JPH0426173B2 - - Google Patents

Info

Publication number
JPH0426173B2
JPH0426173B2 JP30136086A JP30136086A JPH0426173B2 JP H0426173 B2 JPH0426173 B2 JP H0426173B2 JP 30136086 A JP30136086 A JP 30136086A JP 30136086 A JP30136086 A JP 30136086A JP H0426173 B2 JPH0426173 B2 JP H0426173B2
Authority
JP
Japan
Prior art keywords
sleeve
support sleeve
cathode
indirectly heated
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30136086A
Other languages
Japanese (ja)
Other versions
JPS63146322A (en
Inventor
Sakae Kimura
Tooru Yakabe
Mitsuo Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to DE3751168T priority Critical patent/DE3751168T2/en
Priority to EP87311119A priority patent/EP0272881B1/en
Priority to US07/135,054 priority patent/US4820954A/en
Priority to KR8714538A priority patent/KR910007826B1/en
Publication of JPS63146322A publication Critical patent/JPS63146322A/en
Publication of JPH0426173B2 publication Critical patent/JPH0426173B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) この発明は、高精細カラー受像管、高品位撮像
管、投写管、或いは進行波管等の電子管に用いら
れ、高電流密度の電子線を放出する傍熱形陰極構
体に係わり、特にその陰極支持スリーブ材の改良
に関する。 (従来の技術) 前述のような電子管に使用される傍熱形陰極構
体は、通常、デイクス状の電子放出部を支持スリ
ーブ材により支持する構造が一般的である。この
陰極支持スリーブは、ヒータ以外では最も高温に
曝される部品であるため、高温での機械的強度が
十分高くなければならない。一般的に、支持スリ
ーブの肉厚が厚ければ厚いほどその機械的強度は
高くなるが、反面、重量が増加し、構造的に小型
化できない。また、熱伝導の増大による熱損失が
増し、加熱電力を大きくする必要が生じてしまう
という不都合を伴なう。特に含浸形陰極構体の場
合は、動作温度が900℃乃至1100℃(輝度温度)
という比較的高い温度で動作されるのが普通で、
しかも電子管としての動作に先立つて実施される
エージング工程では約1200℃程度にまで加熱され
る場合がある。さらにまた、これら傍熱形陰極構
体が用いられる電子管は、人口衛星、航空機、船
舶、あるいは自動車等に搭載される場合があり、
より厳しい耐振性が要求される。このような事情
から従来の含浸形陰極構体の支持スリーブには、
主としてタンタル(Ta)材が使用されてきた。 (発明が解決しようとする問題点) しかしながら、Ta材による支持スリーブは加
工や溶接が比較的困難であり、また比重が高いの
で振動時に発生する加重が大きく、それだけ耐振
性をもたせることが困難である。 この発明は、以上のような欠点を解消し耐振性
に優れ、材料の強度、特に熱疲労に強い材料でか
つ加工が比較的容易で熱容量を低減し得る傍熱形
陰極構体を提供することを目的とする。 [発明の構成] (問題点を解決するための手段) この発明は、電子放出部を支持するスリーブの
主成分が少なくとも85重量%以上のニオブを含有
する合金からなる傍熱形陰極構体である。残部
は、チタン、ジルコニウム、ハフニウム、バナジ
ウム、タンタル、モリブデンおよびタングステン
群の中から選択された少なくとも一種の金属であ
り、これらを合金添加元素として含有する傍熱形
陰極構体である。 (作用) この発明によれば、従来の陰極支持スリーブの
材料であるTaが16.6という比重を有するのに対
して、ニオブ合金材は実質的に比重が8.6程度で
あるため、支持スリーブの重量を50%以下に低減
することができる。さらに、引抜き加工によつて
薄肉スリーブに安定的に加工できる。また、加熱
や冷却によつて生ずる熱疲労に耐え得る特性を有
し、耐振動特性は損なわれることがない。 (実施例) 以下図面を参照してその実施例を説明する。こ
の実施例は第1図に示すように含浸形陰極構体に
適用した例である。 デイスク状電子放出部11は、電子放出性物質
が含浸されており、表面にイリジウム(Ir)がコ
ーテイングされている多孔質タングステンからな
る。このデイスク状電子放出部11は、レニウム
(Re)細線12を介してなる陰極支持スリーブ1
4の頂部に嵌入されている。そして、有底筒状の
Re材からなるカツプ13内に溶接固定されてい
る。このカツプ13の外面は、陰極支持スリーブ
より固定されている。陰極支持スリーブ14は、
その下端部がNbまたは1%Zr−Nb合金からなる
3本の支持用ストラツプ15を介してコバール
(商品名)からなる外側支持筒16に固定されて
いる。なお、陰極支持スリーブ14の内側には、
図示しない加熱ヒータが挿入され、このような陰
極構体は各種グリツド電極などとともに電子銃構
体として組立てられ、電子管内に組込まれる。 そこで陰極支持スリーブ14は、電気溶解材で
あるニオブ(Nb)合金材を、圧延加工およびプ
レス加工により肉厚約25μm、外径1.6mmのキヤツ
プとして製作され、その後レーザ加工により長さ
6.4mmのスリーブに仕上げられる。 本発明者等は、このような傍熱形陰極構体をエ
ミツシヨン特性試験が可能な3極管に組込み、振
動試験前後のエミツシヨン特性およびカツトオフ
電圧特性の比較を行い、振動試験によるスリーブ
の変形度合を評価した。この内、カツトオフ電圧
特性の結果を第2図における曲線A1のようなデ
ータを得た。なお、スリーブ材の評価のため、従
来例として形状や寸法が同一なTa製支持スリー
ブを用いた陰極構体を製作し、同様に評価した。
その結果は同図に示す曲線B1の如くである。な
おこの振動試験は、ランダムモード、実効加速度
10G、バンド幅2000Hz、1回の振動試験時間を2
分とし、繰り帰し実施した。また比較のため、陰
極支持スリーブの肉厚を100μm、および200μm
としたNb製スリーブ、およびTa製スリーブを用
いた陰極構体について、それぞれ上記と同様な耐
振性を評価した。その結果、肉厚が200μmのも
のではスリーブ材質による耐振性、すなわち電子
管のカツトオフ電圧特性の変化量の差がほとんど
認められなかつた。それに対して、肉厚が100μ
mではNb合金製スリーブの方がすぐれていた。
すなわち第2図に示す曲線A2は厚さ100μmの
Nb合金製スリーブ、曲線B2は同じ厚さのTa製
スリーブのものの結果である。 このような結果から、Nb合金製陰極支持スリ
ーブを用いた傍熱形陰極構体は、Ta製スリーブ
の陰極構体に比較して電子管のカツトオフ電圧変
動値を小さくすることができることが明らかであ
る。この結果は、振動試験による変形が相対的に
比重の小さなNb材において極めて少ないことを
意味しており、この発明に係る陰極構体が耐振動
性にすぐれたものであることを示している。 またNb材は比較的加工性が良く、プレス成形
や細いスリーブ状材への連続的引抜き加工が容易
かつ安定的に実施でき量産的に優れている。その
好適例として、Nb系合金材を純Ta材および純
Nb材と比較しスリーブの合金組成、カツトオフ
電圧変動値、および材料スリーブ形状への引抜き
加工性を表1に示した。 なお、この実験は以下の内容にて実施された。 傍熱形陰極構体をエミツシヨン特性試験が可能
な3極管に組込み、ヒータオンオフによる間欠動
作後のカツトオフ電圧の変動を評価した。 ヒータ通電により電子放出部表面は通常の動作
温度よりも高い輝度温度で1100℃にまで昇温され
た。通電時間5分、通電休止時間10分のスケジユ
ールで500時間試験した。
