH01196189A (en) Tunable optical fiber raman laser
US6744952B2 (en) Connecting device for connecting at least two optical waveguides, in particular optical waveguides of different refractive index
JPH0429104A (en) Fine optical fiber collimator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990924

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees