JPH04277675A - Thin film capacitor - Google Patents

Thin film capacitor

Info

Publication number
JPH04277675A
JPH04277675A JP3974791A JP3974791A JPH04277675A JP H04277675 A JPH04277675 A JP H04277675A JP 3974791 A JP3974791 A JP 3974791A JP 3974791 A JP3974791 A JP 3974791A JP H04277675 A JPH04277675 A JP H04277675A
Authority
JP
Japan
Prior art keywords
electrode
wiring
thin film
lead
film capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3974791A
Other languages
Japanese (ja)
Other versions
JP2692401B2 (en
Inventor
Toshihiko Akiba
秋葉 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3039747A priority Critical patent/JP2692401B2/en
Publication of JPH04277675A publication Critical patent/JPH04277675A/en
Application granted granted Critical
Publication of JP2692401B2 publication Critical patent/JP2692401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a thin film capacitor which does not result in capacitance change even when a leadout wire is displaced. CONSTITUTION:In a thin film capacitor in which two electrodes 3, 5 are stacked in a substrate 1 sandwiching a dielectric material layer 4 and a part of the leadout wire 7 of the first electrode 3 is provided opposed to the second electrode 5, a compensating wiring 11 is provided in connection with the leadout wire 7 and extension up to the external side of the second electrode 5 in the opposite direction to the leadout wiring 7. Moreover, at least two pairs of leadout wiring 7 and compensating wiring 11 are also provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は薄膜コンデンサの構造,
特に半導体基板上に形成されるコンデンサの構造に関す
る。
[Industrial Application Field] The present invention relates to the structure of a thin film capacitor,
In particular, it relates to the structure of a capacitor formed on a semiconductor substrate.

【0002】近年の半導体集積回路の精密化に伴い,半
導体基板上に精密な容量の薄膜コンデンサを形成する技
術が要請されている。しかし,素子が微細化されるにつ
れ,配線容量の効果が大きくなり,精密な容量の薄膜コ
ンデンサを製造することは困難となってきた。
As semiconductor integrated circuits have become more precise in recent years, there has been a need for a technique for forming thin film capacitors with precise capacitance on semiconductor substrates. However, as elements become smaller, the effect of wiring capacitance becomes greater, making it difficult to manufacture thin film capacitors with precise capacitance.

【0003】このため,容量に及ぼす配線の影響が小さ
い構造を有する薄膜コンデンサが必要とされている。
Therefore, there is a need for a thin film capacitor having a structure in which the influence of wiring on capacitance is small.

【0004】0004

【従来の技術】従来の薄膜コンデンサの製造技術を図4
を参照して説明する。図4は,従来例の平面図及び断面
図であり,薄膜コンデンサの構造及び配線パターンの位
置ずれを示している。なお,図4(a)は絶縁層6を取
り除いて描かれている。
[Prior art] Figure 4 shows the conventional thin film capacitor manufacturing technology.
Explain with reference to. FIG. 4 is a plan view and a sectional view of a conventional example, showing the structure of a thin film capacitor and the positional deviation of a wiring pattern. Note that FIG. 4A is drawn with the insulating layer 6 removed.

【0005】薄膜コンデンサは以下の工程により製造さ
れる。薄膜コンデンサを形成する第一の電極3は,シリ
コン基板1表面を熱酸化して形成される酸化膜からなる
絶縁膜2上にポリシリコンを堆積した後フォトエッチン
グにより形成される。
[0005] Thin film capacitors are manufactured by the following steps. The first electrode 3 forming the thin film capacitor is formed by photo-etching after depositing polysilicon on an insulating film 2 made of an oxide film formed by thermally oxidizing the surface of the silicon substrate 1.

【0006】第二の電極5は,第一の電極3表面を酸化
して形成された誘電体層4上にポリシリコンを堆積した
のちフォトエッチングして形成される。次いで,絶縁層
6を塗布し,コンタクトホール8をフォトリソグラフィ
により設ける。
The second electrode 5 is formed by depositing polysilicon on the dielectric layer 4 formed by oxidizing the surface of the first electrode 3 and then photo-etching it. Next, an insulating layer 6 is applied, and contact holes 8 are formed by photolithography.

