JPH04300179A - Wire interference drive system for robot arm - Google Patents

Wire interference drive system for robot arm

Info

Publication number
JPH04300179A
JPH04300179A JP8959891A JP8959891A JPH04300179A JP H04300179 A JPH04300179 A JP H04300179A JP 8959891 A JP8959891 A JP 8959891A JP 8959891 A JP8959891 A JP 8959891A JP H04300179 A JPH04300179 A JP H04300179A
Authority
JP
Japan
Prior art keywords
joint
wires
wire
pulley
drive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8959891A
Other languages
Japanese (ja)
Other versions
JPH0712596B2 (en
Inventor
Kazuhito Yokoi
一仁 横井
Kazuo Tanie
和雄 谷江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8959891A priority Critical patent/JPH0712596B2/en
Publication of JPH04300179A publication Critical patent/JPH04300179A/en
Publication of JPH0712596B2 publication Critical patent/JPH0712596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a highly controllable wire drive system having a simple structure, for driving a robot arm. CONSTITUTION:A number (n) of link members are coupled together by the number (n) of joints, two wires being set to n-th joint, fours to (n-1)-th joint, four wires to (n-2)-th joint, a minimum even number of wires which exceeds (1+1), to (n-1)-th joint, and a minimum even number of wires which exceeds (n), to 1-th joint, and the tensions of these wires are controlled to generate a predetermined torque from a desired joint. Therefore, a group of desired torques at joints are at first determined, and a group of tensions of wires which may satisfy the desired torque group and with which the axial force of the final base end joint becomes zero is obtained, the value which is (n) times large as a minimum tension of wires in the group is used as a set value to the axial force of the final base end joint, thereby a group of tensions of wires which satisfy the group of the desired torques and the set value to the axial force of the final base end joint are obtained. Further, a torque servo using feed-back signals from sensors of a joint tension differential type is carried out to eliminate affection by a frictional loss in a pulley section.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はロボットアームを駆動
するためのワイヤー干渉駆動方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wire interference drive system for driving a robot arm.

【0002】0002

【従来の技術】ロボットアームは複数のリンクとそのリ
ンクを結合する複数の関節を有する。ロボットアームは
最も駆動系側に近い基端部のリンクから作業を行う先端
部のリンクまで複数のリンクを有し、それらのリンクの
隣り合うものを関節で結合しており、それぞれのリンク
が発生する力は各関節のトルクによって決定される。各
関節はアクチュエータにより駆動される。
2. Description of the Related Art A robot arm has a plurality of links and a plurality of joints connecting the links. The robot arm has multiple links, from the link at the proximal end closest to the drive system side to the link at the tip where work is performed, and adjacent links are connected by joints, and each link is generated The force exerted is determined by the torque of each joint. Each joint is driven by an actuator.

【0003】しかるに関節を駆動するアクチュエータは
重量が大きいため、アクチュエータを関節に直接取り付
けたのでは出力重量比の点から不利であり、特にロボッ
トアームの手先の近傍の関節にアクチュエータを取り付
けるのは得策ではなく、アクチュエータを目標関節部よ
り駆動系側に近い位置に取り付けて、何らかの手段によ
ってアクチュエータから目標関節部に駆動力を伝達する
ことが必要となる。
However, since the actuators that drive the joints are heavy, attaching the actuators directly to the joints is disadvantageous in terms of output weight ratio, and it is especially advisable to attach the actuators to the joints near the tips of the robot arms. Instead, it is necessary to attach the actuator at a position closer to the drive system than the target joint, and to transmit the driving force from the actuator to the target joint by some means.

【0004】このようなワイヤ―・プーリ駆動方式はた
とえばStanford/JPLハンド(Robot 
 Hands  and  the  Mechani
cs  ofManipulation  by  M
.  T.  Mason  and  K.  J.
  Salisbury−  The  MIT  P
ress)やCTア―ム(広瀬、馬、“ワイヤ―干渉駆
動型多関節マニピュレ―タの開発”、計測自動制御学会
論文集、Vol.  26,  No11,)によって
提案されている。
[0004] Such a wire pulley drive system is used, for example, in the Stanford/JPL hand (Robot
Hands and the Mechani
cs of Manipulation by M
.. T. Mason and K. J.
Salisbury- The M.I.T.P.
ress) and CT arm (Hirose, Ma, “Development of a wire-interference-driven multi-joint manipulator,” Proceedings of the Society of Instrument and Control Engineers, Vol. 26, No. 11,).

