JPH0430564B2 - - Google Patents

Info

Publication number
JPH0430564B2
JPH0430564B2 JP58122857A JP12285783A JPH0430564B2 JP H0430564 B2 JPH0430564 B2 JP H0430564B2 JP 58122857 A JP58122857 A JP 58122857A JP 12285783 A JP12285783 A JP 12285783A JP H0430564 B2 JPH0430564 B2 JP H0430564B2
Authority
JP
Japan
Prior art keywords
lens group
lens
focusing
distance
fluctuations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58122857A
Other languages
Japanese (ja)
Other versions
JPS6014214A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58122857A priority Critical patent/JPS6014214A/en
Priority to US06/626,989 priority patent/US4632519A/en
Publication of JPS6014214A publication Critical patent/JPS6014214A/en
Publication of JPH0430564B2 publication Critical patent/JPH0430564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明はズームレンズ、特に最大画角が60°を
越える広画角を含み、いわゆる広角から準望遠ま
での比較的広い変倍領域を有するズームレンズの
合焦方式に関する。 (発明の背景) 近年、この種のズームレンズで35mm判スチルカ
メラ用のものが種々提案されており、例えば、特
開昭57−161804、特開昭57−161824等がある。 これらはいずれもコンパクトで高ズーム比を目ざ
したものであるが、そのため、前玉フオーカツシ
ング群に正のパワーのレンズ群を用いてズーム比
の高倍化をねらつている。しかし、正のフオーカ
ツシング群の欠点として、至近距離をあまり短か
くできない事と、収差の近距離変動が大きい事の
2点が挙げられる。至近距離の短縮化には前玉径
を大きくするか、前玉の焦点距離を短かくすれば
ある程度可能となるが、レンズの小型化と収差変
動の減少とを犠牲にせざるを得なくなる。そのた
め通常はマクロ機構を付加して、近距離撮影領域
を拡大することが多い。 また収差の近距離変動
に関しては、レンズ系の小型化と相反する性質が
あり、なかなか補正困難なので、無限遠撮影状態
と至近距離撮影状態とで残存収差をふり分けて解
決する事が一般的である。従つて35mmスチルカメ
ラ用のズームレンズで、=35mmよりも広角から
始まる3倍以上のものは近距離での収差変動が大
きいにもかかわらずレンズの小型化の要請が強
く、ある程度の収差変動はやむを得ないものとな
つている。 さらにこの様な高倍率ズームレンズになると、
像面の至近変動が大きくなるだけではなく、変倍
による像面変動も無視できないものとなつてく
る。そのため実際には近距離変動と変倍変動が両
者重なつて、益々像面変動が大きいものとなり、
像性能にもズーム変倍範囲内でムラがでてくる事
になる。変倍による像面変動を補正するには、限
られた変倍群の構成では、ズームレンズ系自体を
大きくするか、高屈折率ガラスを大幅に採用して
各レンズ面の曲率半径を大きくする以外に解決で
きないが、この変倍による像面変動を良好な値に
おさえる事が出きた場合でも、近距離変動まで補
正する事は非常に困難で、両者を同時に補正する
事は不可能に近い。 この像面の近距離変動は高倍率ズームレンズに
なつて望遠端が長焦点レンズになればなる程、大
きな値となり、その主な発生原因となるフオーカ
ツシングレンズ群(通常第1レンズ群)の改良の
みでは補正しきれないのである。 フオーカツシング群を2つのレンズ群に分けてお
のおのの群間隔を若干変化させて補正するいわゆ
るフオーカツシング群のフローテイング方式を採
用すれば、大幅に改良されるが、その場合はレン
ズ枚数が増える事となり、また大きなものになり
かねない。レンズ枚数を限定すると間隔変化にと
もなう球面収差、コマ収差の増加による像性能劣
化をもたらすこととなる。 さらにこの場合、可動群が増えるため、鏡筒の加
工精度が影響する事となり、偏心、倒れ等を発生
して、像性能の劣化をもたらす原因にもなりやす
い。 (発明の目的) 本発明の目的は、広画角を含み比較的広い変倍
領域を有しつつ小型な形状でありながら、変倍に
よる収差変動と合焦による収差変動、特に像面彎
曲収差の合焦による変動を良好に補正し得るズー
ムレンズを提供することにある。 (発明の概要) 本発明は、第1図に示すごとく、物体側より順
に、正屈折力の第1レンズ群G1、付屈折力の第
2レンズ群G2、正屈折力の第3レンズ群G3、正
屈折力の第4レンズ群G4を有し、該第1、第2、
第3レンズ群でほぼアフオーカル系を形成するズ
ームレンズにおいて、第2図に示すごとく近距離
物体に合焦する際に、像面Iに対して前記第1レ
ンズ群G1を光軸にそつて物体側へ移動させると
共に、前記第2レンズ群G2と前記第3レンズ群
G3とを一体的に光軸にそつて像側へ移動させる
ものである。第1図には、本発明のズームレンズ
の無限遠合焦時における軸上無限遠物点及び軸外
無限遠物点からの周縁光線を示した。また、第2
図には、無限遠合焦時の斜光束の主光線を点線
で、また近距離合焦時の斜光束の主光線を実線で
示し、合焦に際して移動する第1、第2、第3レ
ンズ群(G1,G2,G3)の無限遠合焦時の配置を
2点鎖線で示した。 このような本発明の基本的構成によれば、像面
彎曲の近距離変動が大幅に減少するのみならず、
第1レンズ群に近い第2レンズ群と第3レンズ群
とが変倍のための構成を保つたまま移動するの
で、鏡筒の構造が簡単となる。また、第2レンズ
群と第3レンズ群は共に変倍のための移動群であ
るため、合焦のための移動において偏心や倒れ等
の機械的誤差を増大させる恐れも少ない。 この様に本発明は近距離物体に合焦する際に前
玉繰出しのために発生する像面彎曲の変化を補正
するものであり、これにより像面全体にわたつて
良好な像性能を保持するものであるが、間隔変化
により球面収差やコマ収差等の像面彎曲以外の収
差が変動したのでは、せつかくの補正が意味をな
さなくなる。そのため間隔変化により球面収差、
コマ収差に大幅な変動のない事が重要となる。ま
た間隔変化により焦点距離に変化があつても都合
が悪いので、焦点距離変動のない事も重要であ
る。これらの要求を同時に満足させるには第3レ
ンズ群と第4レンズ群との間隔を平行光束系にす
ればよい。すなわち、このために第1レンズ群か
ら第3レンズ群までを無限遠合焦時にアフオーカ
ル系となるように構成することが必要である。そ
うすれば、第1レンズ群と第2レンズ群とを一体
的に移動することによつて、第3、第4レンズ群
の間隔が変化しても焦点距離は変化せず、また収
差的には救面収差も変化がなく、コマ収差に関し
ては若干の変化を与えるものの、それは像面彎曲
の変化にのつとつた変化となるので、初期の目的
は充分に達成することができる。 上記のように第3レンズ群と第4レンズ群との
間を平行光束系とし、いわばアフオーカル結合す
るためには、第1レンズ群の焦点距離を1、第2
レンズ群の焦点距離を2、第3レンズ群の焦点距
離を3、おのおのの群の主点間隔をそれぞれD1
D2とすると、 1/1−D1+1/3−D2=−1/2 の関係を保つパワー配置によりズーム変倍系を構
成しなければならない。この関係式は正確に保つ
ことが望ましいが、若干式からはずれていても、
ほぼアフオーカル結合されている群の間隔変化に
よる諸収差の変化量はごくわずかなものであるの
で、球面収差や焦点距離に大きな変化は発生せ
ず、実用的には充分満足できるものである。 ここで像面彎曲の変倍に伴う変動に対して若干
の収差論からの検討を加える。三次の球面収差を
、コマ収差を、非点収差をとし、構成され
る光学系の絞りの位置から対象となる光学部分群
までの距離をとすると、 今、絞りがこの光学部分群から△だけ動いたと
するとそのために発生する収差変動は △=0 (1) △=−α△ (2) △=−2α△+(α△)2 (3) と与えられる。ここにαはほぼ一定の比例定数で
ある。 本発明では絞りを第3レンズ群と一体に設け、特
に第2レンズ群と第3レンズ群との間に設けるこ
とが望ましいが、この場合第1レンズ群のフオー
カツシングによる移動によつて、第1レンズ群の
絞りからの距離が変化するので同様の収差変動が
発生する。そして、実際にはこの他に第1レンズ
群と絞りとの間に介在するレンズ群の影響と物体
距離の変化による影響が加わり、複雑な収差変動
になるが、像面変動を生ずるほとんどの収差は(3)
式によるものとみることができる。本発明は、こ
のようなフオーカツシングによる収差変動を第2
レンズ群と第3レンズ群とを一体的に移動するこ
とによつて補正し得ることを見い出したものであ
る。 第1レンズ群の移動による合焦時の収差変動
は、絞りより後方に位置する第4レンズ群を第1
レンズ群と同時に同一方向へ移動することによつ
て補正できるのではあるが、第4レンズ群を移動
する場合にはバツクフオーカスも変化するため、
実用的ではない。そこで本発明では第4レンズ群
による収差補正とほぼ同等の機能が第2レンズ群
と第3レンズ群との一体的移動によつて達成され
ることを見い出し、像面彎曲以外の収差の変動を
悪化させないように、第3レンズ群と第4レンズ
群とをアフオーカル結合としたものである。 そして、このような本発明による合焦時の収差
変動の補正においては、第1レンズ群の物体側の
移動量をS、第2レンズ群と第3レンズ群との像
側への一体的移動量を△Tとするとき、 0.1S≦△T≦0.35S (4) とすることが望ましい。この(4)式の条件の下限を
外れる場合には合焦時の収差補正の効果が乏しく
なり、また上限を超えると広角端で補正過剰とな
るため結像性能が悪化する。 (実施例) 次に、本発明による実施例について説明する。 本発明による第1、第2の実施例はいずれも広角
端wから望遠端Tへの変倍に際して、第3図に
示すごとく、第1レンズ群G1、第4レンズ群G4
は像面に対して物体側へ単調にほぼ同量移動
し、同時に第3レンズ群G3は第1,第4レンズ
群G1,G4の移動量に対して0.4〜0.8倍の移動量で
物体側へ単調に移動するとともに、第2レンズ群
G2は少なくとも広角端近傍においては物体側へ
移動する構成である。尚、この様な変倍方式によ
つて前玉径が小さくできレンズ系の小型化に有利
であることについては、本願と同一の出願人によ
る別途出願(特開昭58−78114号公報)に詳述し
た。 第1実施例は35ミリ判スチルカメラ用として焦
点距離=35mmから=105mmまでの標準を含む
3倍ズームレンズであり、第2実施例は同じく35
ミリ判スチルカメラ用として焦点距離=35mmか
ら=200mmまでの5.7倍のズームレンズである。
(Technical Field of the Invention) The present invention relates to a zoom lens, and particularly to a focusing method for a zoom lens that includes a wide angle of view with a maximum angle of view exceeding 60° and has a relatively wide range of variable power from so-called wide-angle to semi-telephoto. (Background of the Invention) In recent years, various zoom lenses of this type for use in 35 mm still cameras have been proposed, such as Japanese Patent Application Laid-open No. 57-161804 and Japanese Patent Application Laid-open No. 57-161824. All of these are designed to be compact and have a high zoom ratio, and for this reason, a positive power lens group is used in the front focusing group to increase the zoom ratio. However, the positive focusing group has two drawbacks: the close distance cannot be made very short, and the aberrations vary greatly over the close distance. It is possible to shorten the close-up distance to some extent by increasing the diameter of the front lens or shortening the focal length of the front lens, but this would be at the expense of making the lens smaller and reducing fluctuations in aberrations. Therefore, a macro mechanism is usually added to expand the close-range shooting area. In addition, short-distance fluctuations in aberrations are difficult to correct because they conflict with the miniaturization of lens systems, so it is common to solve the problem by distributing residual aberrations between infinity shooting conditions and close-up shooting conditions. be. Therefore, for zoom lenses for 35mm still cameras, there is a strong demand for smaller lenses, even though aberration fluctuations at close distances are large for zoom lenses that are 3x or more, starting from a wider angle than 35mm. It has become unavoidable. Furthermore, when it comes to such high-power zoom lenses,
Not only does the close-up variation in the image plane become large, but also the variation in the image plane due to zooming becomes impossible to ignore. Therefore, in reality, both short-distance fluctuations and magnification fluctuations overlap, resulting in increasingly large image plane fluctuations.
Image performance will also become uneven within the zoom range. In order to correct image plane fluctuations due to zooming, in a limited zoom group configuration, the zoom lens system itself must be made larger, or a large amount of high refractive index glass is used to increase the radius of curvature of each lens surface. There is no other solution, but even if it were possible to suppress the image plane fluctuation due to magnification change to a good value, it would be extremely difficult to correct for short-distance fluctuations, and it would be nearly impossible to correct for both at the same time. . This short-distance fluctuation of the image plane becomes larger as the zoom lens becomes a higher magnification lens and the telephoto end becomes a longer focal length lens, and the main cause of this fluctuation is the focusing lens group (usually the first lens group). This cannot be corrected solely by improving. A significant improvement would be achieved by adopting the so-called focusing group floating method, which divides the focusing group into two lens groups and slightly changes the distance between each group to compensate, but in that case, the number of lenses would be reduced. This is likely to increase and become even bigger. If the number of lenses is limited, image performance will deteriorate due to an increase in spherical aberration and comatic aberration as the distance changes. Furthermore, in this case, the number of movable groups increases, which affects the processing accuracy of the lens barrel, which tends to cause eccentricity, tilting, etc., resulting in deterioration of image performance. (Objective of the Invention) An object of the present invention is to reduce aberration fluctuations caused by zooming and focusing, especially curvature of field aberration, while having a relatively wide magnification range including a wide angle of view and a compact shape. An object of the present invention is to provide a zoom lens that can satisfactorily correct fluctuations caused by focusing. (Summary of the Invention) As shown in FIG. 1, the present invention includes, in order from the object side, a first lens group G 1 with positive refractive power, a second lens group G 2 with added refractive power, and a third lens group with positive refractive power. a fourth lens group G 4 having positive refractive power;
In a zoom lens in which the third lens group forms an almost afocal system, as shown in Fig. 2, when focusing on a close object, the first lens group G1 is aligned along the optical axis with respect to the image plane I. While moving toward the object side, the second lens group G2 and the third lens group
G 3 is moved along the optical axis toward the image side. FIG. 1 shows peripheral rays from an on-axis infinity object point and an off-axis infinity object point when the zoom lens of the present invention is focused at infinity. Also, the second
In the figure, the principal ray of the oblique beam when focusing at infinity is shown by a dotted line, and the principal ray of the oblique beam when focusing at close distance is shown by a solid line, and the first, second, and third lenses that move during focusing are shown. The arrangement of the groups (G 1 , G 2 , G 3 ) when focused at infinity is shown by a two-dot chain line. According to the basic configuration of the present invention, not only short-range fluctuations in field curvature are significantly reduced, but also
Since the second lens group and the third lens group, which are close to the first lens group, move while maintaining the configuration for zooming, the structure of the lens barrel is simplified. Further, since both the second lens group and the third lens group are movable groups for changing the magnification, there is little risk of increasing mechanical errors such as eccentricity and tilting during movement for focusing. In this way, the present invention corrects the change in field curvature that occurs due to the advance of the front lens when focusing on a short-distance object, thereby maintaining good image performance over the entire image plane. However, if aberrations other than curvature of field, such as spherical aberration and coma aberration, fluctuate due to changes in the distance, the corrections made will become meaningless. Therefore, due to the change in spacing, spherical aberration,
It is important that there is no significant variation in coma aberration. It is also important that the focal length does not fluctuate, since it is inconvenient if the focal length changes due to a change in the distance. In order to satisfy these requirements at the same time, the distance between the third lens group and the fourth lens group may be set to a parallel beam system. That is, for this purpose, it is necessary to configure the first lens group to the third lens group to form an afocal system when focusing on infinity. By doing so, by moving the first lens group and the second lens group integrally, the focal length will not change even if the distance between the third and fourth lens groups changes, and the aberrations will be reduced. In this case, the salvage aberration does not change, and although there is a slight change in the coma aberration, this change follows the change in the curvature of field, so the initial objective can be fully achieved. As mentioned above, in order to create a parallel beam system between the third lens group and the fourth lens group and achieve afocal coupling, the focal length of the first lens group must be set to 1, and the focal length of the second lens group must be set to 1 .
The focal length of the lens group is 2 , the focal length of the third lens group is 3 , the distance between the principal points of each group is D 1 ,
When D 2 , the zoom magnification system must be configured with a power arrangement that maintains the relationship 1/1 −D 1 +1/3 −D 2 =−1/ 2 . It is desirable to keep this relational expression accurate, but even if it deviates slightly from the equation,
Since the amount of change in various aberrations due to the change in the spacing of the groups that are almost afocal coupled is very small, there is no large change in spherical aberration or focal length, which is sufficiently satisfactory for practical use. Here, we will add some consideration from aberration theory to the variation of field curvature due to zooming. Assuming that third-order spherical aberration, coma aberration, and astigmatism are the distance from the aperture position of the optical system to the target optical subgroup, then the aperture is now △ away from this optical subgroup. If it moves, the aberration variation caused by it is given as △=0 (1) △=-α△ (2) △=-2α△+(α△) 2 (3). Here α is an almost constant proportionality constant. In the present invention, it is desirable to provide the diaphragm integrally with the third lens group, especially between the second and third lens groups. Similar aberration fluctuations occur because the distance of the first lens group from the aperture changes. In reality, in addition to this, the influence of the lens group interposed between the first lens group and the aperture diaphragm and the influence of changes in object distance result in complex aberration fluctuations, but most of the aberrations that cause image plane fluctuations is(3)
It can be seen that this is due to the formula. The present invention eliminates aberration fluctuations due to such focusing by a second method.
It has been discovered that the correction can be made by moving the lens group and the third lens group integrally. Aberration fluctuations during focusing due to movement of the first lens group cause the fourth lens group located behind the aperture to
It can be corrected by moving the lens group in the same direction at the same time, but when moving the fourth lens group, the back focus also changes, so
Not practical. Therefore, in the present invention, we have discovered that a function almost equivalent to that of the aberration correction by the fourth lens group can be achieved by integrally moving the second and third lens groups, and we have found that fluctuations in aberrations other than field curvature can be achieved by integrally moving the second and third lens groups. In order to prevent deterioration, the third lens group and the fourth lens group are afocal coupled. In the correction of aberration fluctuations during focusing according to the present invention, the amount of movement of the first lens group on the object side is S, and the integral movement of the second lens group and the third lens group on the image side is When the amount is △T, it is desirable that 0.1S≦△T≦0.35S (4). If the lower limit of the condition of equation (4) is exceeded, the effect of aberration correction during focusing becomes poor, and if the upper limit is exceeded, the imaging performance deteriorates due to excessive correction at the wide-angle end. (Example) Next, an example according to the present invention will be described. In both the first and second embodiments of the present invention, when changing the magnification from the wide-angle end w to the telephoto end T , as shown in FIG. 3, the first lens group G 1 and the fourth lens group G 4
moves monotonically by almost the same amount toward the object side with respect to the image plane, and at the same time, the third lens group G3 moves 0.4 to 0.8 times the amount of movement of the first and fourth lens groups G1 and G4 . While moving monotonically toward the object side, the second lens group
G 2 is configured to move toward the object side at least near the wide-angle end. The fact that such a magnification variable system allows the diameter of the front lens to be reduced and is advantageous in downsizing the lens system is disclosed in a separate application (Japanese Patent Laid-Open No. 78114/1983) filed by the same applicant as the present application. Detailed. The first example is a 3x zoom lens for 35mm still cameras, including standard focal lengths from 35mm to 105mm, and the second example is a 3x zoom lens for 35mm still cameras.
It is a 5.7x zoom lens with a focal length of 35mm to 200mm for mm-format still cameras.

