JPH04298699A - Bearing structure for multistage type submerged pump - Google Patents

Bearing structure for multistage type submerged pump

Info

Publication number
JPH04298699A
JPH04298699A JP6305791A JP6305791A JPH04298699A JP H04298699 A JPH04298699 A JP H04298699A JP 6305791 A JP6305791 A JP 6305791A JP 6305791 A JP6305791 A JP 6305791A JP H04298699 A JPH04298699 A JP H04298699A
Authority
JP
Japan
Prior art keywords
bearing
pump
bearings
shaft
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6305791A
Other languages
Japanese (ja)
Other versions
JP2672034B2 (en
Inventor
Motoyasu Ogawa
元康 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP3063057A priority Critical patent/JP2672034B2/en
Publication of JPH04298699A publication Critical patent/JPH04298699A/en
Application granted granted Critical
Publication of JP2672034B2 publication Critical patent/JP2672034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To extremely reduce contact condition with a shaft and lengthen the life of bearings by arranging combination of static pressure bearings and dynamic pressure bearings on a bearing part of a multistage type submerged pump, setting the clearance between the dynamic pressure bearing and a rotating shaft less than the clearance between the static pressure bearing and the rotating shaft, and constituting so as to hold the shaft with the dynamic pressure bearing at starting and with the static pressure bearing at operation. CONSTITUTION:As for bearings supporting a pump rotating shaft 16, static pressure bearings 28 and dynamic pressure bearings 30 are appropriately combined and arranged, pressure oil is introduced from the high pressure part of the pump to the pocket 32 of the static pressure bearing 28 to hold the shaft 16 during rotation in non-contact condition, and the shaft at starting is held by the dynamic pressure bearing 30 of which clearance against the shaft 16 is set less than that of the static pressure bearing 28.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、多段型サブマージド
ポンプの軸受構造に係り、特に多段型サブマージドポン
プの軸受に静圧軸受と動圧軸受とを組合せて配設し、ポ
ンプ回転軸と静圧軸受との隙間を動圧軸受よりも若干大
きく設定し、ポンプ起動時における回転軸の負荷は動圧
軸受で支持し、ポンプ運転中には静圧軸受またはこの軸
受と動圧軸受とで支持するように構成した多段型サブマ
ージドポンプの軸受構造に関する。
[Industrial Application Field] This invention relates to a bearing structure for a multi-stage submerged pump, and in particular, the bearing of a multi-stage submerged pump is provided with a combination of a static pressure bearing and a hydrodynamic bearing, and the pump rotation shaft and The gap with the hydrostatic bearing is set slightly larger than that of the hydrodynamic bearing, and the load on the rotating shaft is supported by the hydrodynamic bearing when the pump is started. The present invention relates to a bearing structure for a multi-stage submerged pump configured to support the pump.

【0002】0002

【従来の技術】一般に液体軸受は、この圧力の発生の原
理により、動圧形と静圧形およびスクィーズフィルム形
とに大別できる。動圧軸受は、2つの面が相対的に移動
し、しかも、隙間がくさび状すきまと呼ばれる移動の方
向にだんだん狭くなる形状の場合に成り立つ方法である
。面の相対的な移動により液体がその粘性でひきずられ
、くさび状すきまに押込まれて圧力を生ずる。また静圧
軸受は、外部から加圧した液体を絞りを通してすきま内
に導入しその静圧によって浮上させるものである。この
場合、前記絞りは隙間が変化したとき隙間内の圧力を加
減するもので、これによって軸受に剛性を与えている。
2. Description of the Related Art In general, liquid bearings can be broadly classified into dynamic pressure types, static pressure types, and squeeze film types, depending on the principle of pressure generation. Dynamic pressure bearings are a method that works when two surfaces move relative to each other and the gap has a shape called a wedge-shaped gap that gradually narrows in the direction of movement. The relative movement of the surfaces causes the liquid to be dragged by its viscosity and forced into the wedge-shaped gap, creating pressure. Further, in a hydrostatic bearing, a liquid pressurized from the outside is introduced into a gap through a throttle and floated by the static pressure. In this case, the throttle adjusts the pressure within the gap when the gap changes, thereby providing rigidity to the bearing.