【0005】[0005]

【発明が解決しようとする課題】しかるにこれら従来の
技術においては、たとえばStanford/JPLハ
ンドの方法では、各ワイヤーの張力を一カ所で測定して
おり、プーリ部の摩擦損失の影響を無視できない。また
CTア―ムの方法はn関節のロボットア−ムに対して2
n本のワイヤ―が必要であり、必要なワイヤ―数が多く
なり、駆動系の構造が複雑になっている。このようなこ
とからより軽量で必要なワイヤー数が少なく、よりスリ
ムであり、制御性がよく、かつ安価に製作することがで
きるロボットアームのワイヤー干渉駆動方式の開発が望
まれている。
However, in these conventional techniques, for example, in the Stanford/JPL Hand method, the tension of each wire is measured at one location, and the influence of friction loss at the pulley cannot be ignored. Also, the CT arm method is 2 for a robot arm with n joints.
n wires are required, which increases the number of required wires and complicates the structure of the drive system. For these reasons, it is desired to develop a wire interference drive system for a robot arm that is lighter, requires fewer wires, is slimmer, has better controllability, and can be manufactured at a lower cost.

【0006】この発明は上記のごとき事情に鑑みてなさ
れたものであって、軽量で必要なワイヤー数が少なく、
よりスリムであり、安価に製作することができ、基部に
近い関節ほど多くのワイヤ―を掛けることができ、均一
のワイヤ―駆動系を用いてもベースに近い関節ほど大き
なトルクが発生でき、したがって、ワイヤ―駆動系の機
器部品の共通化を図ることができ、また各関節軸近傍に
配置された張力作動型トルクセンサにより各関節トルク
を直接計測することができ、これによって、計測された
各関節トルクを制御系にフィードバックすることにより
、プーリ部の摩擦損失の影響を取り除くことができるロ
ボットアームのワイヤー干渉駆動方式を提供することを
目的とするものである。
[0006] This invention was made in view of the above circumstances, and is lightweight and requires a small number of wires.
It is slimmer and cheaper to manufacture, more wires can be hung on the joints closer to the base, and even with a uniform wire drive system, the joints closer to the base can generate more torque. , it is possible to standardize the equipment parts of the wire drive system, and it is also possible to directly measure the torque of each joint with a tension-activated torque sensor placed near each joint axis. The object of the present invention is to provide a wire interference drive system for a robot arm that can eliminate the influence of friction loss in a pulley by feeding back joint torque to a control system.

【0007】[0007]

【課題を解決するための手段】この目的に対応して、こ
の発明のロボットアームのワイヤー干渉駆動方式は、n
個の関節を有するロボットアームを駆動するワイヤー干
渉駆動方式であって、各関節にそこに掛かるワイヤーの
本数と同数のプーリを互いに独立して回転が可能に設置
し、nを越える最小の偶数本のワイヤーを準備し、前記
各関節軸に掛かるワイヤ―はプ―リに一回転以上巻きつ
いてその関節軸を経由し、その関節軸に掛かるワイヤ―
の数が最基端部側のとなりの関節軸に掛かるワイヤ―の
数と同じときはその関節軸に掛かるワイヤ―のうち2本
のワイヤ―はその関節軸より最先端部側のリンク部材に
固定し、最先端部の関節には2本のワイヤ―が掛かり、
最基端部の関節にはnを越える最小の偶数本のワイヤ―
が掛かり、最基端部から(n−i)番目の関節には(i
+1)を越える最小の偶数本のワイヤ―が掛かるように
し、それぞれの関節軸に掛かる偶数のワイヤーは同数の
正方向回転用ワイヤーと逆方向回転用ワイヤーとの合計
本数とし各ワイヤ―の張力を制御して目標の関節の所定
のトルクを実現することを特徴としている。
[Means for Solving the Problems] Corresponding to this object, the wire interference drive system of the robot arm of the present invention provides n
This is a wire interference drive system that drives a robot arm with joints, in which the same number of pulleys as the number of wires hanging on each joint are installed so that they can rotate independently of each other, and the minimum even number of pulleys exceeding n Prepare a wire, and the wire that hangs on each joint axis wraps around the pulley for more than one turn, passes through that joint axis, and then the wire that hangs on that joint axis.
When the number of wires hanging on the joint axis next to the proximal end is the same as the number of wires hanging on the joint axis next to the proximal end, two wires among the wires hanging on the joint axis will be attached to the link member on the most distal side of the joint axis. It is fixed, and two wires are attached to the joint at the tip.
The most proximal joint has the smallest even number of wires exceeding n.
is applied, and the (n-i)th joint from the most proximal end is (i
The minimum even number of wires that exceed +1) should be applied, and the even number of wires that are applied to each joint axis should be the total number of the same number of forward rotation wires and reverse rotation wires, and the tension of each wire should be It is characterized by controlling to achieve a predetermined torque of the target joint.