【表】【table】

【表】 第4図、第5図にそれぞれ第1実施例及び第2
実施例のレンズ構成図を示し、以下の表1及び表
2に第1及び第2実施例の諸元を示す。各表にお
いて、物体側から順次の各値を示し、添数字は物
体側からの順序を表わす。 第6図は、第1実施例、広角端W,中間M
遠端Tの各焦点距離での7割画角の所のメリデイ
オナル像面の変動を表わした図である。 図中の曲線aは物体が無限遠の場合の変倍による
変動を表わし、広角端では像面はアンダーに、中
間の所ではオーバーに、望遠端ではまたアンダー
に変化する逆くの字の変動を生じ、この変動差は
この場合、0.3程度存在し、なかなか減少させる
事は困難である。一般にレンズ系の小型化を目ざ
せば、このような変動成分は増加する。 曲線bは第1ンズ群のみを物体側へS=3.5mm
だけ移動することによつて物体距離1.4mに合焦
した場合の変倍変動であり、曲線aとbとの差つ
まり近距離変動は0.4〜0.5程度存在する。 これに対して、同一の近距離物体への合焦に際
して第2レンズ群と第3レンズ群とを同時に像側
へ移動する本発明を実施した場合の変倍変動が曲
線c及びdである。曲線cは第2、第3レンズ群
を△T=0.5mm(△T≒0.14S)だけ像側へ移動さ
せた場合であり、曲線aに近くなり、近距離変動
がかなり補正されている事が明らかである。曲線
dは第2、第3レンズ群を△T=0.7mm(△T≒
0.2S)だけ像側へ移動させた場合であり、さらに
良好に補正されている事が分る。但し、これ以上
補正すると広角端で補正過剰となりかえつて像性
能が劣化するため前記(4)式の条件の範囲内で適切
な値を選ぶ必要がある。 第7図は第2実施例の7割画角のメリデイオナ
ル像面を第6図と同様に広角側から望遠側までの
変倍変動を表示したもので、曲線aは物体が無限
遠の場合の状態で、これが第1レンズ群のみを物
体側へ4.4mmだけ移動させて物体距離1.6mに合焦
した時には曲線bの状態に変化する。図から分る
様に広角端と望遠端での近距離変動は一様ではな
く、これは5.7倍という高変倍のために現れた現
象である。この場合、望遠端と中間とでは0.6〜
0.9程度の近距離変動があり、広角端では0.05の
変動である。この例の様に5.7倍という高ズーム
比になると、変倍による変動は複雑なものとな
り、図示の様に逆S字型の変動を示す。このた
め、諸収差の変倍変動のみならず近距離変動の補
正はさらに困難なものとなる。 曲線cは同一物体への合焦に際して、本発明によ
り第2,第3レンズ群を同時に像側へ0.7mmだけ
移動した場合の状態であり、広角端であまり補正
過剰とならない様にしつつ、望遠端での近距離変
動をなるべく補正しようとしたものである。 この様に本発明による補正を行う事は、実用上非
常に有効で像面の近距離変動が大幅に改善され、
全変倍域にわたり画面全域において常に良好な像
性能を得る事ができる。 上記第1実施例の無限遠合焦時の諸収差図を第
8図に、近距離合焦時(物体距離1.4m)の諸収
差図を第9図に示し、また、上記第2実施例の無
限遠合焦時の諸収差図を第10図に、近距離合焦
時(物体距離1.6m)の諸収差図を第11図に示
す。各収差図においては、広角端A、中間B、望
遠端Cそれぞれにおける球面収差Sph、非点収差
(Ast)、歪曲収差(Dis)、コマ収差(Coma)を
示し、球面収差図中には正弦条件違反量を点線で
併記した。 各収差図より、本発明による両実施例は共に近
距離撮影状態においても諸収差が良好に補正され
ており、特に中間及び望遠端における像面彎曲と
非点収差の改善が著しく、広角端において近距離
での非点収差が若干増大するもののコマ収差の対
称性に優れ実用上十分良好な性能が維持されてい
ることが明らかである。 (発明の効果) 以上のごとく、本発明によれば、最大画角が
60°以上という広画角を含み、Fナンバー3.5程度
でズーム比3倍から5.7倍という高変倍率を有し
ながら、全体に小型で全変倍域にわたつて優れた
結像性能を有し、しかも近距離時にも収差悪化の
少ないズームレンズが達成される。しかも本発明
による合焦方式では、変倍時に移動する第2,第
3レンズ群を一体的に移動するため収差的に安定
であるのみならず、鏡筒の構成上も有利であり、
また第3レンズ群と第4レンズ群との間が平行光
束系であるため、合焦時にバツクフオーカスの変
化がなく、像面彎曲収差以外の収差への悪影響を
抑制でき、極めて有用である。尚、上記実施例で
はズームレンズを構成する4つのレンズ群が変倍
時に像面に対して全て移動するものであつたが本
発明は変倍に際して第2、第3レンズ群のみが移
動するズームレンズにも有効である。
[Table] Figures 4 and 5 show the first example and the second example, respectively.
A lens configuration diagram of an example is shown, and Tables 1 and 2 below show specifications of the first and second examples. In each table, each value is shown sequentially from the object side, and the subscript number represents the order from the object side. FIG. 6 is a diagram showing variations in the meridional image plane at the 70% angle of view at each focal length at the wide-angle end W and the intermediate M telephoto end T in the first embodiment. Curve a in the figure represents the variation due to magnification when the object is at infinity, and shows an inverted dogleg-shaped variation in which the image plane becomes under-image at the wide-angle end, over-image at the middle, and again under-image at the telephoto end. In this case, this fluctuation difference exists on the order of 0.3, and it is difficult to reduce it. Generally, if the aim is to make the lens system more compact, such fluctuation components will increase. Curve b moves only the first lens group toward the object side S=3.5mm
