JPH04260791A - Heat transporting device - Google Patents

Heat transporting device

Info

Publication number
JPH04260791A
JPH04260791A JP10406691A JP10406691A JPH04260791A JP H04260791 A JPH04260791 A JP H04260791A JP 10406691 A JP10406691 A JP 10406691A JP 10406691 A JP10406691 A JP 10406691A JP H04260791 A JPH04260791 A JP H04260791A
Authority
JP
Japan
Prior art keywords
heat
metal block
group
cavity
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10406691A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP10406691A priority Critical patent/JPH04260791A/en
Publication of JPH04260791A publication Critical patent/JPH04260791A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Abstract

PURPOSE:To reduce thickness and weight of a metal block type heat transporting device, to increase the area of the device, and to eliminate a variation in performance according to a holding attitude by altering a structure of a heat pipe formed in a metal block to a type for transporting the quantity of heat by axial vibration of and smooth circulation of operating liquid. CONSTITUTION:A sealed container in which a cavity vessel is formed in a metal block, a heat pipe containing two-phase operating liquid to be sealed therein, is formed therein, and the vessel is formed of pore group 2 provided with many pores of parallel rows and a plurality of header cavities 3 for fixedly coupling them at both ends of the group 2 in such a manner that the inner diameter of each pore is so sufficiently reduced as to block the pore by the surface tension of the operating fluid and to allow the fluid to always flow in the blocked state.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はヒートパイプ応用の熱輸
送装置の構造に関するものであり、特にコンテナ内に於
ける作動液の軸方向振動と緩やかな循環により熱量を輸
送する方式のヒートパイプを応用した金属ブロック型の
熱輸送装置の構造に関する。
[Field of Industrial Application] The present invention relates to the structure of a heat transport device using a heat pipe, and in particular to a heat pipe that transports heat by axial vibration and gentle circulation of a working fluid in a container. Concerning the structure of an applied metal block type heat transport device.

【0002】0002

【従来の技術】従来のブロック型の熱輸送装置は一般に
金属ブロック内に、二層凝縮性作動液の相変化と蒸気移
動により熱量を輸送する方式の、従来型ヒートパイプを
作り込んで構成されてあるものが常であった。
[Prior Art] A conventional block-type heat transport device is generally constructed by building a conventional heat pipe in a metal block, which transports heat by phase change and vapor transfer of a two-layer condensable working fluid. There was always something like that.

【0003】0003

【発明が解決しようとする課題】しかし上記の如き熱輸
送装置は、従来型ヒートパイプの有する問題点をそのま
ま有するものであった。即ち従来型ヒートパイプの作動
原理を示す断面略図である図3から明らかな如く、コン
テナ4の受熱部9から放熱部10に向かう蒸気流7−2
は、コンテナ4の内径が3mm以下であると、コンテナ
内壁及びウイック5による流体抵抗が急激に増加する点
、コンテナ内壁面及びウイックを伝わって放熱部10か
ら受熱部9に向かって還流する凝縮作動液8との相互干
渉による抵抗が急激に増加する点、などの理由からその
流量流速が激減する。またコンテナ4の内径が3mm以
下であると、作動液の表面張力によって管内が閉塞され
易く、蒸気流7−2が停止する恐れがある。このような
問題点は内径3mmの場合は長さ300mm以上におい
て激しく影響し、内径が更に小さい場合はこの長さは加
速度的に短くなり、遂にはヒートパイプとしての作動が
全く不可能な状態となる。また還流作動液8の流れは重
力の影響を受け易く、特にトップヒートモードにおいて
は流れが停止する場合があり、水平ヒートモードにおい
ても流量流速が1/2以下になる場合もある。
However, the above-mentioned heat transport device still has the same problems as the conventional heat pipe. That is, as is clear from FIG. 3, which is a cross-sectional schematic diagram showing the operating principle of the conventional heat pipe, the steam flow 7-2 from the heat receiving section 9 of the container 4 toward the heat dissipating section 10.
If the inner diameter of the container 4 is 3 mm or less, the fluid resistance due to the inner wall of the container and the wick 5 will increase rapidly, and the condensation action will be caused by the flow flowing back from the heat dissipating section 10 to the heat receiving section 9 through the inner wall surface of the container and the wick. The flow rate is drastically reduced due to the fact that the resistance due to mutual interference with the liquid 8 increases rapidly. Moreover, if the inner diameter of the container 4 is 3 mm or less, the inside of the pipe is likely to be blocked by the surface tension of the working fluid, and there is a possibility that the steam flow 7-2 may be stopped. These problems severely affect lengths of 300 mm or more when the inner diameter is 3 mm, and when the inner diameter is even smaller, this length becomes shorter at an accelerating rate, until it becomes completely impossible to operate as a heat pipe. Become. Further, the flow of the refluxing working fluid 8 is easily influenced by gravity, and the flow may stop particularly in the top heat mode, and the flow rate may be reduced to 1/2 or less even in the horizontal heat mode.