【0007】次いで,Alを堆積した後,フォトリソグ
ラフィにより第一の電極3の引出し用配線7及び回路配
線12を形成して薄膜コンデンサは完成する。上記薄膜
コンデンサの製造工程において,引出し用配線7はフォ
トリソグラフィの位置合わせ精度の限界から設計位置に
正確には形成されず,図4(a)中に引出し用配線7A
として点線で示された位置にずれるのである。
Next, after depositing Al, the wiring 7 and circuit wiring 12 for leading out the first electrode 3 are formed by photolithography to complete the thin film capacitor. In the manufacturing process of the above-mentioned thin film capacitor, the lead wire 7 is not formed precisely at the designed position due to the limit of alignment accuracy of photolithography, and the lead wire 7A is shown in FIG. 4(a).
It shifts to the position shown by the dotted line.

【0008】この引出し用配線7の位置ずれにより,引
出し用配線7と第二の電極5とが重なる面積がずれ部分
10Aだけ変動する結果,引出し用配線7と第二の電極
5との重複部分に起因する容量はずれ部分10Aの面積
に係る容量分だけ変化する。
Due to this positional deviation of the lead wire 7, the area where the lead wire 7 and the second electrode 5 overlap changes by the shifted portion 10A, and as a result, the overlapping area of the lead wire 7 and the second electrode 5 changes. The capacitance due to changes by the capacitance related to the area of the misaligned portion 10A.

【0009】従って,薄膜コンデンサの実質的な容量も
また変動することになる。
[0009] Therefore, the actual capacitance of the thin film capacitor also varies.

【0010】0010

【発明が解決しようとする課題】上述のように,従来の
薄膜コンデンサの製造にあっては,フォトリソグラフィ
の精度の限界から引出し用配線の位置ずれを生ずるため
に,引出し用配線とその対極電極との重複面積が変動し
,容量が変化することから,精密な容量のコンデンサを
製造することができないという問題があった。
[Problems to be Solved by the Invention] As mentioned above, in the production of conventional thin film capacitors, due to the limits of photolithography accuracy, the position of the lead wires is misaligned, so the lead wires and their counter electrodes are There was a problem in that it was not possible to manufacture capacitors with precise capacitance because the overlapping area with the capacitors varied and the capacitance changed.

【0011】本発明は,フォトリソグラフィにおいて引
出し用配線の位置ずれを生じても,容量変化が起きない
薄膜コンデンサを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film capacitor whose capacitance does not change even if the lead wiring is misaligned in photolithography.

【0012】0012

【課題を解決するための手段】図1,図2は本発明の実
施例である。図1(a)は第一実施例の薄膜コンデンサ
の構造を示す平面図(絶縁層6を除去して描かれている
。),図1(b)はその断面図である。図2(a)は第
二実施例の平面図であり,薄膜コンデンサの構造を示し
ている。
[Means for Solving the Problems] FIGS. 1 and 2 show embodiments of the present invention. FIG. 1(a) is a plan view (drawn with the insulating layer 6 removed) showing the structure of the thin film capacitor of the first embodiment, and FIG. 1(b) is a sectional view thereof. FIG. 2(a) is a plan view of the second embodiment, showing the structure of the thin film capacitor.

【0013】上記課題を解決するための本発明の構成は
,図1及び図2を参照して,第一の構成は,基板1上に
誘電体層4を挟み積層された2の電極3,5を有し,第
一の電極3の引出し用配線7の一部が第二の電極5と対
向する薄膜コンデンサにおいて,該引出し用配線7に接
続され,該引出し用配線7の引出し方向と反対方向に該
第二の電極5の外側迄延在する補償用配線11を設けた
ことを特徴として構成され,及び,第二の構成は,上記
引出し用配線7及び上記補償用配線11を少なくとも2
組設けたことを特徴として構成される。
Referring to FIGS. 1 and 2, the configuration of the present invention for solving the above problems is as follows: A first configuration includes two electrodes 3, which are laminated on a substrate 1 with a dielectric layer 4 interposed therebetween. 5, a part of the lead wire 7 of the first electrode 3 is connected to the lead wire 7 in a thin film capacitor facing the second electrode 5, and a part of the lead wire 7 of the first electrode 3 is connected to the lead wire 7 in a direction opposite to the lead-out direction of the lead wire 7. The structure is characterized by providing a compensation wiring 11 that extends to the outside of the second electrode 5 in the direction, and the second configuration has the above-mentioned lead-out wiring 7 and the compensation wiring 11 connected to at least two
It is characterized by having a set.