【0008】[0008]

【作用】n個のリンク部材をn個の関節で連結し、基端
部からn番目の関節には2本、(n−1)番目の関節に
は4本、(n−2)番目の関節には4本、…、(n−i
)番目の関節には(i+1)本を越える最小の偶数本、
…、1番目の関節にはnを越える最小の偶数本のワイヤ
―を掛け、この各ワイヤ―の張力を制御して、目標の関
節に所定のトルクを発生させる。そのためには、まず各
関節の目標トルクの組を決定し、目標トルクの組を満足
しかつ最基端部の関節の軸力が零となるワイヤ―張力の
組を求め、その組における最小のワイヤ―の張力のn倍
を最基端部の関節の軸力の設定値とし、目標トルクの組
及び最基端部の関節の軸力の設定値を満足するワイヤ―
の張力の組を求める。また、各関節張力差動型センサか
らのフィ―ドバック信号を利用したトルクサ―ボを行い
、プ―リ部の摩擦損失の影響を取り除く。
[Operation] n link members are connected by n joints, 2 for the nth joint from the base end, 4 for the (n-1)th joint, and 4 for the (n-2)th joint. There are four joints,..., (n-i
)th joint has the smallest even number exceeding (i+1),
..., the smallest even number of wires exceeding n are hung on the first joint, and the tension of each wire is controlled to generate a predetermined torque at the target joint. To do this, first determine the target torque set for each joint, find the wire-tension set that satisfies the target torque set and makes the axial force of the proximal joint zero, and then find the minimum wire tension set in that set. A wire that satisfies the target torque set and the set value of the axial force of the joint at the most proximal end, with n times the tension of the wire as the set value for the axial force at the joint at the most proximal end.
Find the set of tensions. In addition, torque servo is performed using feedback signals from each joint tension differential type sensor to eliminate the effects of friction loss in the pulley section.

【0009】[0009]

【実施例】以下この発明の詳細をー実施例を示す図面に
ついて説明する。図1には7関節のロボットアーム1が
示されている。ロボットアーム1は駆動系側の基端部か
ら手先側の先端部にかけてリンク部材L1 ーL7 を
備えており、各リンク部材L1 −L7 は隣合うリン
ク部材と関節J1 −J7 で連結している。関節J1
 −J7 の関節軸Z1 −Z7 には、そこを経由す
るワイヤーWの本数と同数のプーリP(P11−P72
)を独立して回転が可能に設置している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be explained below with reference to the drawings showing the embodiments. FIG. 1 shows a robot arm 1 with seven joints. The robot arm 1 includes link members L1 to L7 extending from the base end on the drive system side to the tip end on the hand side, and each link member L1 to L7 is connected to an adjacent link member at joints J1 to J7. Joint J1
-J7 joint axis Z1 -Z7 has the same number of pulleys P (P11-P72 as the number of wires W passing through it).
) are installed so that they can be rotated independently.

【0010】各部品の結合状態は次の通りである。第i
軸に対し、プーリPは下記の場合を除いて回転自由に結
合している。リンクLi とリンクLi−1 はZi 
軸を介して回転自由に結合している。アイドルプーリa
i はケーブルの運動方向を90度回転させるものであ
る。すなわち関節J1 の関節軸Z1 には、プーリP
11−P18を独立して回転が可能に設置している。
The connection state of each part is as follows. i-th
The pulley P is rotatably coupled to the shaft, except in the following cases. Link Li and link Li-1 are Zi
They are rotatably connected via a shaft. Idle pulley a
i rotates the direction of motion of the cable by 90 degrees. That is, the joint axis Z1 of the joint J1 has a pulley P.
11-P18 are installed to be able to rotate independently.