【0003】さらに詳しくは、動圧軸受は、いま回転軸
が所定の角速度で回転し、所定の荷重を支持している場
合を想定すると、荷重が作用した場合の回転軸の軸心は
軸受の軸心から荷重の作用方向に移動した偏心状態とな
る共に、この移動方向は荷重の作用方向に対し僅かな角
度だけ回転方向に進んだ状態となる。その結果、軸受隙
間は、荷重の作用方向に向けて徐々に狭くなり、ここに
くさび状のすきまが形成される。軸の回転によって液体
がこのくさび状すきまに押込められてそこに圧力が生じ
、それによって荷重が支えられる。
More specifically, in a hydrodynamic bearing, if we assume that the rotating shaft is rotating at a predetermined angular velocity and supporting a predetermined load, the axis of the rotating shaft when a load is applied is the same as that of the bearing. It is in an eccentric state where it has moved from the axis in the direction in which the load is applied, and at the same time, this direction of movement is in a state in which it has advanced in the rotational direction by a small angle with respect to the direction in which the load is applied. As a result, the bearing gap gradually narrows in the direction in which the load is applied, forming a wedge-shaped gap. The rotation of the shaft forces liquid into this wedge-shaped gap, creating pressure there that supports the load.

【0004】一方静圧軸受は、2つの面の相対速度が十
分でないときや、高い負荷能力または剛性を必要とする
ときに用いられ、オリフィス絞りを有する静圧軸受の場
合は、外部の圧力源からこのオリフィス絞りを通過して
軸受内のポケットに流入したのち、軸受の隙間を通して
外部に放出される。したがって、ポケットでの液体の圧
力は絞りの流体抵抗とすきまの流体抵抗との兼合いで決
まる。
On the other hand, hydrostatic bearings are used when the relative speed between two surfaces is not sufficient or when high load capacity or rigidity is required. After passing through this orifice throttle and flowing into a pocket inside the bearing, it is discharged to the outside through a gap in the bearing. Therefore, the pressure of the liquid in the pocket is determined by the fluid resistance of the restriction and the fluid resistance of the gap.

【0005】いま、回転軸が荷重を受けるとこの回転軸
の軸心は軸受中心から荷重の作用方向に偏心量だけ僅か
に移動する。静圧形では前述した動圧形と異なり、軸の
移動の方向は荷重の作用方向と一致する。但し、これは
相対速度が低い場合であって、相対速度が高くなると動
圧形と同様に偏心角を生じる。
Now, when a rotating shaft receives a load, the axis of the rotating shaft slightly moves by an amount of eccentricity from the center of the bearing in the direction in which the load is applied. In the static pressure type, unlike the above-mentioned dynamic pressure type, the direction of shaft movement coincides with the direction in which the load is applied. However, this is the case when the relative speed is low, and when the relative speed becomes high, an eccentric angle occurs as in the dynamic pressure type.

【0006】すなわち、軸受面に4箇所のポケットを等
配に形成した静圧軸受では、回転軸が移動した側の軸受
隙間は少なくなり隙間の流体抵抗は増加する。一方、絞
りの流体抵抗は不変なので軸が移動した側のポケッット
の圧力は昇圧する。反対に、軸が遠ざかった側では軸受
隙間が増加し、ポケットの圧力は低くなる。その結果、
ポケットが配置される各部分に生ずる圧力分布の差圧に
より軸の荷重が支持される。
That is, in a hydrostatic bearing in which four pockets are equally spaced on the bearing surface, the bearing clearance on the side where the rotating shaft has moved decreases, and the fluid resistance in the clearance increases. On the other hand, since the fluid resistance of the throttle remains unchanged, the pressure in the pocket on the side where the axis has moved increases. Conversely, on the side where the shaft is farther away, the bearing clearance increases and the pocket pressure becomes lower. the result,
The load on the shaft is supported by the differential pressure distribution that occurs in each part where the pockets are arranged.