【0014】[0014]

【作用】本発明では,図1に示すように,補償用配線1
1は,引出し用配線7と重なる第二の電極5上に,引出
し用配線7とは反対向きに配設される。また,引出し用
配線7と補償用配線11は,ともに第二の電極5上から
辺を越えてその外側にまで設けられている。
[Operation] In the present invention, as shown in FIG.
1 is disposed on the second electrode 5 overlapping with the lead-out wiring 7 in the opposite direction to the lead-out wiring 7. Furthermore, both the lead-out wiring 7 and the compensation wiring 11 are provided from above the second electrode 5 to beyond the side thereof.

【0015】さらに,引出し用配線7と補償用配線11
とはリソグラフィにより同時に形成されるから,位置ず
れ量は両配線7,11について常に同一となる。本発明
の第一の構成においては,両配線7,11の位置ずれ量
が同一であるから,引出し用配線7の位置ずれにより生
ずる第二の電極5と重なる面積の変動分(ずれ部分10
Aとして示す。)は,補償用配線11の位置ずれにより
生ずる第二の電極5と重なる面積の変動部分(ずれ部分
10Bとして示す。)に略等しい。
Furthermore, the lead-out wiring 7 and the compensation wiring 11
Since they are formed simultaneously by lithography, the amount of positional deviation is always the same for both wirings 7 and 11. In the first configuration of the present invention, since the amount of positional deviation of both wirings 7 and 11 is the same, the variation in the area overlapping with the second electrode 5 caused by the positional deviation of the lead-out wiring 7 (misplaced portion 10
Shown as A. ) is approximately equal to a varying portion of the area overlapping with the second electrode 5 (shown as a shifted portion 10B) caused by a positional shift of the compensation wiring 11.

【0016】このため,配線の位置ずれがあっても各配
線の重複面積の変動が相補的に補償されるため,第二の
電極5と両配線7,11が重なる面積は,全体として変
化しないのである。
[0016] Therefore, even if there is a misalignment of the wiring, the variation in the overlapping area of each wiring is compensated for in a complementary manner, so the area where the second electrode 5 and both wirings 7 and 11 overlap does not change as a whole. It is.

【0017】従って,配線の位置ずれにより容量の変化
を生じないのであり,精密な容量の薄膜コンデンサの製
造が可能となるのである。本発明の第二の構成において
は,図2に示す様に,引出し用配線7,7Rと補償用配
線11,11Rの組が2以上設けられている。
Therefore, the capacitance does not change due to misalignment of the wiring, and it becomes possible to manufacture a thin film capacitor with a precise capacitance. In the second configuration of the present invention, as shown in FIG. 2, two or more sets of lead wires 7, 7R and compensation wires 11, 11R are provided.

【0018】従って,引出し用配線7を2以上の方向に
設ける場合にも本発明を適用することができるのである
。本発明では,引出し用配線7,7Rが接続される第一
の電極3が第二の電極5の上下何れに在っても,引出し
用配線7,7Rが第二の電極と重なるために電極間容量
以外の配線容量を生ずる薄膜コンデンサに適用される。
Therefore, the present invention can be applied even when the lead wiring 7 is provided in two or more directions. In the present invention, even if the first electrode 3 to which the lead wires 7, 7R are connected is located above or below the second electrode 5, the lead wires 7, 7R overlap with the second electrode, so that the electrode Applicable to thin film capacitors that generate wiring capacitance other than interlayer capacitance.