【0004】従って本発明が解決しようとする課題は次
の如きものとなる。 (a)内径3mm以下のヒートパイプの製作は極めて困
難となるから、ウイック厚さ及び管の肉厚などを考慮す
れば、厚さ6mm以下のブロック型の熱輸送装置の構成
は極めて困難である。 (b)内径3mmのヒートパイプを作り込んだブロック
型の熱輸送装置はその長さが300mm前後以上になる
と性能が急激に悪化する。またヒートパイプの内径が更
に小さい場合には作動不可能になる。従って厚さ6mm
以下のブロック型の熱輸送装置は長さ300mm以上に
構成することが困難である。 (C)従来型のヒートパイプが作り込まれたブロック型
の熱輸送装置はトップヒートモードにおける熱輸送能力
が極めて悪く、場合によっては作動不可能となる。また
水平ヒートモードにおける性能も1/2程度に低下する
[0004] Therefore, the problems to be solved by the present invention are as follows. (a) Since it is extremely difficult to manufacture a heat pipe with an inner diameter of 3 mm or less, it is extremely difficult to construct a block-type heat transport device with a thickness of 6 mm or less, considering the wick thickness and wall thickness of the tube. . (b) The performance of a block-type heat transport device incorporating a heat pipe with an inner diameter of 3 mm deteriorates rapidly when the length becomes around 300 mm or more. Moreover, if the inner diameter of the heat pipe is even smaller, it becomes inoperable. Therefore, the thickness is 6mm
It is difficult to construct the following block-type heat transport device with a length of 300 mm or more. (C) A block-type heat transport device incorporating a conventional heat pipe has extremely poor heat transport ability in the top heat mode, and may become inoperable in some cases. Furthermore, the performance in the horizontal heat mode is also reduced to about 1/2.

【0005】[0005]

【課題を解決するための手段】課題を解決するための手
段の基本的な考え方としては、金属ブロック内に作り込
まれるヒートパイプの構成を、作動液の相変化と蒸気移
動により熱輸送を行う方式から、作動液の軸方向振動と
緩やかな循環により熱量を輸送する方式のヒートパイプ
に変更する。
[Means for solving the problem] The basic concept of the means for solving the problem is to configure a heat pipe built into a metal block to transport heat through phase change of the working fluid and vapor transfer. The system will be changed to a heat pipe system that transports heat through axial vibration and gentle circulation of the working fluid.

【0006】即ち熱輸送装置は熱伝導性の良好な材料か
らなる所定の形状の金属ブロック内に空洞容器が作りこ
まれてあり、空洞容器内には所定量の二相凝縮性作動流
体が封入されてあり、空洞容器は多数の細孔が並列に設
けられた細孔群と、該細孔群の各片側ごとに細孔群を管
寄せするヘッダ洞孔の複数個、からなる密閉容器であり
、且つ細孔の内径は作動流体がその表面張力により少量
と雖も孔内を閉塞せしめ、常に閉塞状態のままで流動す
るよう充分に細径化された内径であることを特徴として
いる。
That is, the heat transport device has a hollow container built into a metal block of a predetermined shape made of a material with good thermal conductivity, and a predetermined amount of two-phase condensable working fluid is sealed in the hollow container. The hollow container is a closed container consisting of a pore group in which a large number of pores are provided in parallel, and a plurality of header holes for connecting the pore groups on each side of the pore group. The pores are characterized in that the inner diameter of the pores is sufficiently small so that a small amount of the working fluid closes the pores due to its surface tension, and the pores always flow in the closed state.