【0011】関節J2 の関節軸Z2 には、プーリP
21−P28を独立して回転が可能に設置している。 関節J3 の関節軸Z3 には、プーリP31−P36
を独立して回転が可能に設置している。 関節J4 の関節軸Z4 には、プーリP41−P46
を独立して回転が可能に設置している。 関節J5 の関節軸Z5 には、プーリP51−P54
を独立して回転が可能に設置している。 関節J6 の関節軸Z6 には、プーリP61−P64
を独立して回転が可能に設置している。関節J7 の関
節軸Z7 には、プーリP71−P72を独立して回転
が可能に設置している。
A pulley P is attached to the joint axis Z2 of the joint J2.
21-P28 are installed to be able to rotate independently. The joint axis Z3 of the joint J3 includes pulleys P31-P36.
are installed so that they can be rotated independently. The joint axis Z4 of the joint J4 has pulleys P41-P46.
are installed so that they can be rotated independently. The joint axis Z5 of the joint J5 has pulleys P51-P54.
are installed so that they can be rotated independently. The joint axis Z6 of the joint J6 has pulleys P61-P64.
are installed so that they can be rotated independently. Pulleys P71-P72 are installed on the joint axis Z7 of the joint J7 so as to be able to rotate independently.

【0012】関節数nを越える最小の偶数本のワイヤー
W1 〜n+1本またはn+2本(本実施例の場合  
8本)を準備し、以下に述べるようにプーリP1 −P
72に巻き掛ける。それぞれの関節軸に掛けられる偶数
のワイヤーは同数の正方向回転用ワイヤーと逆方向回転
用ワイヤーとの合計本数になっている。アイドルプーリ
a11−a71はワイヤの方向を90度変更するために
使用される。
[0012] The smallest even number of wires W1 exceeding the number of joints n - n+1 or n+2 (in the case of this embodiment)
8) and connect the pulleys P1 -P as described below.
Wrap it around 72. The even number of wires hung on each joint axis is the total number of the same number of forward rotation wires and reverse rotation wires. Idle pulleys a11-a71 are used to change the direction of the wire by 90 degrees.

【0013】各ワイヤ―駆動経路は次の通りである。 (ワイヤ―1)ワイヤ―1駆動系から、プーリP11に
一周巻き付け、アイドルプーリa11を通過し、プーリ
P21に一周巻き付け、アイドルプーリa12を通過し
、プーリP31に1.25周巻き付き、アイドルプーリ
a13,a14を通過し、プーリP41に一周巻き付き
、アイドルプーリa15を通過し、プーリP51に1.
25周巻き付き、アイドルプーリa16を通過し、プー
リP61に一周巻き付き、プーリP71に一周巻き付き
、リンク部材L7 に固定される。
Each wire-drive path is as follows. (Wire-1) Wire-1 From the drive system, wrap around pulley P11 once, pass through idle pulley a11, wrap around pulley P21 once, pass through idle pulley a12, wrap around pulley P31 for 1.25 times, idle pulley a13 , a14, wraps around pulley P41 once, passes idle pulley a15, and wraps around pulley P51.
It wraps around 25 times, passes through idle pulley a16, wraps around pulley P61 once, wraps around pulley P71 once, and is fixed to link member L7.

【0014】(ワイヤ―2)ワイヤ―2駆動系から、プ
ーリP12に一周巻き付け、アイドルプーリa21、a
22を通過し、プーリP22に一周巻き付け、アイドル
プーリa23、a24を通過し、プーリP32に1周巻
き付き、アイドルプーリa25を通過し、プーリP42
に一周巻き付き、アイドルプーリa26、a27を通過
し、プーリP52に1.5周巻き付き、アイドルプーリ
a28を通過し、プーリP62に一周巻き付き、プーリ
P71に一周巻き付き、リンク部材L7 に固定される
(Wire-2) From the wire-2 drive system, wrap it around the pulley P12 once and connect it to the idle pulleys a21 and a.
22, wraps around pulley P22 once, passes through idle pulleys a23 and a24, wraps around pulley P32 once, passes idle pulley a25, and wraps around pulley P42.
, passes through idle pulleys a26 and a27, wraps around pulley P52 for 1.5 turns, passes through idle pulley a28, wraps around pulley P62 once, wraps around pulley P71 once, and is fixed to link member L7.