【0019】また,引出し用配線7,7Rは第二の電極
の上下何れに在ってもよい。なお,引出し用配線及び補
償用配線が引き出される第二の電極の2辺が平行であり
,且つ上記両配線と重なる辺長が等しいとき,本発明の
効果は最も発揮されることはいうまでもない。
Further, the lead-out wirings 7, 7R may be provided either above or below the second electrode. It goes without saying that the effects of the present invention are most exerted when the two sides of the second electrode from which the lead-out wiring and the compensation wiring are drawn out are parallel, and the lengths of the sides that overlap with the above-mentioned two wirings are equal. do not have.

【0020】この場合に,補償用配線11,11Rの幅
は,それと重なる電極の辺長の合計が引出し用配線7と
重なる電極の辺長と等しければよく,従って2以上の補
償用配線11から成っていても,また電極の辺と上記両
配線7,11とが斜交していても差支えない。
In this case, the width of the compensation wires 11 and 11R is sufficient as long as the sum of the side lengths of the electrodes that overlap with them is equal to the side length of the electrodes that overlap with the lead-out wire 7. There is no problem even if the sides of the electrode and the wirings 7 and 11 cross obliquely.

【0021】[0021]

【実施例】本発明を実施例により説明する。本発明の第
一実施例は,図1に示す,シリコン基板上に形成された
薄膜コンデンサである。
EXAMPLES The present invention will be explained by examples. A first embodiment of the present invention is a thin film capacitor formed on a silicon substrate, as shown in FIG.

【0022】(100)シリコン基板1上に熱酸化膜か
らなる絶縁膜2を形成し,続いてCVDにより例えば厚
さ500nmのポリシリコン膜を堆積した後,ポリシリ
コンを矩形にホトエッチングして第一の電極3を形成す
る。なお,ポリシリコンに代えて金属電極とすることも
できるのは当然である。
(100) An insulating film 2 made of a thermal oxide film is formed on a silicon substrate 1, and then a polysilicon film with a thickness of, for example, 500 nm is deposited by CVD, and then the polysilicon is photoetched into a rectangular shape. One electrode 3 is formed. Note that it goes without saying that a metal electrode can be used instead of polysilicon.

【0023】次いで,第一の電極3の表面に,ポリシリ
コンを酸化して,又は例えばCVDにより厚さ40nm
の酸化膜を形成して,誘電体層4とする。次いで,第二
の電極5を第一の電極3と同様にして形成する。第二の
電極5は,その位置がずれても第一の電極3と重なる面
積が変動しないようにするため,第一の電極3を覆って
形成される。
Next, the surface of the first electrode 3 is coated with a thickness of 40 nm by oxidizing polysilicon or by, for example, CVD.
An oxide film is formed to form the dielectric layer 4. Next, the second electrode 5 is formed in the same manner as the first electrode 3. The second electrode 5 is formed to cover the first electrode 3 so that the area overlapping with the first electrode 3 does not change even if the second electrode 5 is displaced.

【0024】次いで,例えば厚さ600nmの絶縁層6
を塗布したのち,フォトエッチングによりコンタクトホ
ール8,9を設ける。次いで,例えば厚さ1μmのAl
を堆積し,フォトエッチングにより補償用配線11と引
出し用配線7を直線状に形成する。これと同時に回路用
配線12をも形成する。
Next, for example, an insulating layer 6 with a thickness of 600 nm is formed.
After coating, contact holes 8 and 9 are formed by photo-etching. Next, for example, a 1 μm thick Al
is deposited, and the compensation wiring 11 and the lead wiring 7 are formed in a straight line by photo-etching. At the same time, circuit wiring 12 is also formed.

【0025】なお,補償用配線11は第二の電極5の辺
を越えて,その外側へ例えば2μmの長さに形成される
。 本実施例によれば,フォトマスクの僅かな変更により,
ブロセス条件をほぼそのままで本発明を実施することが
できる。
Note that the compensation wiring 11 is formed to extend beyond the side of the second electrode 5 to a length of, for example, 2 μm. According to this example, by slightly changing the photomask,
The present invention can be carried out using almost the same process conditions.