[Purpose of the invention] (Industrial application field) This invention is used in electron tubes such as high-definition color picture tubes, high-quality image pickup tubes, projection tubes, or traveling wave tubes, and emits electron beams with high current density. The present invention relates to indirectly heated cathode structures, and particularly to improvements in cathode support sleeve materials. (Prior Art) The indirectly heated cathode assembly used in the above-mentioned electron tube generally has a structure in which a disk-shaped electron emitting section is supported by a support sleeve material. Since this cathode support sleeve is the component most exposed to high temperatures other than the heater, it must have sufficiently high mechanical strength at high temperatures. Generally, the thicker the support sleeve is, the higher its mechanical strength will be, but on the other hand, it will be heavier and cannot be structurally miniaturized. Furthermore, heat loss increases due to increased heat conduction, which is disadvantageous in that it becomes necessary to increase heating power. Especially in the case of an impregnated cathode structure, the operating temperature is 900℃ to 1100℃ (brightness temperature)
It is normal to operate at a relatively high temperature of
Moreover, in the aging process carried out prior to operation as an electron tube, the tube may be heated to about 1200°C. Furthermore, electron tubes using these indirectly heated cathode structures may be installed in artificial satellites, aircraft, ships, automobiles, etc.
More stringent vibration resistance is required. Under these circumstances, the support sleeve of the conventional impregnated cathode structure has
Tantalum (Ta) material has been mainly used. (Problems to be solved by the invention) However, the support sleeve made of Ta material is relatively difficult to process and weld, and its high specific gravity generates a large load during vibration, making it difficult to provide vibration resistance. be. The present invention aims to eliminate the above-mentioned drawbacks and provide an indirectly heated cathode structure that is made of a material that has excellent vibration resistance, strong material strength, especially thermal fatigue, is relatively easy to process, and can reduce heat capacity. purpose. [Structure of the Invention] (Means for Solving the Problems) The present invention is an indirectly heated cathode structure in which the main component of the sleeve supporting the electron emitting part is an alloy containing at least 85% by weight of niobium. . The remainder is at least one metal selected from the group consisting of titanium, zirconium, hafnium, vanadium, tantalum, molybdenum, and tungsten, and is an indirectly heated cathode structure containing these metals as alloy additive elements. (Function) According to the present invention, while Ta, which is the material of the conventional cathode support sleeve, has a specific gravity of 16.6, the niobium alloy material has a specific gravity of approximately 8.6, so the weight of the support sleeve can be reduced. It can be reduced to 50% or less. Furthermore, it can be stably processed into a thin-walled sleeve by drawing. Moreover, it has characteristics that can withstand thermal fatigue caused by heating and cooling, and vibration resistance characteristics are not impaired. (Example) An example will be described below with reference to the drawings. This embodiment is an example in which the present invention is applied to an impregnated cathode structure as shown in FIG. The disk-shaped electron emitting portion 11 is made of porous tungsten impregnated with an electron emitting substance and whose surface is coated with iridium (Ir). This disk-shaped electron emitting section 11 is formed by a cathode support sleeve 1 formed by a rhenium (Re) thin wire 12.
It is fitted into the top of 4. And a cylindrical shape with a bottom
It is welded and fixed within a cup 13 made of Re material. The outer surface of this cup 13 is secured by a cathode support sleeve. The cathode support sleeve 14 is