【0015】(ワイヤ―3)ワイヤ―3駆動系から、プ
ーリP13に一周巻き付け、アイドルプーリa31,a
32を通過し、プーリP23に一周巻き付き、アイドル
プーリa33を通過し、プーリP33に1.25周巻き
付き、アイドルプーリa34を通過し、プーリP43に
一周巻き付き、アイドルプーリa35、a36を通過し
、プーリP53に1.5周巻き付き、アイドルプーリa
37を通過し、プーリP63に一周巻き付き、リンク部
材L6 に固定される。
(Wire-3) From the wire-3 drive system, wrap it around the pulley P13 once and connect it to the idle pulley a31, a.
32, wraps around pulley P23 once, passes idle pulley a33, wraps around pulley P33 for 1.25 times, passes idle pulley a34, wraps around pulley P43 once, passes idle pulleys a35 and a36, then pulley Wrap around P53 for 1.5 turns, idle pulley a
37, wraps around pulley P63 once, and is fixed to link member L6.

【0016】(ワイヤ―4)ワイヤ―4駆動系から、プ
ーリP14に一周巻き付け、アイドルプーリa41、a
42を通過し、プーリP24に一周巻き付け、アイドル
プーリa43を通過し、プーリP34に1.25周巻き
付き、アイドルプーリa44を通過し、プーリP44に
一周巻き付き、アイドルプーリa45を通過し、プーリ
P54に1.25周巻き付き、アイドルプーリa46を
通過し、プーリP64に一周巻き付き、リンク部材L6
 に固定される。
(Wire-4) From the wire-4 drive system, wrap it around the pulley P14 once and connect it to the idle pulleys a41 and a.
42, wraps around pulley P24 once, passes idle pulley a43, wraps around pulley P34 for 1.25 times, passes idle pulley a44, wraps around pulley P44 once, passes idle pulley a45, and wraps around pulley P54. It wraps around 1.25 times, passes through idle pulley a46, wraps around pulley P64 once, and links member L6.
Fixed.

【0017】(ワイヤ―5)ワイヤ―5駆動系から、プ
ーリP15に一周巻き付け、アイドルプーリa51、a
52を通過し、プーリP25に一周巻き付け、アイドル
プーリa53を通過し、プーリP35に1.5周巻き付
き、アイドルプーリa54を通過し、プーリP45に一
周巻き付き、リンク部材L4 に固定される。
(Wire-5) From the wire-5 drive system, wrap it around the pulley P15 once and connect it to the idle pulleys a51 and a.
52, wraps around pulley P25 once, passes through idle pulley a53, wraps around pulley P35 for 1.5 times, passes through idle pulley a54, wraps around pulley P45 once, and is fixed to link member L4.

【0018】(ワイヤ―6)ワイヤ―6駆動系から、プ
ーリP16に一周巻き付け、アイドルプーリa61、a
62を通過し、プーリP26に一周巻き付け、アイドル
プーリa63を通過し、プーリP36に1周巻き付き、
アイドルプーリa64を通過し、プーリP46に一周巻
き付き、リンク部材L4 に固定される。
(Wire-6) From the wire-6 drive system, wrap it around the pulley P16 once and connect it to the idle pulleys a61 and a.
62, wraps around pulley P26 once, passes through idle pulley a63, wraps around pulley P36 once,
It passes through idle pulley a64, wraps around pulley P46, and is fixed to link member L4.

【0019】(ワイヤ―7)ワイヤ―7駆動系から、プ
ーリP17に一周巻き付け、アイドルプーリa71を通
過し、プーリP27に一周巻き付き、リンク部材L2 
に固定される。
(Wire-7) Wire-7 starts from the drive system, wraps around the pulley P17 once, passes through the idle pulley a71, wraps around the pulley P27 once, and connects to the link member L2.
Fixed.

【0020】(ワイヤ―8)ワイヤ―8駆動系から、プ
ーリP18に一周巻き付け、アイドルプーリa81を通
過し、プーリP28に一周巻き付き、リンク部材L2 
に固定される。
(Wire-8) Wire-8 starts from the drive system, wraps around the pulley P18 once, passes through the idle pulley a81, wraps around the pulley P28 once, and connects to the link member L2.
Fixed.

【0021】それぞれの関節J1 −J7 のトルクを
張力差動型トルクセンサーで検出する。そのような張力
差動型センサーとしては昭和62年特許出願第2899
98号で示されているものを使用することができる。こ
のような構成のロボットアームのワイヤー干渉駆動機構
おいて、目標関節のトルクは各ワイヤの張力を制御して
おこなう。
[0021] The torque of each joint J1 to J7 is detected by a tension differential type torque sensor. As such a tension differential type sensor, Patent Application No. 2899 filed in 1988 is known.
No. 98 can be used. In the wire interference drive mechanism of the robot arm having such a configuration, the torque of the target joint is achieved by controlling the tension of each wire.