【0026】本発明の第二実施例は,図2に示すように
,引出し配線7,7Rが2以上の方向に設けられた薄膜
コンデンサに関する。引出し用配線7,7Rの形成前の
工程は,前述の第一実施例と同様である。
A second embodiment of the present invention relates to a thin film capacitor in which lead wires 7, 7R are provided in two or more directions, as shown in FIG. The steps before forming the lead wires 7, 7R are the same as in the first embodiment described above.

【0027】引出し用配線7,7Rは例えば互いに直角
に設けられ,引出し用配線7に対して補償用配線11が
,引出し用配線7Rに対して補償用配線11Rが設けら
れる。 本実施例によれば,配線の設計における自由度が大きく
なり,回路設計が容易になるという効果を奏する。
The lead wires 7 and 7R are provided, for example, at right angles to each other, and a compensation wire 11 is provided for the lead wire 7, and a compensation wire 11R is provided for the lead wire 7R. According to this embodiment, there is an effect that the degree of freedom in wiring design is increased and circuit design is facilitated.

【0028】図3は本発明の第三実施例平面図であり,
薄膜コンデンサの電極及び配線を示している。本発明の
第三実施例では,引出し用配線7は第二の電極5と一体
として形成され,第一の電極3と重なり容量を生じてい
る。
FIG. 3 is a plan view of a third embodiment of the present invention.
The electrodes and wiring of a thin film capacitor are shown. In the third embodiment of the present invention, the lead wire 7 is formed integrally with the second electrode 5, and overlaps with the first electrode 3 to create a capacitance.

【0029】補償用配線11も,引出し用配線及び第二
電極と一体として形成される。また,本実施例の補償用
配線11は回路配線13と共用されており,回路配線1
3と接続するため電極3,5とは斜交して設けられてい
る。
The compensation wiring 11 is also formed integrally with the lead-out wiring and the second electrode. In addition, the compensation wiring 11 in this embodiment is shared with the circuit wiring 13, and the circuit wiring 1
3, the electrodes 3 and 5 are provided obliquely.

【0030】勿論,引出し用配線11と第一の電極3が
第二の電極5の下に設けられ,その上を第二の電極5が
覆う場合にも本発明の適用が妨げられないことはいうま
でもない。
Of course, the application of the present invention is not hindered even in the case where the lead-out wiring 11 and the first electrode 3 are provided below the second electrode 5 and the second electrode 5 covers it. Needless to say.

【0031】なお,本発明の各実施例における補償用配
線11,11Rは,通常の回路配線の一部を以て代える
ことができるのは当然である。
[0031] It goes without saying that the compensation wiring 11, 11R in each embodiment of the present invention can be replaced with a part of the normal circuit wiring.

【0032】[0032]

【発明の効果】以上説明したように,本発明によれば,
フォトリソグラフィにより形成される電極引出し用配線
の位置ずれが生じても,薄膜コンデンサの容量には影響
しないという効果を奏するから,精密な容量をもつ薄膜
コンデンサを製造することができ,集積回路の性能向上
に寄与するところが大きい。
[Effect of the invention] As explained above, according to the present invention,
Even if the electrode lead wiring formed by photolithography is misaligned, it does not affect the capacitance of the thin film capacitor, making it possible to manufacture thin film capacitors with precise capacitance and improving the performance of integrated circuits. It greatly contributes to improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の第一実施例平面図及び断面図[Fig. 1] Plan view and cross-sectional view of the first embodiment of the present invention

【図
2】  本発明の第二実施例平面図
[Fig. 2] Plan view of the second embodiment of the present invention

【図3】  本発明
の第三実施例平面図
[Fig. 3] Plan view of the third embodiment of the present invention

【図4】  従来例の平面図及び断
面図
[Figure 4] Plan view and cross-sectional view of conventional example

【符号の説明】[Explanation of symbols]