This is the variation in magnification when focusing on an object distance of 1.4 m by moving the lens by a distance of 1.4 m, and the difference between curves a and b, that is, the short-distance variation is about 0.4 to 0.5. On the other hand, curves c and d show the magnification fluctuations when the present invention is implemented in which the second lens group and the third lens group are simultaneously moved toward the image side when focusing on the same short-distance object. Curve c is the case when the second and third lens groups are moved toward the image side by △T=0.5mm (△T≒0.14S), and it becomes close to curve a, indicating that short-range fluctuations are considerably corrected. is clear. The curve d represents the second and third lens groups at △T=0.7mm (△T≒
0.2S) toward the image side, and it can be seen that the correction is even better. However, if more correction is made, the correction becomes excessive at the wide-angle end and the image performance deteriorates, so it is necessary to select an appropriate value within the range of the condition of equation (4). Figure 7 shows the variation in magnification from the wide-angle side to the telephoto side on the meridional image plane of the 70% field of view of the second embodiment, similar to Figure 6.Curve a shows the change in magnification when the object is at infinity. This changes to the state shown by curve b when only the first lens group is moved 4.4 mm toward the object side and focused at an object distance of 1.6 m. As you can see from the figure, the close-range fluctuations at the wide-angle end and the telephoto end are not uniform, and this is a phenomenon that appears due to the high zoom ratio of 5.7x. In this case, between the telephoto end and the middle, 0.6~
There is a short-range variation of about 0.9, and a variation of 0.05 at the wide-angle end. When the zoom ratio is as high as 5.7x as in this example, the fluctuations due to zooming become complicated and exhibit an inverted S-shaped fluctuation as shown in the figure. For this reason, it becomes even more difficult to correct not only magnification fluctuations of various aberrations but also short-distance fluctuations. Curve c shows the state when the second and third lens groups are simultaneously moved by 0.7 mm toward the image side according to the present invention when focusing on the same object, and while avoiding too much overcorrection at the wide-angle end, the telephoto This is an attempt to correct short-distance fluctuations at the edges as much as possible. Performing the correction according to the present invention in this way is very effective in practice, and the short-distance fluctuations of the image plane are greatly improved.
Good image performance can always be obtained across the entire screen over the entire magnification range. FIG. 8 shows various aberration diagrams when focusing on infinity in the first embodiment, and FIG. 9 shows various aberration diagrams when focusing on short distance (object distance 1.4 m). Figure 10 shows various aberration diagrams when focusing at infinity, and Figure 11 shows various aberration diagrams when focusing at close range (object distance 1.6 m). Each aberration diagram shows spherical aberration Sph, astigmatism (Ast), distortion aberration (Dis), and coma aberration (Coma) at wide-angle end A, intermediate B, and telephoto end C, respectively. The amount of violation of conditions is also indicated with a dotted line. From the respective aberration diagrams, it can be seen that in both examples according to the present invention, various aberrations are well corrected even in close-range shooting conditions, and in particular, the improvement of field curvature and astigmatism at the intermediate and telephoto ends is remarkable, and at the wide-angle end Although the astigmatism at short distances increases slightly, it is clear that the symmetry of the coma aberration is excellent and performance sufficiently good for practical use is maintained. (Effect of the invention) As described above, according to the present invention, the maximum angle of view is
It has a wide angle of view of more than 60°, an F number of around 3.5, and a high zoom ratio of 3x to 5.7x, while being compact overall and offering excellent imaging performance over the entire zoom range. Moreover, a zoom lens with less deterioration of aberrations even at short distances can be achieved. Moreover, in the focusing method according to the present invention, since the second and third lens groups that move during zooming are moved integrally, it is not only stable in terms of aberrations, but also advantageous in terms of the structure of the lens barrel.
Further, since the third lens group and the fourth lens group are parallel light beam systems, there is no change in back focus during focusing, and adverse effects on aberrations other than field curvature can be suppressed, which is extremely useful. In the above embodiment, the four lens groups constituting the zoom lens all move with respect to the image plane when changing the magnification, but the present invention provides a zoom lens in which only the second and third lens groups move when changing the magnification. It is also effective for lenses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明による基本構成図、
第3図は本発明による実施例の変倍のための各レ
ンズ群の移動軌跡を示す図、第4図、第5図はそ
れぞれ第1、第2実施例のレンズ構成図、第6
図、第7図はそれぞれ第1、第2実施例について
の、画角7割におけるメリデイオナル像面の変倍
変動及び近距離変動を示す図、第8図及び第9図
は第1実施例の無限遠合焦時及び近距離合焦時の
諸収差図、第10図及び第11図は第2実施例の
無限遠合焦及び近距離合焦時の諸収差図である。 主要部分の符号の説明、G1……第1レンズ群、
G2……第2レンズ群、G3……第3レンズ群、G4
……第4レンズ群。
1 and 2 are basic configuration diagrams according to the present invention,
FIG. 3 is a diagram showing the movement trajectory of each lens group for zooming in the embodiment according to the present invention, FIGS. 4 and 5 are lens configuration diagrams of the first and second embodiments, respectively, and FIG.
7 and 7 are diagrams showing the magnification fluctuations and short-distance fluctuations of the meridional image plane at a field angle of 70% for the first and second embodiments, respectively, and FIGS. 8 and 9 are diagrams for the first embodiment. 10 and 11 are diagrams of various aberrations during infinity focusing and short distance focusing. FIGS. 10 and 11 are diagrams of various aberrations during infinity focusing and short distance focusing in the second embodiment. Explanation of symbols of main parts, G 1 ... first lens group,
G 2 ...Second lens group, G 3 ...Third lens group, G 4
...Fourth lens group.