【0022】その各ワイヤの張力の制御及び目標関節の
トルクの決定は次のようにしておこなう。まず、ワイヤ
―の張力とプ―リの径、関節トルク及び関節J1 の軸
力の関係は下記の数式1の通りである。
The tension of each wire is controlled and the torque of the target joint is determined as follows. First, the relationship between wire tension, pulley diameter, joint torque, and axial force of joint J1 is as shown in Equation 1 below.

【0023】[0023]

【数1】 ここで fi :ワイヤ―iの張力(fi ≧0)τi :関節
Ji のトルク P1 :関節J1 の軸力(全ワイヤ―張力の和)A 
 ;プ―リ径、ワイヤ―のかけ方で決まる8×8の変換
行列
[Equation 1] Here, fi: Tension of wire i (fi ≧0) τi: Torque of joint Ji P1: Axial force of joint J1 (sum of all wire tensions) A
;8x8 transformation matrix determined by pulley diameter and wire placement method

【0024】各ワイヤ―張力の決定法 1.目標関節トルクτri(i=1〜7)を決定する。 目標関節トルクの決定にはDCC法,JT の使用、そ
の他の方法を用いることができる。
Each wire - method for determining tension 1. Determine target joint torque τri (i=1 to 7). The DCC method, use of JT, and other methods can be used to determine the target joint torque.

【0025】2.数式2を計算する。2. Calculate Equation 2.

【数2】[Math 2]

【0026】3.最小のfi を求める。 min(fi )    (i=1〜8)3. Find the minimum fi. min(fi) (i=1~8)

【0027】
4.プ―リ1の軸力の目標値Pr1を数式3により求め
る。
[0027]
4. A target value Pr1 of the axial force of the pulley 1 is determined using Equation 3.

【数3】[Math 3]

【0028】5.再び、数式4を計算し目標張力fri
(i=1〜8)を求める。
5. Calculate Equation 4 again and get the target tension fri
Find (i=1 to 8).

【数4】 *但し、簡易的な方法としてPr1を正の十分大きな値
に設定しておく方法もある。
[Equation 4] *However, as a simple method, there is also a method of setting Pr1 to a sufficiently large positive value.

【0029】6.数式5により各関節張力作動型センサ
からのフィ―ドバック信号τsi(i=1〜8)を利用
したトルクサ―ボを行ない、各ワイヤ―に加える張力f
ai(i=1〜8)を求め、各ワイヤ―駆動系により加
える。
6. According to Equation 5, a torque servo is performed using the feedback signal τsi (i = 1 to 8) from each joint tension actuated sensor, and the tension f to be applied to each wire is
ai (i=1 to 8) is determined and added by each wire drive system.

【数5】 *但し、PID{・}は、関節トルク偏差(τri−τ
si)(i=1〜8)を用いたPID制御を行なうこと
を意味する。
[Equation 5] *However, PID{・} is the joint torque deviation (τri−τ
si) (i=1 to 8).

【0030】[0030]

【発明の効果】この発明のロボットア―ムのワイヤ―干
渉駆動方式では、必要なワイヤ―数が「nを越える最小
の偶数本」と少ない。これにより軽量、スリム、しかも
安価なロボットア―ムを製作することができる。またベ
―スに近い関節ほど多くのワイヤ―が掛かる。これによ
り均一のワイヤ―駆動系を用いてもベ―スに近い関節ほ
ど大きなトルクが発生できる。またワイヤ―駆動系の共
通部品化ができる。更に、各関節近傍に配置された張力
作動型トルクセンサで各関節トルクを直接計測すること
ができ、計測された各関節トルクを制御系にフィ―ドバ
ックすることにより、プ―リ部の摩擦損失の影響を取り
除くことができる。このようなことから、この発明によ
れば制御性の良好なロボットア―ムのワイヤ―干渉駆動
方式を得ることができる。
Effects of the Invention In the wire interference drive system of the robot arm of the present invention, the number of required wires is as small as ``the minimum even number exceeding n''. This makes it possible to produce a lightweight, slim, and inexpensive robot arm. Also, the closer the joint is to the base, the more wires are attached to it. As a result, even if a uniform wire drive system is used, larger torque can be generated at the joints closer to the base. Also, the wire drive system can be made into a common component. Furthermore, each joint torque can be directly measured using a tension-activated torque sensor placed near each joint, and by feeding back the measured joint torque to the control system, friction loss at the pulley can be reduced. can remove the influence of Therefore, according to the present invention, it is possible to obtain a wire interference drive system for a robot arm with good controllability.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】ロボットア―ムの構成を示す正面説明図である
FIG. 1 is an explanatory front view showing the configuration of a robot arm.