【0007】[0007]

【作用】このように構成された細孔群は、ヘッダ洞孔に
より連結された細管ループとみなされるから、空洞容器
全体はループ型細管ヒートパイプであると見なされる。 この様な金属ブロックに於いて、その一端の一部に熱量
が供給され受熱部となった場合該受熱部に対応する細孔
群の受熱部群には作動液の核沸騰が発生し、それら受熱
部群の核沸騰の相互作用により作動液はループ型細孔内
を軸方向に振動しながら、抵抗の少ない方向に向かって
緩やかに循環する。熱量の供給が金属ブロックの一端の
すべてに行われる場合には、細孔群受熱部の核沸騰間の
バランスによっては作動液の緩やかな循環は発生せず軸
方向振動のみが発生する場合もある。
[Operation] The thus constituted pore group is considered to be a capillary loop connected by the header cavity, and therefore the entire hollow container is considered to be a loop-type capillary heat pipe. In such a metal block, when heat is supplied to a part of one end and it becomes a heat receiving part, nucleate boiling of the working fluid occurs in the heat receiving part group of the pore group corresponding to the heat receiving part, and Due to the interaction of the nucleate boiling of the heat receiving section group, the working fluid vibrates in the axial direction within the loop-shaped pores and slowly circulates in the direction of least resistance. If heat is supplied to all ends of the metal block, depending on the balance between nucleate boiling in the pore group heat receiving section, gentle circulation of the working fluid may not occur and only axial vibration may occur. .

【0008】このようなループ型細孔内における作動液
の軸方向振動と緩やかな循環は、熱量を受熱部(高温部
)から放熱部(低温部)に向かって効率よく輸送する。 このことは発明者が出願中の特願平2−319461号
の明細書に記載のループ型細管ヒートパイプの作動原理
と全く同じである。また細管内における作動液の軸方向
振動による熱輸送の原理についての説明はフロリダ大学
の出願特許である特公平2−35239号に詳述されて
ある。図2は特願平2−319461号のループ型細管
ヒートパイプを断面で示した説明図である。コンテナ4
は作動液6がその表面張力により常にコンテナ内を閉塞
した状態で流動するよう充分に細径化されてある。 受熱部9には加熱手段11からの受熱によって核沸騰が
発生する。受熱部9−1、9−2に発生した核沸騰は作
動液6に軸方向の振動aを発生せしめると共に、緩やか
な循環流bをも発生せしめる。循環流bは蒸気泡7−1
をループの全体に配分して振動の発生を助ける。作動液
の軸方向振動と緩やかな循環は熱量を受熱部9−1、9
−2から放熱部10−1、10−2に輸送する。
The axial vibration and gentle circulation of the working fluid within the loop-shaped pores efficiently transport the amount of heat from the heat receiving section (high temperature section) to the heat radiating section (low temperature section). This is exactly the same as the operating principle of the loop-type thin tube heat pipe described in the specification of Japanese Patent Application No. 2-319461, which is currently being filed by the inventor. Further, the principle of heat transport by axial vibration of the hydraulic fluid in the capillary tube is explained in detail in Japanese Patent Publication No. 2-35239, a patent application filed by the University of Florida. FIG. 2 is an explanatory cross-sectional view of a loop-type thin tube heat pipe disclosed in Japanese Patent Application No. 2-319461. container 4
has a sufficiently small diameter so that the hydraulic fluid 6 always flows in the container in a closed state due to its surface tension. Nucleate boiling occurs in the heat receiving section 9 due to the heat received from the heating means 11. The nucleate boiling generated in the heat receiving parts 9-1 and 9-2 causes axial vibration a to occur in the working fluid 6, as well as a gentle circulation flow b. Circulating flow b is vapor bubbles 7-1
is distributed throughout the loop to help generate vibrations. The axial vibration and gentle circulation of the hydraulic fluid transfers heat to the heat receiving parts 9-1 and 9.
-2 to the heat radiation sections 10-1 and 10-2.

【0009】従って金属ブロックの受熱部に供給された
熱量は細孔群の上述の如き作用により金属ブロックの残
余の部分に輸送されて、それらの部分を温度上昇せしめ
る。それらの部分が所定の冷却手段で冷却される場合は
その作用は特に活発になる。
Therefore, the amount of heat supplied to the heat receiving portion of the metal block is transported to the remaining parts of the metal block by the above-described action of the pores, raising the temperature of those parts. The effect becomes particularly active when those parts are cooled by a predetermined cooling means.

【0010】このようにして行われる該金属ブロックの
熱輸送は、主として細孔群内の作動液の軸方向振動によ
って行われるのであるから、その熱輸送性能は金属ブロ
ックの保持姿勢によって変わることはない。すなわちボ
トムヒート姿勢でも、トップヒート姿勢でもその性能は
変わりなく良好な熱輸送が行われる。また細孔の内径は
3mmよりはるかに細い例えば0.1mmの如く細径化
することが出来る。更にウイックが無いのでその厚さを
考慮する必要も無い。従って金属ブロックの厚さは2m
mぐらいに薄くすることが可能となる。更にこの方式の
ヒートパイプは性能が低下することなく充分に長くする
ことが出来るから金属ブロックの長さは例えば1000
mmの如く長くすることが可能になる。
[0010] Since the heat transport of the metal block carried out in this manner is mainly carried out by the axial vibration of the working fluid within the pore group, the heat transport performance does not change depending on the holding posture of the metal block. do not have. In other words, the performance is the same whether it is in the bottom heat position or the top heat position, and good heat transport is performed. Further, the inner diameter of the pores can be made much smaller than 3 mm, for example, 0.1 mm. Furthermore, since there is no wick, there is no need to consider its thickness. Therefore, the thickness of the metal block is 2m.
It becomes possible to make it as thin as about m. Furthermore, this type of heat pipe can be made sufficiently long without deteriorating its performance, so the length of the metal block is, for example, 1000 mm.
It becomes possible to make it as long as mm.

【0011】[0011]

【実施例】図1は本発明の一実施例である平板形金属ブ
ロックを示す。(イ)は一部断面の平面図(ロ)は側面
の一部拡大断面図である。金属ブロック1は二枚の薄い
平板1−1及び1−2からなり、相互に溶接されて一枚
の平板形金属ブロック1として積層されてある。平板1
−1、1−2は両者を積層する合わせ目には平板形空洞
4が形成される形状になっている。空洞4の中には平板
1−1と1−2とが溶接される前に、予め細管群2が並
列に挿入または圧入されてあり、二枚の平板が相互に溶
接される際に細管群2と平板1−1、1−2とも相互に
溶接されてある。平板の厚さが充分に厚い場合は挿入ま
たは圧入されたままでも良いが、図においては平板が極
めて薄肉に形成されてあるので積層溶接により全体を強
化せしめてある。各細管の内径は作動液がその表面張力
により常に管内を閉塞した状態で流動するように充分に
細径化せしめてある。細管群2のそれぞれの長さは平板
形空洞4の長さよりやや短くなっており、細管群2の両
端末と平板形空洞4との間の余剰空間はヘッダ空洞3と
して構成されてある。細管群2は一層または二層に構成
されてある。このように構成された平板形金属ブロック
は厚さ2mmのごとく極めて薄くしかも幅も長さも充分
に大きく形成された平板状熱輸送装置として使用するこ
とができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a flat metal block which is an embodiment of the present invention. (A) is a partially sectional plan view (B) is a partially enlarged side sectional view. The metal block 1 consists of two thin flat plates 1-1 and 1-2, which are welded together and stacked to form one flat metal block 1. flat plate 1
-1 and 1-2 are shaped so that a flat plate-shaped cavity 4 is formed at the seam where they are laminated. In the cavity 4, before the flat plates 1-1 and 1-2 are welded, the thin tube group 2 is inserted or press-fitted in parallel in advance, and when the two flat plates are welded together, the thin tube group 2 is inserted or press-fitted in parallel. 2 and flat plates 1-1 and 1-2 are welded to each other. If the flat plate is sufficiently thick, it may remain inserted or press-fitted, but in the figure, the flat plate is formed extremely thin, so the entire plate is reinforced by lamination welding. The inner diameter of each capillary tube is made sufficiently small so that the hydraulic fluid always flows in the tube in a closed state due to its surface tension. The length of each of the capillary tube groups 2 is slightly shorter than the length of the flat plate-shaped cavity 4, and the surplus space between both ends of the capillary tube group 2 and the flat plate-shaped cavity 4 is configured as a header cavity 3. The thin tube group 2 is constructed in one or two layers. The flat metal block constructed in this manner can be used as a flat heat transport device that is extremely thin, such as 2 mm in thickness, and has sufficiently large width and length.