【0007】この種の軸受は従来より、サブマージド型
ポンプに使用されており、殊に取扱液がLNGのように
低粘度のものでは動圧軸受に形成される液膜の厚さはあ
まり期待できず軸受の負荷能力が低くなり、また、静圧
軸受では供給圧力が高い場合は負荷能力も上昇するが、
供給圧力をポンプ吐出圧にするとポンプ起動時における
負荷能力は無くなる。従って、静圧または動圧軸受はそ
の使用目的に応じて専用的に使い分けるか、または併用
されている。
[0007] This type of bearing has conventionally been used in submerged pumps, and the thickness of the liquid film formed on the dynamic pressure bearing cannot be expected to be particularly thick, especially when the handling liquid is low viscosity like LNG. The load capacity of hydrostatic bearings decreases, and the load capacity of hydrostatic bearings increases when the supply pressure is high.
When the supply pressure is set to the pump discharge pressure, the load capacity at the time of pump startup is lost. Therefore, static pressure or dynamic pressure bearings are used either exclusively or in combination depending on the purpose of use.

【0008】[0008]

【発明が解決しようとする課題】特に、両軸受をサブマ
ージド型多段ポンプに組合せて使用した場合は以下の問
題点を有する。すなわち、ポンプ起動時においては静圧
軸受は不可能力が無いため回転軸と接触し摩耗量が増大
する。また、運転時においては静圧軸受は負荷容量は大
きいが、一方動圧軸受はその効果により、軸が軸受中心
近くに保持されるため動圧軸受のくさび効果が殆ど得ら
れなくなる難点を有していた。
In particular, when both bearings are used in combination in a submerged type multistage pump, the following problems arise. That is, when the pump is started, the hydrostatic bearing has no force, so it comes into contact with the rotating shaft, increasing the amount of wear. In addition, during operation, hydrostatic bearings have a large load capacity, but hydrodynamic bearings have the disadvantage that the shaft is held near the center of the bearing, making it almost impossible to obtain the wedge effect of hydrodynamic bearings. was.

【0009】そこで、本発明の目的は、多段型サブマー
ジドポンプの軸受に静圧軸受と動圧軸受とを組合せて配
設し、ポンプ回転軸と静圧軸受との隙間を動圧軸受より
も若干大きく設定し、ポンプ起動時における回転軸の負
荷は動圧軸受で支持し、ポンプ運転中には静圧軸受また
はこの軸受と動圧軸受とで支持するように構成すること
により、これら軸受の寿命を従来の組合せ軸受よりも大
幅に延ばすことのできる多段型サブマージドポンプの軸
受構造を提供するにある。
Therefore, an object of the present invention is to arrange a combination of a static pressure bearing and a hydrodynamic bearing in the bearing of a multi-stage submerged pump, and to make the gap between the pump rotating shaft and the hydrostatic bearing smaller than that of the hydrodynamic bearing. The load on the rotating shaft is supported by a hydrodynamic bearing when the pump is started, and is supported by a hydrostatic bearing or this bearing and a hydrodynamic bearing during pump operation. An object of the present invention is to provide a bearing structure for a multi-stage submerged pump that can significantly extend the life span of a conventional combination bearing.

【0010】0010

【課題を解決するための手段】前記の目的を達成するた
め、複数のインペラを固定したポンプ回転軸を支持する
軸受部にそれぞれ静圧軸受および動圧軸受を組合せ配設
してなる多段型サブマージドポンプの軸受構造において
、前記静圧軸受は、ポンプ回転軸を支持する軸受面に形
成されたポケットにポンプにより昇圧された取扱液を絞
りを介して導入するように構成すると共に、前記ポンプ
回転軸に対する隙間を動圧軸受の隙間よりも若干大きく
設定し、ポンプ起動時における回転軸の負荷は動圧軸受
で支持し、ポンプ運転中における負荷は静圧軸受または
この軸受と動圧軸受とで支持するように構成することを
特徴とする。
[Means for Solving the Problems] In order to achieve the above object, a multi-stage submerged pump is provided in which a hydrostatic bearing and a hydrodynamic bearing are combined and arranged in a bearing part that supports a pump rotating shaft to which a plurality of impellers are fixed. In the bearing structure of the pump, the hydrostatic bearing is configured to introduce handled liquid pressurized by the pump into a pocket formed on the bearing surface that supports the pump rotation shaft through a throttle, and The gap to the shaft is set slightly larger than the gap between the hydrodynamic bearings, and the load on the rotating shaft when the pump is started is supported by the hydrodynamic bearings, and the load during pump operation is supported by the hydrostatic bearings or between this bearing and the hydrodynamic bearings. It is characterized by being configured to support.