1  基板 2  絶縁膜 3  第一の電極 4  誘電体層 5  第二の電極 6  絶縁層 7,7R 引出し用配線 8,9  コンタクトホール 10A,10B   ずれ部分 11,11A,11R  補償用配線 12,13 回路配線 1 Board 2 Insulating film 3 First electrode 4 Dielectric layer 5 Second electrode 6 Insulating layer 7,7R Wiring for drawer 8, 9 Contact hole 10A, 10B Misaligned part 11, 11A, 11R Compensation wiring 12,13 Circuit wiring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  基板(1)上に誘電体層(4)を挟み
積層された2の電極(3,5)を有し,第一の電極(3
)の引出し用配線(7)の一部が第二の電極(5)と対
向する薄膜コンデンサにおいて,該引出し用配線(7)
に接続され,該引出し用配線(7)の引出し方向と反対
方向に該第二の電極(5)の外側迄延在する補償用配線
(11)を設けたことを特徴とする薄膜コンデンサ。
Claim 1: Two electrodes (3, 5) stacked on a substrate (1) with a dielectric layer (4) in between, the first electrode (3, 5)
) in which a part of the lead-out wiring (7) faces the second electrode (5), the lead-out wiring (7)
A thin film capacitor characterized in that a compensation wiring (11) is provided which is connected to the lead-out wiring (7) and extends to the outside of the second electrode (5) in a direction opposite to the lead-out direction of the lead-out wiring (7).
【請求項2】  上記引出し用配線(7)及び上記補償
用配線(11)を少なくとも2組設けたことを特徴とす
る薄膜コンデンサ。
2. A thin film capacitor characterized in that at least two sets of the lead-out wiring (7) and the compensation wiring (11) are provided.
JP3039747A 1991-03-06 1991-03-06 Thin film capacitors Expired - Fee Related JP2692401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3039747A JP2692401B2 (en) 1991-03-06 1991-03-06 Thin film capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3039747A JP2692401B2 (en) 1991-03-06 1991-03-06 Thin film capacitors

Publications (2)

Publication Number Publication Date
JPH04277675A true JPH04277675A (en) 1992-10-02
JP2692401B2 JP2692401B2 (en) 1997-12-17

Family

ID=12561557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3039747A Expired - Fee Related JP2692401B2 (en) 1991-03-06 1991-03-06 Thin film capacitors

Country Status (1)

Country Link
JP (1) JP2692401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079042A1 (en) * 2016-10-26 2018-05-03 株式会社村田製作所 Capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248457A (en) * 1990-02-26 1991-11-06 Nec Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248457A (en) * 1990-02-26 1991-11-06 Nec Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079042A1 (en) * 2016-10-26 2018-05-03 株式会社村田製作所 Capacitor
JP6369665B1 (en) * 2016-10-26 2018-08-08 株式会社村田製作所 Capacitors
KR20190029738A (en) * 2016-10-26 2019-03-20 가부시키가이샤 무라타 세이사쿠쇼 Capacitor

Also Published As

Publication number Publication date
JP2692401B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP2004502315A (en) Ceramic multilayer capacitor array
JP5493166B2 (en) Semiconductor device and manufacturing method thereof
JP2000353601A (en) Chip-type electronic component
JPS6343895B2 (en)
JPH04277675A (en) Thin film capacitor
TWI627659B (en) Semiconductor device and manufacturing method thereof
KR0136994B1 (en) Capacitor of semiconductor
KR940004447B1 (en) Semiconductor device having capacitor
US20050067650A1 (en) Component having an adjustable thin-film capacitor
JPH10214941A (en) Semiconductor integrated circuit device
JP2001044059A (en) Multilayer ceramic capacitor
JP2586508B2 (en) MOS transistor
JPH0473960A (en) Integrated circuit
WO2023015620A1 (en) Array substrate, fabrication method for array substrate, and display panel
JPH0555459A (en) Semiconductor integrated circuit device and its manufacture
JPH05259381A (en) Semiconductor device
JPH09289286A (en) Capacitive element of semiconductor device
JPH09260207A (en) Manufacture of laminated capacitor
KR100256799B1 (en) Method of forming contact in semiconductor device
JPH03240210A (en) High-frequency chip coil
JPH04188850A (en) Contact hole and manufacture thereof
JPS5930509Y2 (en) Beam lead type MIM capacitor
JPH04164364A (en) Semiconductor device
JPS59117236A (en) Semiconductor device
JPH0290701A (en) Microwave monolithic integrated circuit device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970805

LAPS Cancellation because of no payment of annual fees