Its lower end is fixed to an outer support cylinder 16 made of Kovar (trade name) via three support straps 15 made of Nb or 1% Zr-Nb alloy. Note that inside the cathode support sleeve 14,
A heater (not shown) is inserted, and such a cathode assembly is assembled together with various grid electrodes and the like as an electron gun assembly, and is incorporated into an electron tube. Therefore, the cathode support sleeve 14 is manufactured by rolling and pressing a niobium (Nb) alloy material, which is an electrolytic melting material, into a cap with a wall thickness of approximately 25 μm and an outer diameter of 1.6 mm, and then laser processing to lengthen the cap.
Finished in a 6.4mm sleeve. The present inventors incorporated such an indirectly heated cathode structure into a triode tube capable of testing the emission characteristics, compared the emission characteristics and cut-off voltage characteristics before and after the vibration test, and determined the degree of deformation of the sleeve due to the vibration test. evaluated. Among these, data such as curve A1 in FIG. 2 was obtained as a result of cut-off voltage characteristics. In order to evaluate the sleeve material, a cathode structure using a support sleeve made of Ta having the same shape and dimensions as the conventional example was manufactured and evaluated in the same manner.
The result is a curve B1 shown in the figure. This vibration test is conducted in random mode, effective acceleration
10G, bandwidth 2000Hz, one vibration test time 2
The test was carried out repeatedly. For comparison, the wall thickness of the cathode support sleeve was 100μm and 200μm.
The vibration resistance of cathode assemblies using a Nb sleeve and a Ta sleeve were evaluated in the same manner as above. As a result, in the case of a sleeve having a wall thickness of 200 μm, there was almost no difference in the vibration resistance, that is, the amount of change in the cut-off voltage characteristics of the electron tube, depending on the sleeve material. On the other hand, the wall thickness is 100μ
In m, the Nb alloy sleeve was superior.
In other words, curve A2 shown in Figure 2 is for a 100 μm thick
For the Nb alloy sleeve, curve B2 is the result for a Ta sleeve of the same thickness. From these results, it is clear that the indirectly heated cathode assembly using the Nb alloy cathode support sleeve can reduce the cutoff voltage fluctuation value of the electron tube compared to the cathode assembly using the Ta sleeve. This result means that the deformation caused by the vibration test is extremely small in the Nb material, which has a relatively low specific gravity, and indicates that the cathode structure according to the present invention has excellent vibration resistance. In addition, Nb material has relatively good workability, and can be easily and stably press-formed or continuously drawn into thin sleeve-shaped materials, making it excellent for mass production. As a suitable example, Nb-based alloy material is replaced with pure Ta material and pure Ta material.
Table 1 shows the alloy composition of the sleeve, the cut-off voltage fluctuation value, and the drawing processability into the shape of the material sleeve in comparison with the Nb material. This experiment was conducted with the following contents. The indirectly heated cathode assembly was incorporated into a triode tube capable of testing emission characteristics, and the fluctuation of cut-off voltage after intermittent operation due to heater on/off was evaluated. By energizing the heater, the surface of the electron-emitting region was heated to a brightness temperature of 1100°C, which is higher than the normal operating temperature. The test was conducted for 500 hours with a schedule of 5 minutes of energization time and 10 minutes of energization stop time.