【0011】[0011]

【作用】本発明に係る多段型サブマージドポンプの軸受
構造によれば、多段型サブマージドポンプの軸受に静圧
軸受と動圧軸受とを組合せて配設し、ポンプ回転軸と静
圧軸受との隙間を動圧軸受よりも若干大きく設定し、ポ
ンプ回転軸の負荷をポンプ起動時には動圧軸受で支持し
ポンプ運転中には静圧軸受またはこの軸受と動圧軸受と
で支持するように構成することにより、静圧軸受は回転
軸に対する隙間が大きく回転軸との接触がないため交換
が全く不要となり、また動圧軸受においても軸との接触
はポンプ起動時のみのため、軸受の寿命を大幅に延ばす
ことができる。
[Operation] According to the bearing structure of the multi-stage submerged pump according to the present invention, the bearing of the multi-stage submerged pump is provided with a combination of a static pressure bearing and a hydrodynamic bearing, and the pump rotating shaft and the hydrostatic bearing are arranged in combination. The gap is set slightly larger than that of the hydrodynamic bearing, and the load on the pump rotating shaft is supported by the hydrodynamic bearing when the pump is started, and supported by the hydrostatic bearing or this bearing and the hydrodynamic bearing during pump operation. As a result, hydrostatic bearings have a large clearance to the rotating shaft and do not come in contact with the rotating shaft, so they do not need to be replaced at all, and hydrodynamic bearings also come into contact with the shaft only when the pump is started, which reduces the lifespan of the bearing. can be extended significantly.

【0012】0012

【実施例】次に本発明に係る多段型サブマージドポンプ
の軸受構造の実施例につき、添付図面を参照しながら以
下詳細に説明する。図1は、本発明の一実施例を示す多
段型サブマージドポンプの全体断面図を示し、図2は静
圧軸受の要部断面図、図3は図2の部分断面図を示す。 図1において、参照符号10は多段型サブマージドポン
プを示し、このサブマージドポンプ10はポンプ部12
とモータ部14とからなり、このポンプ部12はディフ
ューザハウジング18の内部を隔壁20で仕切り複数の
ポンプ室22を画成し、これらのポンプ室22にはモー
タの回転駆動軸26にと一体構成のポンプ回転軸16に
それぞれ固定されたインペラ24を回転自在に収納保持
してポンプ最上段のインペラ吸込口より吸入された取扱
液を複数のインペラにより各段毎に徐々に昇圧して送液
するよう構成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of a bearing structure for a multi-stage submerged pump according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an overall sectional view of a multi-stage submerged pump showing an embodiment of the present invention, FIG. 2 shows a sectional view of a main part of a hydrostatic bearing, and FIG. 3 shows a partial sectional view of FIG. 2. In FIG. 1, reference numeral 10 indicates a multi-stage submerged pump, and this submerged pump 10 has a pump section 12.
This pump section 12 has a diffuser housing 18 partitioned by a partition wall 20 to define a plurality of pump chambers 22, and these pump chambers 22 are integrally configured with a rotational drive shaft 26 of the motor. The impellers 24 fixed to the pump rotating shafts 16 are rotatably housed and held, and the liquid sucked in from the impeller suction port at the uppermost stage of the pump is gradually pressurized and sent to each stage by a plurality of impellers. It is configured like this.