Claims (1)

【特許請求の範囲】 物体側より順に、正屈折力の第1レンズ群、負
屈折力の第2レンズ群、正屈折力の第3レンズ
群、正屈折力の第4レンズ群を有し、該第1、第
2、第3レンズ群でほぼアフオーカル系を形成す
るズームレンズにおいて、近距離物体に合焦する
際に、像面に対して前記第1レンズ群を光軸にそ
つて物体側へ移動させると共に、前記第2レンズ
群と前記第3レンズ群とを一体的に光軸にそつて
像側へ移動させ、合焦のための前記第1レンズ群
の移動量をS、前記第2レンズ群と前記第3レン
ズ群との一体的移動量をΔTとするとき、 0.1S≦ΔT≦0.35S の条件を満足することを特徴とする広画角を含む
ズームレンズ。
[Scope of Claims] In order from the object side, it has a first lens group with positive refractive power, a second lens group with negative refractive power, a third lens group with positive refractive power, and a fourth lens group with positive refractive power, In a zoom lens in which the first, second, and third lens groups form an approximately afocal system, when focusing on a close object, the first lens group is aligned along the optical axis with respect to the image plane, and At the same time, the second lens group and the third lens group are integrally moved along the optical axis toward the image side, and the amount of movement of the first lens group for focusing is S, and the third lens group is integrally moved to the image side. A zoom lens including a wide angle of view, characterized in that the zoom lens satisfies the following condition: 0.1S≦ΔT≦0.35S, where ΔT is the amount of integral movement of the second lens group and the third lens group.
JP58122857A 1983-07-06 1983-07-06 Zoom lens including wide view angle Granted JPS6014214A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58122857A JPS6014214A (en) 1983-07-06 1983-07-06 Zoom lens including wide view angle
US06/626,989 US4632519A (en) 1983-07-06 1984-07-02 Zoom lens including a wide angle of view

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122857A JPS6014214A (en) 1983-07-06 1983-07-06 Zoom lens including wide view angle

Publications (2)

Publication Number Publication Date
JPS6014214A JPS6014214A (en) 1985-01-24
JPH0430564B2 true JPH0430564B2 (en) 1992-05-22

Family

ID=14846356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122857A Granted JPS6014214A (en) 1983-07-06 1983-07-06 Zoom lens including wide view angle

Country Status (1)

Country Link
JP (1) JPS6014214A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071334B2 (en) * 1985-05-15 1995-01-11 オリンパス光学工業株式会社 Zoom lenses
JPS63297438A (en) * 1987-05-28 1988-12-05 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2783667B2 (en) * 1990-10-22 1998-08-06 キヤノン株式会社 Zoom lens
JP3387687B2 (en) * 1995-03-13 2003-03-17 キヤノン株式会社 Zoom lens
JP3584107B2 (en) * 1996-01-06 2004-11-04 キヤノン株式会社 Zoom lens
WO2015040867A1 (en) * 2013-09-20 2015-03-26 パナソニックIpマネジメント株式会社 Image pickup optical system
WO2016194111A1 (en) * 2015-06-01 2016-12-08 オリンパス株式会社 Single-focus optical system and optical device provided with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188243A (en) * 1974-12-20 1976-08-02
JPS5382434A (en) * 1976-12-28 1978-07-20 Seiko Epson Corp Surface covered plastic spectacle lens
JPS55140810A (en) * 1979-04-20 1980-11-04 Canon Inc Telephoto lens
JPS5866908A (en) * 1981-10-16 1983-04-21 Canon Inc Compact telephoto zoom lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188243A (en) * 1974-12-20 1976-08-02
JPS5382434A (en) * 1976-12-28 1978-07-20 Seiko Epson Corp Surface covered plastic spectacle lens
JPS55140810A (en) * 1979-04-20 1980-11-04 Canon Inc Telephoto lens
JPS5866908A (en) * 1981-10-16 1983-04-21 Canon Inc Compact telephoto zoom lens

Also Published As

Publication number Publication date
JPS6014214A (en) 1985-01-24

Similar Documents

Publication Publication Date Title
US4874231A (en) Zoom lens
JP3601733B2 (en) High magnification zoom lens
JP2924117B2 (en) Zoom lens
JPH09325274A (en) Zoom lens
JPH05264902A (en) Zoom lens
JPH02135408A (en) Vibration compensation type telephoto lens
JPH08313802A (en) Wide angle lens
US4266860A (en) Wide angle zoom lens system having shortened closeup focal length
JP3811311B2 (en) Camera with zoom lens system
JPH06235858A (en) High performance photographic lens
JPS6079319A (en) High variable power zoom lens
JPH0431091B2 (en)
US5440430A (en) Five-element telescopic zooming lens
JPH0668575B2 (en) Small zoom lens
JPH0320735B2 (en)
JP2569302B2 (en) Compact zoom lens
JPH07140388A (en) Zoom lens
JPH08114744A (en) Focusing system of zoom lens
JPH0414763B2 (en)
JPH0431094B2 (en)
JPH0123763B2 (en)
JPH07318804A (en) Zoom lens
JPH0430564B2 (en)
JPH0358491B2 (en)
JP2676400B2 (en) High magnification compact zoom lens