【表】 本実施例の結果から明らかなように、添加金属
毎にそれらの添加量は適性範囲が設定される。即
ち、添加金属が主に単独の場合その添加金属がジ
ルコニウムの場合には、0.2乃至6.0重量%、同様
にハフニウムは3乃至15重量%、バナジウムは1
乃至6重量%、モリブデンは2乃至7重量%、タ
ングステンは0.5乃至3重量%、タンタルは2乃
至5重量%となる。 一方、複合添加の場合には、ハフニウムは3乃
至10重量%およびチタン0.2乃至3.0重量%、ハフ
ニウム3乃至10重量%およびジルコニウム0.2乃
至1.0重量%、バナジウム1乃至4重量%および
ジルコニウム0.2乃至1.0重量%、モリブデン2乃
至7重量%およびジルコニウム0.2乃至1.0重量
%、またはタングステン0.5乃至3.0重量%および
ジルコニウム0.2乃至1.0重量%となる。これらの
添加量のそれぞれの上限は、主として実用上スリ
ーブ加工可能な上限値であり、上限は耐疲労特性
に顕著な効果を生ずる下限値に対応する。表1に
示したデータでは、加工性は優、良、可までスリ
ーブ化が可能で、カツトオフ電圧は2.0V以下で
あれば顕著な効果を示すものとされる。なお可は
およそ実用できる限度である。 また、スリーブ肉厚のカツトオフ変動値に及ぼ
す効果を純ニオブ製スリーブと合金材としてのニ
オブと0.75重量%ジルコニウム合金製スリーブを
用い、それぞれ50μm、75μm、100μmの肉厚と
したものを製作し、上記オン・オフ試験を行つ
た。その結果、肉厚が75μmおよび100μmのもの
では、スリーブ材質による耐熱疲労特性、すなわ
ち、電子管のカツトオフ電圧の変動量に差が殆ど
認められなかつた。一方それらに対し、肉厚50μ
mではNb−Zr合金製スリーブの方が優れていた。 このような結果から、ニオブ合金を用いた傍熱
形陰極構体は、優れた耐熱疲労特性を示し、寿命
中におけるカツトオフ変動値を極めて小さくする
ことができることは明らかである。 添加合金量がわずかであり、純ニオブ製スリー
ブの良好な耐振動特性を維持しつつ、純ニオブ製
スリーブよりも耐熱疲労特性の優れた特性を有
し、より苛酷な使用条件にも耐えることができ、
結果として、高性能電子管を具現化することがで
きる。 デイスク状電子放出部は、カツプを介してスリ
ーブ内に配設したが、直接スリーブにデイスク状
電子放出部を設けることもできる。しかし、その
場合、デイスク状電子放出部の下に電子放出物が
ヒータ方向に蒸発または浸透するのを遮断する部
材を設ける必要がある。 なお、以上は含浸形陰極の場合について説明し
たが、酸化物陰極等の傍熱形陰極構体などに広く
適用できる。 [発明の効果] 以上説明したように、本発明によれば、陰極ス
リーブは強化ニオブ合金で構成されるので、比重
が比較的小さく、また熱容量が比較的小さい。従
つて、傍熱形陰極構体として耐振性が良好で、ま
た加熱電力の相対的低減も可能である。さらに、
陰極動作の繰返し加熱に対する耐熱疲労特性も優
れた陰極構体が提供でき、信頼性および性能の高
い電子管の実現に多きく寄与するものである。そ
して、細長い薄肉スリーブ状への絞り加工などの
加工性が良く、量産性に富んでいる。
[Table] As is clear from the results of this example, an appropriate range is set for the amount of each additive metal. That is, when the additive metal is mainly single, when the additive metal is zirconium, it is 0.2 to 6.0% by weight, similarly, hafnium is 3 to 15% by weight, and vanadium is 1% by weight.
Molybdenum is 2 to 7% by weight, tungsten is 0.5 to 3% by weight, and tantalum is 2 to 5% by weight. On the other hand, in the case of composite addition, hafnium is 3 to 10% by weight and titanium is 0.2 to 3.0% by weight, hafnium is 3 to 10% by weight and zirconium is 0.2 to 1.0% by weight, vanadium is 1 to 4% by weight and zirconium is 0.2 to 1.0% by weight. %, 2-7% molybdenum and 0.2-1.0% zirconium, or 0.5-3.0% tungsten and 0.2-1.0% zirconium. The upper limit of each of these additive amounts is mainly the upper limit that allows sleeve processing in practical terms, and the upper limit corresponds to the lower limit that produces a remarkable effect on fatigue resistance. According to the data shown in Table 1, sleeves can be made with excellent, good, and fair workability, and a cut-off voltage of 2.0V or less shows a remarkable effect. The acceptable value is approximately the practical limit. In addition, we investigated the effect of sleeve wall thickness on the cut-off variation value by using a sleeve made of pure niobium and a sleeve made of niobium and 0.75% by weight zirconium alloy material, with wall thicknesses of 50 μm, 75 μm, and 100 μm, respectively. The above on/off test was conducted. As a result, for sleeves with wall thicknesses of 75 .mu.m and 100 .mu.m, there was almost no difference in thermal fatigue resistance, that is, variation in the cut-off voltage of the electron tube, depending on the material of the sleeve. On the other hand, the wall thickness is 50μ
The Nb-Zr alloy sleeve was superior in m. From these results, it is clear that an indirectly heated cathode structure using a niobium alloy exhibits excellent thermal fatigue resistance and can extremely reduce the cutoff fluctuation value during its life. The amount of alloy added is small, and while maintaining the good vibration resistance properties of pure niobium sleeves, it has better thermal fatigue resistance than pure niobium sleeves, and can withstand even harsher usage conditions. I can,
As a result, a high performance electron tube can be realized. Although the disk-shaped electron-emitting section is disposed inside the sleeve via the cup, it is also possible to provide the disk-shaped electron-emitting section directly on the sleeve. However, in that case, it is necessary to provide a member below the disk-shaped electron emitting section to prevent the electron emitting material from evaporating or penetrating toward the heater. Note that although the case of an impregnated cathode has been described above, the present invention can be widely applied to indirectly heated cathode structures such as oxide cathodes. [Effects of the Invention] As explained above, according to the present invention, the cathode sleeve is made of a reinforced niobium alloy, and therefore has a relatively small specific gravity and a relatively small heat capacity. Therefore, it has good vibration resistance as an indirectly heated cathode structure, and it is also possible to relatively reduce heating power. moreover,
It is possible to provide a cathode structure with excellent thermal fatigue resistance against repeated heating during cathode operation, which greatly contributes to the realization of highly reliable and high-performance electron tubes. It also has good processability, such as drawing into a long and thin sleeve shape, and is highly suitable for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の傍熱形陰極構体の一実施例に
係わる一部を切断して示す縦断面図、第2図は振
動試験の繰り返し回数に対するカツトオフ電圧を
示す特性図である。 11……電子放出部、14……陰極支持スリー
ブ。
FIG. 1 is a partially cut away vertical sectional view of an embodiment of the indirectly heated cathode assembly of the present invention, and FIG. 2 is a characteristic diagram showing the cut-off voltage with respect to the number of repetitions of the vibration test. 11...electron emission section, 14...cathode support sleeve.