【0012】0012

【発明の効果】本発明の金属ブロック型の熱輸送装置は
極めて薄肉の且つ広い面積の平板形状に構成することが
出来ると共にその熱輸送性能はいかなる姿勢でも変化す
ることがない。従って平板の形状は単純な平面に限定す
る必要は無く複雑な曲面に構成されてあってもその性能
は維持される。また内蔵されるヒートパイプの構造が簡
易で強靭であるから、一旦成型が完了した熱輸送装置で
あっても、性能を悪化させることなく圧延による2次成
型を実施することが可能である。また金属ブロックの形
状も平板形状に限定するものでは無く、円筒形状、円柱
形状、その他各種の形状に構成することができる。それ
らの応用としては、面上における温度の均熱化、熱コネ
クタ、熱吸収板、放熱板、流体輸送管、熱交換器用配管
、その他多岐に亙る応用が考えられる。
Effects of the Invention The metal block type heat transport device of the present invention can be constructed in the form of a flat plate with an extremely thin wall and a wide area, and its heat transport performance does not change in any posture. Therefore, the shape of the flat plate does not need to be limited to a simple plane, and its performance can be maintained even if it is configured into a complicated curved surface. In addition, since the structure of the built-in heat pipe is simple and strong, even if the heat transport device has already been formed, it is possible to perform secondary forming by rolling without deteriorating the performance. Further, the shape of the metal block is not limited to a flat plate shape, and can be configured into a cylindrical shape, a cylindrical shape, and various other shapes. Their applications include temperature equalization on a surface, heat connectors, heat absorption plates, heat sinks, fluid transport pipes, heat exchanger piping, and a wide variety of other applications.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(イ)本発明の一実施例の構造を示した一部を
断面にした平面略図である。 (ロ)同上、側面の一部拡大図である。
FIG. 1 (a) is a partially cross-sectional schematic plan view showing the structure of an embodiment of the present invention. (b) Same as above, partially enlarged side view.

【図2】本発明が応用するループ型細管ヒートパイプの
作動説明図である。
FIG. 2 is an explanatory diagram of the operation of the loop-type capillary heat pipe to which the present invention is applied.

【図3】従来の金属ブロック型熱輸送装置が応用してい
るヒートパイプの作動説明図である。
FIG. 3 is an explanatory diagram of the operation of a heat pipe to which a conventional metal block type heat transport device is applied.

【符号の説明】[Explanation of symbols]

1        平板形金属ブロック2      
  細管群 3        ヘッダ洞孔 4        平板形空洞又はコンテナ5    
    ウイック 6        作動液 7−1    蒸気泡 7−2    蒸気流 8        還流作動液 9        受熱部 10      放熱部 11      加熱手段 12      冷却手段 a        作動液の軸方向の振動b     
   作動液の緩やかな循環流c        熱量
の輸送方向
1 Flat metal block 2
Tube group 3 Header cavity 4 Flat plate cavity or container 5
Wick 6 Working fluid 7-1 Steam bubbles 7-2 Steam flow 8 Refluxing working fluid 9 Heat receiving section 10 Heat radiating section 11 Heating means 12 Cooling means a Axial vibration of working fluid b
Gentle circulating flow of working fluid c Direction of transport of heat amount