【0013】この場合、これらのインペラ24に回転力
を付与するポンプ回転軸16はそれぞれの隔壁20に固
定された複数の液圧軸受により回転自在に支承されてお
り、これら軸受は後述する静圧軸受と動圧軸受とを適宜
組み合せて配設されている。すなわち、本実施例では最
下段の1段目および3段、4段目の各ポンプ室22のイ
ンペラ近傍に静圧軸受28を配置すると共にその他のポ
ンプ室のインペラ近傍には動圧軸受30を適宜配設する
[0013] In this case, the pump rotating shaft 16 that applies rotational force to these impellers 24 is rotatably supported by a plurality of hydraulic bearings fixed to each partition wall 20, and these bearings absorb static pressure as described below. A suitable combination of bearings and hydrodynamic bearings is provided. That is, in this embodiment, a static pressure bearing 28 is arranged near the impeller of each of the first, third, and fourth pump chambers 22 at the lowest stage, and dynamic pressure bearings 30 are arranged near the impeller of the other pump chambers. Arrange as appropriate.

【0014】さらに詳しくは、図2の上部および図3の
(a)に示すように静圧軸受28は、ポンプ回転軸16
を支持する軸受面に4等配されたポケット32が形成さ
れ、このポケット32には外部と連通するオリフィス3
4がラジアル方向にそれぞれ形成されている。そして前
記軸受28の外側の隔壁にはオリフィス34に連通する
よう環状溝36が形成され、この環状溝36にはディフ
ューザハウジング18の外側に形成された流通路38に
連通するよう導入管40が接続されている。
More specifically, as shown in the upper part of FIG. 2 and in FIG.
Four equally spaced pockets 32 are formed on the bearing surface that supports the
4 are formed in the radial direction. An annular groove 36 is formed in the outer partition wall of the bearing 28 so as to communicate with the orifice 34 , and an introduction pipe 40 is connected to the annular groove 36 so as to communicate with a flow passage 38 formed on the outer side of the diffuser housing 18 . has been done.

【0015】このように構成することにより、各静圧軸
受28のポケット32には最後段のポンプ室22より吐
出された高圧の取扱液がディフューザハウジング18の
外側に縦方向に形成された流通路34より導入管36を
介して導入される。この場合、本実施例では静圧軸受2
8の直径隙間はポンプ回転軸16の軸径41mmに対し
0.28mmに設定する。また、図2の下部および図3
の(b)に示される動圧軸受30は、ポンプ回転軸16
を支持する軸受面に3等配された軸方向に通過する溝4
2が形成され、動圧軸受30の直径隙間はポンプ回転軸
16の軸径41mmに対し0.21mmに設定する。こ
のように、静圧軸受の隙間を動圧軸受の隙間より若干大
きく設定し、これらの軸受は適切に組合せてそれぞれ隔
壁20に取付けられる。
With this configuration, the high-pressure handling liquid discharged from the pump chamber 22 at the last stage is transferred to the pocket 32 of each hydrostatic bearing 28 through a flow path formed vertically outside the diffuser housing 18. 34 through an introduction pipe 36. In this case, in this embodiment, the hydrostatic bearing 2
The diameter gap No. 8 is set to 0.28 mm with respect to the shaft diameter of the pump rotating shaft 16 of 41 mm. Also, the lower part of Figure 2 and Figure 3
The dynamic pressure bearing 30 shown in (b) of FIG.
Three grooves 4 passing in the axial direction are equally spaced on the bearing surface that supports the
2 is formed, and the diameter gap of the dynamic pressure bearing 30 is set to 0.21 mm with respect to the shaft diameter of the pump rotation shaft 16 of 41 mm. In this way, the gap between the hydrostatic bearings is set to be slightly larger than the gap between the hydrodynamic bearings, and these bearings are appropriately combined and attached to the partition wall 20, respectively.