Claims (1)

【特許請求の範囲】 1 陰極支持スリーブと、この支持スリーブの一
部に取付けられた電子放出部と、前記支持スリー
ブの内側に配設されたヒータとを具備する傍熱形
陰極構体において、 前記支持スリーブの材質は、少なくとも85重量
%以上のニオブを含み、残部が、チタン、ジルコ
ニウム、ハフニウム、バナジウム、タンタル、モ
リブデンおよびタングステン群の中から選択され
た少なくとも一種の金属を含むニオブ合金からな
ることを特徴とする傍熱形陰極構体。
[Scope of Claims] 1. An indirectly heated cathode assembly comprising a cathode support sleeve, an electron emitting section attached to a part of the support sleeve, and a heater disposed inside the support sleeve, comprising: The material of the support sleeve shall consist of a niobium alloy containing at least 85% by weight of niobium, with the remainder containing at least one metal selected from the group of titanium, zirconium, hafnium, vanadium, tantalum, molybdenum, and tungsten. An indirectly heated cathode structure characterized by:
JP61301360A 1986-07-03 1986-12-19 Indirectly heated cathode body structure Granted JPS63146322A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE3751168T DE3751168T2 (en) 1986-12-19 1987-12-17 Structure of an indirectly heated cathode for cathode ray tubes.
EP87311119A EP0272881B1 (en) 1986-12-19 1987-12-17 Indirectly heated cathode structure for electron tubes
US07/135,054 US4820954A (en) 1986-12-19 1987-12-18 Indirectly heated cathode structure for electron tubes
KR8714538A KR910007826B1 (en) 1986-12-19 1987-12-19 Cathode structure heated indirectedly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15499086 1986-07-03
JP61-154990 1986-07-03