【図2】張力作動型トルクセンサの斜視説明図である。FIG. 2 is a perspective explanatory view of a tension-activated torque sensor.

【図3】全ワイヤ―の経路を示す斜視説明図である。FIG. 3 is a perspective explanatory diagram showing the routes of all wires.

【図4】ワイヤ―1の経路を示す斜視説明図である。FIG. 4 is a perspective explanatory view showing the route of the wire 1.

【図5】ワイヤ―2の経路を示す斜視説明図である。FIG. 5 is a perspective explanatory view showing the route of the wire 2. FIG.

【図6】ワイヤ―3の経路を示す斜視説明図である。FIG. 6 is a perspective explanatory view showing the route of the wire 3. FIG.

【図7】ワイヤ―4の経路を示す斜視説明図である。FIG. 7 is a perspective explanatory view showing the route of the wire 4. FIG.

【図8】ワイヤ―5の経路を示す斜視説明図である。FIG. 8 is a perspective explanatory view showing the route of the wire 5. FIG.

【図9】ワイヤ―6の経路を示す斜視説明図である。FIG. 9 is a perspective explanatory view showing the route of the wire 6. FIG.

【図10】ワイヤ―7の経路を示す斜視説明図である。FIG. 10 is a perspective explanatory view showing the route of the wire 7. FIG.

【図11】ワイヤ―8の経路を示す斜視説明図である。FIG. 11 is a perspective explanatory view showing the route of the wire 8. FIG.

【符号の説明】[Explanation of symbols]

1  ロボットア―ム 11  トルク検出センサ W  ワイヤ― L  リンク部材 J  関節 a  アイドルプ―リ P  プ―リ A  ワイヤ―駆動系 1 Robot arm 11 Torque detection sensor W Wire L Link member J joint a Idol pulley P Pulley A Wire drive system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  n個の関節を有するロボットアームを
駆動するワイヤー干渉駆動方式であって、各関節にそこ
に掛かるワイヤーの本数と同数のプーリを互いに独立し
て回転が可能に設置し、nを越える最小の偶数本のワイ
ヤーを準備し、前記各関節軸に掛かるワイヤ―はプ―リ
に一回転以上巻きついてその関節軸を経由し、その関節
軸に掛かるワイヤ―の数が最基端部側のとなりの関節軸
に掛かるワイヤ―の数と同じときはその関節軸に掛かる
ワイヤ―のうち2本のワイヤ―はその関節軸より最先端
部側のリンク部材に固定し、最先端部の関節には2本の
ワイヤ―が掛かり、最基端部の関節にはnを越える最小
の偶数本のワイヤ―が掛かり、最基端部から(n−i)
番目の関節には(i+1)を越える最小の偶数本のワイ
ヤ―が掛かるようにし、それぞれの関節軸に掛かる偶数
のワイヤーは同数の正方向回転用ワイヤーと逆方向回転
用ワイヤーとの合計本数とし、各ワイヤ―の張力を制御
して目標の関節の所定のトルクを実現することを特徴と
するロボットアームのワイヤー干渉駆動方式
Claim 1: A wire interference drive system for driving a robot arm having n joints, in which pulleys of the same number as the number of wires hanging on each joint are installed so that they can rotate independently of each other, and the robot arm has n joints. Prepare the minimum even number of wires that exceed If the number of wires hanging on the joint axis next to the joint axis is the same as the number of wires hanging on the joint axis, two of the wires hanging on that joint axis are fixed to the link member on the most distal side of the joint axis. Two wires are connected to the joint at the most proximal end, and the smallest even number of wires exceeding n are connected to the joint at the most proximal end, and from the most proximal end (n-i)
The minimum even number of wires that exceed (i+1) is hung on the joint, and the even number of wires that are hung on each joint axis is the total number of the same number of forward rotation wires and reverse rotation wires. , a wire interference drive system for a robot arm that is characterized by controlling the tension of each wire to achieve a predetermined torque at a target joint.
JP8959891A 1991-03-28 1991-03-28 Robot arm wire-interference drive system Expired - Fee Related JPH0712596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8959891A JPH0712596B2 (en) 1991-03-28 1991-03-28 Robot arm wire-interference drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8959891A JPH0712596B2 (en) 1991-03-28 1991-03-28 Robot arm wire-interference drive system