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  熱伝導性の良好な材料からなる所定の
形状の金属ブロック内に空洞容器が作り込まれてあり、
空洞容器内には所定量の二相凝縮性作動流体が封入され
てあり、空洞容器は多数の細孔が並列に設けられた細孔
群と、該細孔群の各片側ごとに細孔群を管寄せするヘッ
ダ洞孔の複数個、からなる密閉容器であり、且つ細孔の
内径は作動流体がその表面張力により少量と雖も孔内を
閉塞せしめ、常に閉塞状態のままで流動するよう充分に
細径化された内径であることを特徴とする熱輸送装置。
Claim 1: A hollow container is built into a metal block of a predetermined shape made of a material with good thermal conductivity,
A predetermined amount of two-phase condensable working fluid is sealed in the hollow container, and the hollow container has a pore group in which many pores are provided in parallel, and a pore group on each side of the pore group. It is a closed container consisting of a plurality of header cavities that serve as a pipe header, and the inner diameter of the pores is such that a small amount of working fluid can close the holes due to its surface tension, so that it always flows in a closed state. A heat transport device characterized by a sufficiently reduced inner diameter.
【請求項2】  金属ブロックは厚さの薄い平板形ブロ
ックであり、空洞容器は平板形ブロック内に作り込まれ
た平板形空洞からなり、細孔群は平板形空洞内に、圧入
または挿入溶接された、一層または二層の、並列細管群
により形成されてあり、ヘッダ洞孔は平板形空洞内にお
ける細管群の配設位置の前後の余剰空間により形成され
てあることを特徴とする請求項1に記載の熱輸送装置。
Claim 2: The metal block is a flat block with a thin thickness, the hollow container consists of a flat cavity built into the flat block, and the pore group is formed by press-fitting or insertion welding into the flat cavity. Claim: 1. The header cavity is formed by a group of parallel thin tubes in one or two layers, and the header cavity is formed by an extra space before and after the arrangement position of the thin tube group within the flat plate-shaped cavity. 1. The heat transport device according to 1.
JP10406691A 1991-02-13 1991-02-13 Heat transporting device Pending JPH04260791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10406691A JPH04260791A (en) 1991-02-13 1991-02-13 Heat transporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10406691A JPH04260791A (en) 1991-02-13 1991-02-13 Heat transporting device

Publications (1)

Publication Number Publication Date
JPH04260791A true JPH04260791A (en) 1992-09-16

Family

ID=14370796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10406691A Pending JPH04260791A (en) 1991-02-13 1991-02-13 Heat transporting device

Country Status (1)

Country Link
JP (1) JPH04260791A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280868A (en) * 2001-02-09 2001-10-10 Actronics Co Ltd Perforated flat metal heat pipe
US6745825B1 (en) 1997-03-13 2004-06-08 Fujitsu Limited Plate type heat pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745825B1 (en) 1997-03-13 2004-06-08 Fujitsu Limited Plate type heat pipe
JP2001280868A (en) * 2001-02-09 2001-10-10 Actronics Co Ltd Perforated flat metal heat pipe

Similar Documents

Publication Publication Date Title
JP2544701B2 (en) Plate type heat pipe
US10080315B2 (en) Cooling device and method for cooling at least two power electronic devices
US20110209864A1 (en) Thermal control device with network of interconnected capillary heat pipes
US6679316B1 (en) Passive thermal spreader and method
EP0186216B1 (en) Heat pipe
JPH0914875A (en) Porous flat metal tube heat pipe type heat exchanger
JP2003336974A (en) Regenerative heat exchanger
JP3713633B2 (en) Closed temperature control system
JPH04260791A (en) Heat transporting device
JP4069301B2 (en) Composite plate heat pipe
CN112154299A (en) Buffer storage device filled with phase change material
JP2009105156A (en) Soaking processing apparatus
JP3364758B2 (en) Heat sink for flat heating element
JP3959428B2 (en) Stereo heat pipe radiator
JPH04167A (en) Heat exchanger
JP2000035292A (en) Plate type heat pipe
JPH07310988A (en) Multi-tubular heat exchanger
JPH04366394A (en) Hybrid type heat pipe flat plate structure
JP7340709B1 (en) heat sink
JP2005061778A (en) Evaporator
JP4514910B2 (en) Hollow heat pipe
KR910015835A (en) Multipass Evaporator
JP2005337691A (en) Fine pore tunnel type heat pipe
JP2006275423A (en) Heat exchange system
JP2005308232A (en) Heat exchanger