Publications (2)

Publication Number Publication Date
JPS63146322A JPS63146322A (en) 1988-06-18
JPH0426173B2 true JPH0426173B2 (en) 1992-05-06

Family

ID=15596305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61301360A Granted JPS63146322A (en) 1986-07-03 1986-12-19 Indirectly heated cathode body structure

Country Status (1)

Country Link
JP (1) JPS63146322A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193228A (en) * 1984-03-15 1985-10-01 Toshiba Corp Impregnated cathode structure
JPS61288339A (en) * 1985-06-17 1986-12-18 Matsushita Electronics Corp Indirectly-heated cathode for cathode-ray tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193228A (en) * 1984-03-15 1985-10-01 Toshiba Corp Impregnated cathode structure
JPS61288339A (en) * 1985-06-17 1986-12-18 Matsushita Electronics Corp Indirectly-heated cathode for cathode-ray tube

Also Published As

Publication number Publication date
JPS63146322A (en) 1988-06-18

Similar Documents

Publication Publication Date Title
US4518890A (en) Impregnated cathode
US4303846A (en) Sintered electrode in a discharge tube
US4820954A (en) Indirectly heated cathode structure for electron tubes
JPH0426173B2 (en)
KR0170221B1 (en) Dispenser cathode
US3268305A (en) Composite wire
CN1099903A (en) Direct-heating-type dispenser cathode structure
US5668434A (en) Directly heated cathode for cathode ray tube
EP0848405B1 (en) Low power impregnated cathode of cathode-ray tube
EP0510941B1 (en) Method for manufacturing impregnated cathodes
US4063124A (en) Rotating anode for X-ray tubes
EP1150334A1 (en) Electrode for discharge tube and discharge tube using it
JPS6360499B2 (en)
JPS6062034A (en) Hot-cathode frame body
RU2034351C1 (en) Dispensing cathode
KR920007413B1 (en) Structure of dispenser type cathode
KR820001401B1 (en) Thermionic emission cathodes
JP3137406B2 (en) Manufacturing method of cathode assembly
JPS6298539A (en) Electron gun structure
KR890003608B1 (en) Cathode sleeve of quick start crt
GB2116773A (en) Cathode electrode assembly of an electron tube
JP2619106B2 (en) Oxide cathode
JP3394794B2 (en) Cathode assembly
KR19990081672A (en) Impregnation type cathode for color cathode ray tube
JPH04267029A (en) Impregnated cathode structure, manufacture thereof and cathode-ray tube using it

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term