Publications (2)

Publication Number Publication Date
JPH04300179A true JPH04300179A (en) 1992-10-23
JPH0712596B2 JPH0712596B2 (en) 1995-02-15

Family

ID=13975212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8959891A Expired - Fee Related JPH0712596B2 (en) 1991-03-28 1991-03-28 Robot arm wire-interference drive system

Country Status (1)

Country Link
JP (1) JPH0712596B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018489A (en) * 2006-07-12 2008-01-31 Tokyo Institute Of Technology Gripping device
US7615956B2 (en) 2004-07-22 2009-11-10 Toyota Jidosha Kabushiki Kaisha Robot
JP2010149274A (en) * 2008-12-15 2010-07-08 Gm Global Technology Operations Inc Joint space impedance control for tendon-driven manipulator
CN102145489A (en) * 2009-04-30 2011-08-10 通用汽车环球科技运作公司 Tension distribution in tendon-driven robot finger
JP2011200666A (en) * 1996-05-20 2011-10-13 Intuitive Surgical Inc Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
JP2015107340A (en) * 1996-05-20 2015-06-11 インテュイティブ サージカル インコーポレイテッド Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200666A (en) * 1996-05-20 2011-10-13 Intuitive Surgical Inc Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
JP2013081870A (en) * 1996-05-20 2013-05-09 Intuitive Surgical Inc Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
JP2015107340A (en) * 1996-05-20 2015-06-11 インテュイティブ サージカル インコーポレイテッド Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity
US9510915B2 (en) 1996-05-20 2016-12-06 Intuitive Surgical Operations, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US9999473B2 (en) 1996-05-20 2018-06-19 Intuitive Surgical Operations, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US7615956B2 (en) 2004-07-22 2009-11-10 Toyota Jidosha Kabushiki Kaisha Robot
JP2008018489A (en) * 2006-07-12 2008-01-31 Tokyo Institute Of Technology Gripping device
JP2010149274A (en) * 2008-12-15 2010-07-08 Gm Global Technology Operations Inc Joint space impedance control for tendon-driven manipulator
CN102145489A (en) * 2009-04-30 2011-08-10 通用汽车环球科技运作公司 Tension distribution in tendon-driven robot finger

Also Published As

Publication number Publication date
JPH0712596B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US4865376A (en) Mechanical fingers for dexterity and grasping
US5062673A (en) Articulated hand
US4921293A (en) Multi-fingered robotic hand
US4921393A (en) Articulatable structure with adjustable end-point compliance
US8770905B2 (en) Anthropomorphic force-reflective master arm
US5193963A (en) Force reflecting hand controller
US4928047A (en) Manipulator and control method
CN113787538B (en) Driving mechanism, robot device, method, readable medium, and support member
JPH0569374A (en) Finger module, its structure, robot hand, and finger module signal detection takeout method
Mao et al. A cable driven upper arm exoskeleton for upper extremity rehabilitation
JPH04300179A (en) Wire interference drive system for robot arm
US20100111645A1 (en) Anthropomorphic force-reflective master arm
WO2021110059A1 (en) Antagonistic driving device employing winch and tendon actuation
JP5211287B2 (en) A haptic manipulator with a single center of rotation
US6593907B1 (en) Tendon-driven serial distal mechanism
Ma et al. CT ARM-I: Coupled tendon-driven manipulator model I-design and basic experiments
JPH02256489A (en) Multi-joint hand
CN114029990B (en) Structure and control method of intelligent power arm of bionic robot with multiple sensors
JP3212491B2 (en) Direct teaching control device
JPH11254357A (en) Robot having horizontal arm
JP3005671B2 (en) Robot arm drive control system
JP2689702B2 (en) Robot hand grip control method
WO2021186882A1 (en) Surgical instrument unit, force detector, and surgery assistance system
JPH01230823A (en) Weight reducer in construction working robot for long setting material
Rivera et al. Environment for the Design and Automation of New CDPR Architectures

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term