【0016】前記のように構成することにより、多段型
サブマージドポンプの軸受は、ポンプ起動時においては
直径隙間を若干大きく形成した静圧軸受28はポンプ内
部の昇圧が無く、ポケット内に圧油が供給されず負荷能
力が無くなるが、直径隙間の少ない動圧軸受30により
起動時の負荷を受持つことができる。また、運転中にお
いては、ポンプにより昇圧された高圧油が静圧軸受28
のポケット内に供給されるため、主な負荷はこの静圧軸
受により支持することができる。この場合、動圧軸受3
0の隙間を適切に設定すれば、動圧軸受30にくさび効
果が得られ静圧軸受と共に組合せて使用することにより
軸受全体の負荷能力を向上することができる。
With the above-mentioned structure, the bearing of the multi-stage submerged pump has a slightly larger diameter gap when the pump is started, and the hydrostatic bearing 28 does not increase the pressure inside the pump, and the pressure oil remains in the pocket. However, the load at startup can be taken care of by the dynamic pressure bearing 30 with a small diameter gap. Also, during operation, high pressure oil raised by the pump is applied to the hydrostatic bearing 28.
The main load can be supported by this hydrostatic bearing. In this case, the hydrodynamic bearing 3
If the gap of 0 is appropriately set, a wedge effect can be obtained in the hydrodynamic bearing 30, and by using it in combination with a hydrostatic bearing, the load capacity of the entire bearing can be improved.

【0017】[0017]

【発明の効果】前述した実施例から明らかなように、本
発明によれば、多段型サブマージドポンプの軸受に静圧
軸受と動圧軸受とを組合せて配設し、ポンプ回転軸と静
圧軸受との隙間を動圧軸受よりも若干大きく設定し、ポ
ンプ起動時における回転軸の負荷は動圧軸受で支持し、
ポンプ運転中には静圧軸受またはこの軸受と動圧軸受と
で支持するように構成することにより、動圧軸受におい
ては回転軸との接触はポンプ起動時のみであり、また静
圧軸受では回転中において非接触状態が維持できるため
軸受の寿命を大幅に延ばすことが可能となり、特に構造
が複雑な静圧軸受の交換が不要となるため軸受のメンテ
ナンスが容易になる等の優れた効果を有する。以上、本
発明の好適な実施例について説明したが、本発明は前記
実施例に限定されることなく、本発明の精神を逸脱しな
い範囲内において種々の設計変更をなし得ることは勿論
である。
As is clear from the embodiments described above, according to the present invention, a combination of a static pressure bearing and a dynamic pressure bearing is arranged in the bearing of a multi-stage submerged pump, and the pump rotating shaft and the static pressure The clearance with the bearing is set slightly larger than that of the hydrodynamic bearing, and the load on the rotating shaft when the pump is started is supported by the hydrodynamic bearing.
By configuring the pump to be supported by a hydrostatic bearing or this bearing and a hydrodynamic bearing during pump operation, the hydrodynamic bearing only makes contact with the rotating shaft when the pump is started, and the hydrostatic bearing does not rotate. Since it is possible to maintain a non-contact state inside the bearing, it is possible to significantly extend the life of the bearing, and in particular, it has excellent effects such as easy maintenance of the bearing because there is no need to replace the hydrostatic bearing, which has a complex structure. . Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and it goes without saying that various design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す多段型サブマージドポ
ンプの全体断面図である。
FIG. 1 is an overall sectional view of a multi-stage submerged pump showing an embodiment of the present invention.

【図2】静圧軸受と動圧軸受とを組合せ配設した液圧軸
受の要部断面図である。
FIG. 2 is a sectional view of a main part of a hydraulic bearing in which a static pressure bearing and a dynamic pressure bearing are arranged in combination.

【図3】図2のA−A断面図およびB−B断面図である
FIG. 3 is a sectional view taken along line AA and line BB in FIG. 2;

【符号の説明】[Explanation of symbols]

10  多段型サブマージドポンプ    12  ポ
ンプ部14  モータ部              
      16  ポンプ回転軸
10 Multi-stage submerged pump 12 Pump section 14 Motor section
16 Pump rotation shaft

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数のインペラを固定したポンプ回転軸を
支持する軸受部にそれぞれ静圧軸受および動圧軸受を組
合せ配設してなる多段型サブマージドポンプの軸受構造
において、前記静圧軸受は、ポンプ回転軸を支持する軸
受面に形成されたポケットにポンプにより昇圧された取
扱液を絞りを介して導入するように構成すると共に、前
記ポンプ回転軸に対する隙間を動圧軸受の隙間よりも若
干大きく設定し、ポンプ起動時における回転軸の負荷は
動圧軸受で支持し、ポンプ運転中における負荷は静圧軸
受またはこの軸受と動圧軸受とで支持するように構成す
ることを特徴とする多段型サブマージドポンプの軸受構
造。
Claims: 1. A bearing structure for a multi-stage submerged pump, in which a hydrostatic bearing and a hydrodynamic bearing are arranged in combination in a bearing part that supports a pump rotating shaft to which a plurality of impellers are fixed, wherein the hydrostatic bearing is The pump is configured so that the pump-pressurized handling liquid is introduced into a pocket formed on the bearing surface that supports the pump rotation shaft through a throttle, and the gap between the pump rotation shaft and the pump rotation shaft is slightly larger than the gap between the hydrodynamic bearings. The multi-stage pump is configured such that the load on the rotating shaft is supported by a hydrodynamic bearing when the pump is started, and the load during pump operation is supported by a static pressure bearing or this bearing and a hydrodynamic bearing. Type submerged pump bearing structure.
JP3063057A 1991-03-27 1991-03-27 Bearing structure of multi-stage submerged pump Expired - Fee Related JP2672034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063057A JP2672034B2 (en) 1991-03-27 1991-03-27 Bearing structure of multi-stage submerged pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063057A JP2672034B2 (en) 1991-03-27 1991-03-27 Bearing structure of multi-stage submerged pump

Publications (2)

Publication Number Publication Date
JPH04298699A true JPH04298699A (en) 1992-10-22
JP2672034B2 JP2672034B2 (en) 1997-11-05

Family

ID=13218332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063057A Expired - Fee Related JP2672034B2 (en) 1991-03-27 1991-03-27 Bearing structure of multi-stage submerged pump

Country Status (1)

Country Link
JP (1) JP2672034B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255229A (en) * 2008-04-17 2009-11-05 Honda Motor Co Ltd Boring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102333286B1 (en) * 2021-06-09 2021-12-01 주식회사 인지니어스 The pump for the cryogenic fluid circulation with the fluid bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941694U (en) * 1982-09-13 1984-03-17 株式会社荏原製作所 submerged pump
JPS6240149U (en) * 1985-08-29 1987-03-10
JPS62119497U (en) * 1986-01-23 1987-07-29
JPS6325822U (en) * 1986-08-01 1988-02-20

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941694U (en) * 1982-09-13 1984-03-17 株式会社荏原製作所 submerged pump
JPS6240149U (en) * 1985-08-29 1987-03-10
JPS62119497U (en) * 1986-01-23 1987-07-29
JPS6325822U (en) * 1986-08-01 1988-02-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255229A (en) * 2008-04-17 2009-11-05 Honda Motor Co Ltd Boring device

Also Published As

Publication number Publication date
JP2672034B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
US8646979B2 (en) Hybrid hydro (air) static multi-recess journal bearing
US5951169A (en) Thrust bearing
KR880000934B1 (en) Scroll compressor
CN102483091A (en) An axial gas thrust bearing for rotors in rotating machinery
RU2107192C1 (en) Rotary screw compressor
EP1451472A2 (en) Improved thrust bearing for multistage centrifugal pumps
US6761483B1 (en) Combined radial-axial slide bearing
US5567129A (en) Thrust control system for gas-bearing turbocompressors
US6629829B1 (en) Vane type rotary machine
US3370897A (en) Thrust bearing
CN102927287A (en) Mechanical end face seal with combined fluid slot structure
US3472565A (en) Externally pressurized bearing structure
US6019570A (en) Pressure balanced fuel pump impeller
JPS6020594B2 (en) vane pump
JPH04298699A (en) Bearing structure for multistage type submerged pump
CN109944871B (en) Hydraulic dynamic pressure radial bearing and centrifugal pump
RU2202053C2 (en) Centrifugal pump
CN203051777U (en) Mechanical face seal with combined fluid groove structure
US20210324862A1 (en) Centrifugal pump for conveying a fluid
JP2006233844A (en) Fluid pump
JP3380297B2 (en) Thrust balance mechanism
KR102538954B1 (en) Rotary compressor
JPH07719Y2 (en) pump
US1129038A (en) Centrifugal pump.
JPH0791395A (en) Impeller support of pump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees