JPH04257595A - Glycerol derivative - Google Patents

Glycerol derivative

Info

Publication number
JPH04257595A
JPH04257595A JP3018874A JP1887491A JPH04257595A JP H04257595 A JPH04257595 A JP H04257595A JP 3018874 A JP3018874 A JP 3018874A JP 1887491 A JP1887491 A JP 1887491A JP H04257595 A JPH04257595 A JP H04257595A
Authority
JP
Japan
Prior art keywords
glycerol
synthesis
derivative
fatty acids
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3018874A
Other languages
Japanese (ja)
Other versions
JP2665630B2 (en
Inventor
Hideto Mori
英登 森
Naoyuki Nishikawa
尚之 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3018874A priority Critical patent/JP2665630B2/en
Priority to US07/833,559 priority patent/US5221796A/en
Publication of JPH04257595A publication Critical patent/JPH04257595A/en
Application granted granted Critical
Publication of JP2665630B2 publication Critical patent/JP2665630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

PURPOSE:To provide the subject derivatives useful as an intermediate for synthesis of isoprenoid type phospholipids capable of producing a membrane, excellent in biocompatibility and membrane flow properties with high barrier properties, and also excellent in dispersion stability and chemical stability and capable of forming an intermolecule association. CONSTITUTION:A natural diterpene, (7R,11R)-phytol of formula I is hydrogenated in the presence of platinum oxide catalyst, subsequently oxidized in the presence of ruthenium trichloride catalyst to obtain a carboxylic acid derivative. The resultant carboxylic acid derivative is then converted to its acid chloride using thionyl chloride and then made to react with 3-benzyl-sn-glycerol in the presence of diisopropylethylamine. Benzyl group is subsequently eliminated to obtain a glycerol-1,2-diester derivative represented by formula II. This derivative is then allowed to react with diphenylphosphorochloridate in the presence of diisopropylethylamine to obtain its triphosphate and the resultant triphosphate is subsequently reacted with hydrogen in the presence of platinum oxide, thus obtaining the objective glycerol derivative shown by formula III (R and R' are H or phosphoric acid-protecting group; (n) is 1-3).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は新規なリン脂質合成にお
ける重要中間体であり、かつそれ自体で分子集合体状態
をとり得るグリセロール誘導体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to glycerol derivatives which are important intermediates in the synthesis of novel phospholipids and which can themselves form a molecular aggregate state.

【0002】0002

【従来技術】一般にリン脂質の様な両親媒性分子を水に
分散すると、ある特別な形態の分子集合体状態をとるこ
とが知られている。このうちリポソームとは脂質2分子
膜から形成される閉鎖小胞体であり、その内部に水層を
有するため近年、医学、薬学の分野においてこのリポソ
ームに水溶性物質を保持させて薬物運搬体や診断薬とし
て利用しようとする試みが多数なされている(例えば、
砂本ら、バイオサイエンスとインダストリー、第47巻
、475 頁、1989年)。また更にリポソームが持
つ保水、保湿効果を利用した化粧品等への利用も試みら
れている。
BACKGROUND OF THE INVENTION It is generally known that when amphipathic molecules such as phospholipids are dispersed in water, they assume a special form of molecular assembly. Among these, liposomes are closed endoplasmic reticulum formed from a lipid bilayer membrane, and have a water layer inside. In recent years, liposomes have been used in the medical and pharmaceutical fields to hold water-soluble substances and to use them as drug carriers and diagnostic agents. Many attempts have been made to use it as a medicine (for example,
Sunamoto et al., Bioscience and Industry, Vol. 47, p. 475, 1989). Furthermore, attempts are being made to utilize liposomes in cosmetics and the like by taking advantage of their water-retaining and moisturizing effects.

【0003】このようにリン脂質を水に分散させてリポ
ソームや乳液として利用する際最も重要なことは、それ
らが容易に分散し均一な分散液を得ることができるか、
また得られた分散液が安定であるかどうかということで
ある。従って、分散性、安定性の良好な素材を用いるこ
とがきわめて重要であるのは言をまたない。例えばリポ
ソームを例にとって考えてみると、リポソーム脂質2分
子膜は温度によって流動性が大きく変化する(ゲルー液
晶相転移)。ゲル状態と液晶状態での2分子膜中の分子
の動きやすさは、側方拡散、フリップーフロップ、交換
いずれにおいても液晶状態の方がずっと大きいことが知
られている。一般に疎水性脂肪酸残基の炭素数の少ない
ものや、不飽和度のたかい脂質で構成されたリポソーム
は膜流動性が高く、反対に飽和で炭素数の比較的多いも
のでは膜流動性が低く、相転移温度もおおむね高い。従
って、用いる脂質の脂肪酸残基の鎖長や不飽和度を変え
ることにより、リポソームの膜流動性およびそれと密接
に関連した脂質の分散性、膜のバリアー能を調節するこ
とができる。
[0003] When dispersing phospholipids in water and using them as liposomes or emulsions, the most important thing is whether they can be easily dispersed and a uniform dispersion can be obtained.
Another issue is whether the resulting dispersion is stable. Therefore, it goes without saying that it is extremely important to use a material with good dispersibility and stability. Taking liposomes as an example, the fluidity of the liposomal lipid bilayer membrane changes significantly depending on temperature (gel-liquid crystal phase transition). It is known that the ease of movement of molecules in a bilayer film in a gel state and in a liquid crystal state is much greater in the liquid crystal state in all cases of lateral diffusion, flip-flop, and exchange. In general, liposomes composed of hydrophobic fatty acid residues with a small number of carbon atoms or highly unsaturated lipids have high membrane fluidity, whereas liposomes that are saturated and have a relatively large number of carbon atoms have low membrane fluidity. The phase transition temperature is also generally high. Therefore, by changing the chain length and degree of unsaturation of the fatty acid residues of the lipid used, the membrane fluidity of the liposome and the closely related lipid dispersibility and membrane barrier ability can be adjusted.

【0004】例えば卵黄ホスファチジルコリンのように
不飽和脂肪酸を有する脂質は相転移温度が低いため常温
以上では液晶状態にあり、やわらかい膜を形成する。生
体にとって不飽和脂肪酸を持つ脂質は液晶状態の生体膜
がバリアーとして働くために不可欠のものであり、生物
の膜がこのような性質を獲得したのも、温度などの環境
要因の急激な変化に対して緩衝的に膜物性が変るという
利点があったからと考えられる。このような現象はリポ
ソームを薬物担体として用いる場合にも重要で、例えば
疎水性の薬物をリポソーム膜に組込む際には、飽和脂肪
酸のみからなるリポソームよりも不飽和脂肪酸を含む卵
黄ホスファチジルコリン等の方が分散性が良く、内包効
率の高い場合が多い。
[0004] For example, lipids containing unsaturated fatty acids such as egg yolk phosphatidylcholine have a low phase transition temperature, so they are in a liquid crystal state above room temperature and form a soft film. Lipids containing unsaturated fatty acids are essential for living organisms in order for biological membranes in a liquid crystal state to function as barriers, and biological membranes have acquired this property due to sudden changes in environmental factors such as temperature. This is thought to be due to the advantage that the physical properties of the film change in a buffering manner. This phenomenon is also important when liposomes are used as drug carriers; for example, when incorporating hydrophobic drugs into liposome membranes, it is better to use egg yolk phosphatidylcholine containing unsaturated fatty acids than liposomes made only of saturated fatty acids. It often has good dispersibility and high inclusion efficiency.

【0005】しかし卵黄ホスファチジルコリンに含まれ
る多価不飽和脂肪酸は酸素によって過酸化反応を受けや
すく、保存安定性が悪いことが大きな欠点である。従っ
て安定性を考慮するなら、酸素の攻撃を受けにくい飽和
脂肪酸のみからなるリン脂質を用いるのが有利である。 しかし例えば天然に存在する飽和リン脂質であるジミリ
ストイルホスファチジルコリンを膜成分としてリポソー
ムを調製しても、相転移温度以上ではグルコースをリポ
ソーム内に保持しておくことが極めて難しい。またジパ
ルミトイルホスファチジルコリンのみからなるリポソー
ムを調製しても不安定であり、すぐに凝集、沈殿してし
まうことが知られている。一般に飽和脂肪酸のみを含む
リン脂質では特に相転移温度以下では配列が密であり、
融通が利かず異種分子を排除、相分離してしまう傾向が
強いため、これらだけでリポソームを調製することは非
現実的である。
[0005] However, the polyunsaturated fatty acids contained in egg yolk phosphatidylcholine are susceptible to peroxidation reactions due to oxygen and have poor storage stability, which is a major drawback. Therefore, in consideration of stability, it is advantageous to use phospholipids consisting only of saturated fatty acids that are less susceptible to oxygen attack. However, even if liposomes are prepared using dimyristoyl phosphatidylcholine, a naturally occurring saturated phospholipid, as a membrane component, it is extremely difficult to retain glucose within the liposomes at temperatures above the phase transition temperature. Furthermore, it is known that even if liposomes made only of dipalmitoylphosphatidylcholine are prepared, they are unstable and readily aggregate and precipitate. In general, phospholipids containing only saturated fatty acids have a dense arrangement, especially below the phase transition temperature.
It is unrealistic to prepare liposomes using these alone because they are inflexible and tend to exclude foreign molecules and cause phase separation.

【0006】このように生体適合性に優れ、かつ膜流動
性が良好であり、さらに分散性、安定性に優れた性質と
いうのは根本的に相反する性質であり、従来用いられて
きた飽和脂肪酸のみからなるリン脂質でも、不飽和脂肪
酸を有するリン脂質でもこれらの要求を全て満足する素
材はなかったのである。
[0006] As described above, excellent biocompatibility, good membrane fluidity, and excellent dispersibility and stability are fundamentally contradictory properties, and conventionally used saturated fatty acids There has been no material that satisfies all of these requirements, whether it is a phospholipid consisting solely of phospholipids or a phospholipid containing unsaturated fatty acids.

【0007】そこで我々はこれらの性質を全て満足でき
る素材を探索すべく検討を行った結果、細菌類の生体膜
にその素材を求めた。細菌類は動物や植物と異なり、多
価不飽和脂肪酸を通常生体膜に含んでいない。分岐脂肪
酸(イソ酸とアンチイソ酸)が細菌脂質の主要脂肪酸と
して存在することが日本の研究者によって最初に発見さ
れて30年になる(S. Akashi and K.
 Saito, J. Biochem., 47 巻
、222 頁、1960年)。現在では分岐脂肪酸を生
体脂質の主要脂肪酸としてもつ細菌の種類は数百以上知
られている(T. Kaneda, Bacterio
l. Rev., 41巻、391 頁、1977 年
)。
[0007] Therefore, we conducted an investigation to find a material that satisfies all of these properties, and as a result, we found the material in the biomembranes of bacteria. Bacteria, unlike animals and plants, do not normally contain polyunsaturated fatty acids in their biological membranes. It has been 30 years since Japanese researchers first discovered that branched fatty acids (isoacids and antiisoacids) exist as the main fatty acids in bacterial lipids (S. Akashi and K.
Saito, J. Biochem. , vol. 47, p. 222, 1960). At present, more than several hundred types of bacteria are known that have branched fatty acids as the main fatty acids in biological lipids (T. Kaneda, Bacterio
l. Rev. , vol. 41, p. 391, 1977).

【0008】そこでこれをモデルとして最近種々の分岐
脂肪酸をもつジアシルホスファチジルコリンが合成され
、相転移温度が測定された。その結果、直鎖酸を有する
リン脂質より分岐脂肪酸を有する脂質の方が相転移温度
が低く、約16〜28℃くらいの差があることが明らか
となった。つまり分岐脂肪酸は相当する直鎖酸より最近
の生体膜の流動性を高めるのに貢献しているのである(
金田敏、バイオサイエンスとインダストリー、48巻、
229頁、1990年)。これら分岐脂肪酸は多価不飽
和脂肪酸と異なり酸素の攻撃も受けにくく、化学的にも
安定であるため望ましい素材であると考えられる。しか
しイソ酸やアンチイソ酸は自然界に普遍的に存在するも
のではなく、またこれらは通常疎水部の構造の異なる混
合物であるため分離精製が非常に困難である。残る手段
は化学合成であるが、容易に入手可能な原料が限られて
おり、そこからの炭素鎖伸張に工程数がかかりすぎるた
め大量合成に不向きなのが大きな欠点と考えられる。
Using this as a model, diacylphosphatidylcholines with various branched fatty acids were recently synthesized, and their phase transition temperatures were measured. As a result, it was revealed that the phase transition temperature of lipids having branched fatty acids is lower than that of phospholipids having straight chain acids, and there is a difference of about 16 to 28°C. In other words, branched fatty acids contribute more to the fluidity of modern biological membranes than their straight-chain counterparts (
Satoshi Kaneda, Bioscience and Industry, vol. 48,
229, 1990). These branched fatty acids are considered to be desirable materials because, unlike polyunsaturated fatty acids, they are less susceptible to oxygen attack and are chemically stable. However, isoacids and antiisoacids are not universally present in nature, and since they are usually mixtures with different hydrophobic structures, it is very difficult to separate and purify them. The remaining method is chemical synthesis, but the major drawbacks are that easily available raw materials are limited and carbon chain extension from there requires too many steps, making it unsuitable for mass synthesis.

【0009】このような問題を解決するため、近年古細
菌類の生体膜が注目されている。古細菌とは1977年
にWoese らにより多くの生物の16s rRNA
の塩基配列の比較により提唱された概念であり、現在で
は高度好塩菌、イオウ依存性高度好熱菌及びメタン生成
菌の3群が知られている(成書として、古賀洋介著、古
細菌、東京大学出版会、1988年)。古細菌の極性脂
質はこれまで知られているかぎりすべてエーテル結合を
もつグリセロ脂質であり、炭化水素鎖が炭素数20また
は40の飽和イソプレノイドであることが最も大きな特
徴となっている。飽和イソプレノイドもやはり酸素の攻
撃を受けにくく、化学的にも安定であるため、このよう
な脂質をモデルとして人工脂質を設計、合成すれば特異
な性質を有する素材が得られると期待できる。
[0009] In order to solve these problems, biomembranes of archaea have recently attracted attention. In 1977, Woese et al.
This concept was proposed by comparing the base sequences of , University of Tokyo Press, 1988). All archaeal polar lipids known so far are glycerolipids with ether bonds, and their most significant feature is that their hydrocarbon chains are saturated isoprenoids with 20 or 40 carbon atoms. Saturated isoprenoids are also less susceptible to oxygen attack and are chemically stable, so if artificial lipids are designed and synthesized using these lipids as models, it is expected that materials with unique properties will be obtained.

【0010】鎖状イソプレノイドはイソ酸やアンチイソ
酸と比較して比較的入手が容易であるため、これらを疎
水部に組込んだ脂質の研究が最近報告されるようになっ
てきた(K. Yamauchi et al, Bi
ochim. Biophys. Acta 1003
巻,151 頁,1989年、K.Yamauchi 
et al, J. Am. Chem. Soc.,
 112巻,3188頁,1990年、L.C. St
ewartet al, Chem. Phys. L
ipids 54巻,115 頁,1990年、山内ら
,平成2年度日本化学会春季年会講演予稿集,1793
頁、同1794頁、戸田ら,平成2年度日本化学会春季
年会講演予稿集,1793頁)。その結果、イソプレノ
イド型脂質から形成される脂質2分子膜は低い相転移温
度を有し、かつ高い膜のバリアー能を有することが見出
された。しかしながらこれまでに報告されているイソプ
レノイド型人工脂質の分子設計では、グリセロール部と
炭化水素鎖の連結方法を古細菌の生体膜と同じエーテル
型としているため合成方法に汎用性が乏しく、また大量
合成に不向きなのが大きな欠点となっていた。
Since chain isoprenoids are relatively easy to obtain compared to isoacids and antiisoacids, research on lipids incorporating these into the hydrophobic part has recently been reported (K. Yamauchi et al, Bi
ochim. Biophys. Acta 1003
Volume, 151 pages, 1989, K. Yamauchi
et al, J. Am. Chem. Soc. ,
Volume 112, page 3188, 1990, L. C. St
ewart et al., Chem. Phys. L
ipids vol. 54, p. 115, 1990, Yamauchi et al., Proceedings of the 1990 Spring Annual Meeting of the Chemical Society of Japan, 1793
p. 1794; Toda et al., Proceedings of the 1990 Spring Annual Meeting of the Chemical Society of Japan, p. 1793). As a result, it was found that a lipid bilayer membrane formed from isoprenoid type lipids has a low phase transition temperature and a high membrane barrier ability. However, in the molecular design of isoprenoid-type artificial lipids that have been reported so far, the method of linking the glycerol moiety and the hydrocarbon chain is an ether type, which is the same as in archaeal biomembranes, so the synthesis method is not versatile, and it is difficult to synthesize it in large quantities. A major drawback was that it was unsuitable for

【0011】[0011]

【発明が解決しようとする課題】上述のように、従来用
いられてきた飽和脂肪酸のみからなるリン脂質でも、不
飽和脂肪酸を有するリン脂質でも我々の要求を全て満足
する素材はなかったのである。特にイソ酸、アンチイソ
酸といった分岐脂肪酸や鎖状イソプレノイド骨格を有す
るリン脂質は有望な性質を有するものと期待されるが、
これらは天然から単離精製するのも、また化学合成する
のも非常に困難であった。そこで本発明の目的は、従来
用いられてきた飽和脂肪酸のみからなるリン脂質や不飽
和脂肪酸を有するリン脂質では達成できない性質、すな
わち生体適合性に優れ、膜流動性が良好かつその膜のバ
リアー能が高く、さらに分散性、化学的安定性に優れた
性質を有するイソプレノイド型リン脂質の合成が容易に
行えるような、汎用性ある重要合成中間体を供給するこ
とにある。また本発明は同時に、それ自体でも分子集合
体状態をとり得る有用な素材を提供することにある。
[Problems to be Solved by the Invention] As mentioned above, there has been no material that satisfies all of our requirements, neither the conventionally used phospholipids consisting only of saturated fatty acids nor the phospholipids containing unsaturated fatty acids. In particular, phospholipids with branched fatty acids such as isoacids and antiisoacids and chain isoprenoid skeletons are expected to have promising properties.
It has been extremely difficult to isolate and purify these from nature and to chemically synthesize them. Therefore, the purpose of the present invention is to provide properties that cannot be achieved with the conventionally used phospholipids consisting only of saturated fatty acids or phospholipids containing unsaturated fatty acids, that is, excellent biocompatibility, good membrane fluidity, and barrier performance of the membrane. The purpose of the present invention is to provide a versatile and important synthetic intermediate that can easily synthesize isoprenoid-type phospholipids that have high dispersibility, excellent dispersibility, and chemical stability. Another object of the present invention is to provide a useful material that can take the form of a molecular assembly by itself.

【0012】0012

【課題を解決するための手段】上記課題は、下記一般式
(I)で表わされるグリセロール誘導体を見出したこと
により達成された。      一般式(I)
[Means for Solving the Problems] The above objects have been achieved by discovering a glycerol derivative represented by the following general formula (I). General formula (I)

【001
3】
001
3]

【化2】[Case 2]

【0014】すなわち本発明は、イソプレノイド骨格を
有する疎水部とグリセロール部との連結方法を、従来知
られていたエーテル結合ではなくエステル結合としたこ
とを特徴とするものである。
That is, the present invention is characterized in that the method of linking the hydrophobic part having an isoprenoid skeleton and the glycerol part is an ester bond instead of the conventionally known ether bond.

【0015】式中nは1〜3の整数を表わす。すなわち
、n=1の場合は疎水部の炭素骨格がモノテルペン、n
=2の場合がセスキテルペン、n=3の場合がジテルペ
ンということになるが、リポソームのような脂質2分子
膜状態でリン脂質を用いる場合にはn=3、ミセルとし
てリン脂質を用いる場合にはn=1または2であること
が好ましい。また分子内に存在する不斉炭素原子の立体
化学に関しては、ラセミ体でも光学活性体でも良い。 これらは原料の入手の容易さを考慮して適宜選択するこ
とが可能であるが、イソプレノイド疎水部の分岐メチル
基の立体化学に関しては(R)の絶対立体配置のものが
好ましい。その様な光学活性イソプレノイドは、天然に
存在するテルペンを原料として用いても、また野依らの
方法(J.Org. Chem., 53巻、708 
頁、1988年、J. Am. Chem. Soc.
, 109巻、1596頁、1987年)に従い不斉水
素添加を行って調製することも可能である。
In the formula, n represents an integer from 1 to 3. That is, when n=1, the carbon skeleton of the hydrophobic part is a monoterpene, n
When = 2, it is a sesquiterpene, and when n = 3, it is a diterpene. However, when phospholipids are used in a lipid bilayer state such as liposomes, n = 3, and when phospholipids are used as micelles, it is called a diterpene. It is preferable that n=1 or 2. Furthermore, regarding the stereochemistry of the asymmetric carbon atoms present in the molecule, it may be a racemic form or an optically active form. These can be appropriately selected in consideration of the ease of obtaining the raw materials, but with regard to the stereochemistry of the branched methyl group of the isoprenoid hydrophobic part, those having the absolute configuration (R) are preferable. Such optically active isoprenoids can be produced by using naturally occurring terpenes as raw materials or by the method of Noyori et al. (J. Org. Chem., Vol. 53, 708).
Page, 1988, J. Am. Chem. Soc.
It is also possible to prepare the compound by asymmetric hydrogenation according to the method described in J.D., Volume 109, Page 1596, 1987).

【0016】RおよびR’は水素またはリン酸の保護基
を表わす。リン酸の保護基としては通常の核酸、リン脂
質の合成において用いられる既知のもののなかから、合
成の容易さ、脱保護条件等を考慮して選択することが可
能である。具体的にはベンジル基、フェニル基、o−ク
ロロフェニル基、p ー クロロフェニル基、メチル基
、2,2,2−トリクロロエチル基、2,2,2−トリ
ブロモエチル基、2−シアノエチル基、アリル基、シク
ロプロピルメチル基等があげられるが、好ましくはベン
ジル基、フェニル基、メチル基である。
R and R' represent hydrogen or a phosphoric acid protecting group. The protecting group for phosphoric acid can be selected from known groups used in the synthesis of ordinary nucleic acids and phospholipids, taking into account ease of synthesis, deprotection conditions, etc. Specifically, benzyl group, phenyl group, o-chlorophenyl group, p-chlorophenyl group, methyl group, 2,2,2-trichloroethyl group, 2,2,2-tribromoethyl group, 2-cyanoethyl group, allyl group. and cyclopropylmethyl group, among which preferred are benzyl group, phenyl group, and methyl group.

【0017】またリン酸基は適当な対イオンと塩を形成
していても良い。ただしその塩は、生理学的、薬理学的
に許容されるものであることが望ましい。具体的にはア
ンモニウム塩、またナトリウム塩、カリウム塩のような
アルカリ金属塩、マグネシウム塩、カルシウム塩といっ
たアルカリ土類金属塩などがあげられるが、なかでもナ
トリウム塩、カリウム塩がとくに好ましい。その様な塩
への変換は慣用手段により行うことができる。
The phosphoric acid group may also form a salt with a suitable counter ion. However, it is desirable that the salt be physiologically and pharmacologically acceptable. Specific examples include ammonium salts, alkali metal salts such as sodium salts and potassium salts, and alkaline earth metal salts such as magnesium salts and calcium salts, among which sodium salts and potassium salts are particularly preferred. Conversion to such salts can be accomplished by conventional means.

【0018】本発明の化合物の合成法については、公知
の方法例えばH. Eibl による総説(Chem.
 Phys. Lipids, 26巻、405 頁、
1980年)に記載の方法が有効である。合成方法は試
薬の入手の容易さや、反応のスケールを考慮して適宜選
択することができる。以下に本発明の化合物の具体例を
示すが、本発明はこれらに限定されるものではない。
The compounds of the present invention can be synthesized using known methods such as H. A review by Eibl (Chem.
Phys. Lipids, volume 26, page 405,
(1980) is effective. The synthesis method can be appropriately selected in consideration of the ease of obtaining reagents and the scale of the reaction. Specific examples of the compounds of the present invention are shown below, but the present invention is not limited thereto.

【0019】[0019]

【化3】[Chemical formula 3]

【0020】以下に実施例として本発明の例示化合物I
ー1の合成例を記す。ただしその合成方法はここに示し
たものに限定されるものではなく、更にさまざまな合成
経路が可能である。なお各種保護基、溶媒、試薬は通常
用いられる略号によって表わした。
[0020] As an example, exemplified compounds I of the present invention are shown below.
A synthesis example of -1 is described below. However, the synthesis method is not limited to the one shown here, and various synthetic routes are possible. In addition, various protecting groups, solvents, and reagents are represented by commonly used abbreviations.

【0021】[0021]

【化4】[C4]

【0022】[0022]

【実施例】実施例1  例示化合物Iー1の合成1) 
 中間体1の合成 天然ジテルペンである(7R,11R)− フィトール
(200 g )をエタノール(1000 ml )に
溶解し、酸化白金(1 g )を加えたのち反応混合物
を水素雰囲気下6時間室温で撹拌した。反応終了後不溶
性物質をセライト濾過して除き、濾液を減圧濃縮して中
間体1((3RS,7R,11R)− フィタノール)
を油状物として201 g 得た。IR  νmax 
(film) 3340 (br s), 2960 
(s), 2930 (s), 2870 (s), 
1465 (s), 1380 (s), 1370 
(m), 1060 (s), 735 (w) cm
−1
[Example] Example 1 Synthesis of exemplified compound I-1 1)
Synthesis of Intermediate 1 The natural diterpene (7R,11R)-phytol (200 g) was dissolved in ethanol (1000 ml), platinum oxide (1 g) was added, and the reaction mixture was incubated at room temperature for 6 hours under a hydrogen atmosphere. Stirred. After the reaction, insoluble substances were removed by filtration through Celite, and the filtrate was concentrated under reduced pressure to obtain intermediate 1 ((3RS,7R,11R)-phytanol).
201 g of was obtained as an oil. IR νmax
(film) 3340 (br s), 2960
(s), 2930 (s), 2870 (s),
1465 (s), 1380 (s), 1370
(m), 1060 (s), 735 (w) cm
-1

【0023】2)  中間体2の合成 中間体1(40 g)を四塩化炭素:アセトニトリル:
水=2:2:3の混合溶媒(700 ml)に溶解し、
このものに三塩化ルテニウムn水和物(500 mg)
とメタ過ヨウ素酸ナトリウム(70 g)を加え反応混
合物を室温で四時間激しく撹拌した。反応終了後不溶性
物質をセライト濾過して除き、濾液を塩化メチレンで希
釈し、有機層を分取した後水層を塩化メチレンで抽出し
た。有機層をあわせて水で1回洗浄後無水硫酸ナトリウ
ムで乾燥した。硫酸ナトリウムを濾過して除き、濾液を
減圧濃縮して中間体2((3RS,7R,11R)− 
フィタン酸)を油状物として29 g得た。IR  ν
max (film) 3600−2400 (br 
m), 2960 (s), 2930 (s), 2
870 (s), 1715 (s),1465 (m
), 1380 (m), 1370 (w), 13
00(m), 940 (w) cm−1
2) Synthesis of Intermediate 2 Intermediate 1 (40 g) was mixed with carbon tetrachloride:acetonitrile:
Dissolved in a mixed solvent (700 ml) of water = 2:2:3,
Ruthenium trichloride n-hydrate (500 mg)
and sodium metaperiodate (70 g) were added, and the reaction mixture was vigorously stirred at room temperature for 4 hours. After the reaction was completed, insoluble substances were removed by filtration through Celite, the filtrate was diluted with methylene chloride, the organic layer was separated, and the aqueous layer was extracted with methylene chloride. The organic layers were combined, washed once with water, and then dried over anhydrous sodium sulfate. The sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain intermediate 2 ((3RS,7R,11R)-
29 g of phytanic acid) was obtained as an oil. IR ν
max (film) 3600-2400 (br
m), 2960 (s), 2930 (s), 2
870 (s), 1715 (s), 1465 (m
), 1380 (m), 1370 (w), 13
00 (m), 940 (w) cm-1

【0024】
3)  中間体3の合成 中間体2(30 g)のトルエン(150 ml)溶液
に塩化チオニル(18 g)を加え、反応混合物を40
時間撹拌した。ガスの発生が止り反応が終了したのち、
溶媒と過剰の塩化チオニルを常圧で留去した。残渣を減
圧下乾燥し、目的とする中間体3((3RS,7R,1
1R)− フィタノイルクロリド)を油状物として32
 g得た。IR  νmax (film)  296
0 (s), 2930 (s), 2870 (s)
, 1800 (s), 1465 (s), 138
0 (s), 1370(m), 990 (m), 
825 (s) cm −1
[0024]
3) Synthesis of Intermediate 3 Thionyl chloride (18 g) was added to a solution of Intermediate 2 (30 g) in toluene (150 ml), and the reaction mixture was diluted to 40 g.
Stir for hours. After gas generation has stopped and the reaction has finished,
The solvent and excess thionyl chloride were distilled off at normal pressure. The residue was dried under reduced pressure to obtain the desired intermediate 3 ((3RS,7R,1
1R)-phytanoyl chloride) as an oil 32
I got g. IR νmax (film) 296
0 (s), 2930 (s), 2870 (s)
, 1800 (s), 1465 (s), 138
0 (s), 1370 (m), 990 (m),
825 (s) cm −1

【0025】4)  中間
体4の合成 3−ベンジル−sn−グリセロール(5.4 g,  
文献[Synthesis 503 頁,1985年]
記載の方法により調製)とジイソプロピルエチルアミン
(10 g)の塩化メチレン(100 ml)溶液に、
中間体3(22.1 g)の塩化メチレン(50 ml
 )溶液を加え、反応混合物を触媒量の4−N,N−ジ
メチルアミノピリジンの存在下室温で20時間撹拌した
。反応混合物を水、飽和塩化ナトリウム水溶液で洗浄後
無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過
して除き、濾液を減圧濃縮した。残渣をシリカゲルクロ
マトグラフィー(溶出液  ヘキサン/酢酸エチル=2
0/1)で精製し、中間体4を油状物質として19 g
得た。IR  νmax (film) 3030 (
w), 2960 (s), 2930 (s), 2
870 (s), 1745 (s),1500 (w
), 1460 (s), 1380 (s), 13
70 (m), 1245 (m), 1165 (s
), 1120 (s), 1110 (sh), 7
30 (m), 695 (s) cm −1
4) Synthesis of intermediate 4 3-benzyl-sn-glycerol (5.4 g,
Literature [Synthesis 503 pages, 1985]
(prepared by the method described) and diisopropylethylamine (10 g) in methylene chloride (100 ml).
Intermediate 3 (22.1 g) in methylene chloride (50 ml
) solution was added and the reaction mixture was stirred at room temperature for 20 hours in the presence of a catalytic amount of 4-N,N-dimethylaminopyridine. The reaction mixture was washed with water and a saturated aqueous sodium chloride solution, and then dried over anhydrous sodium sulfate. The sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was subjected to silica gel chromatography (eluent: hexane/ethyl acetate = 2
19 g of intermediate 4 as an oily substance
Obtained. IR νmax (film) 3030 (
w), 2960 (s), 2930 (s), 2
870 (s), 1745 (s), 1500 (w
), 1460 (s), 1380 (s), 13
70 (m), 1245 (m), 1165 (s
), 1120 (s), 1110 (sh), 7
30 (m), 695 (s) cm −1

【0026】5)  中間体5の合成 中間体4(10 g)の酢酸エチル(200 ml)溶
液に5 % パラジウムー 炭素(1 g )を加え、
反応混合物を水素雰囲気下6時間室温で撹拌した。反応
終了後不溶性物質をセライト濾過して除き、濾液を減圧
濃縮して目的とする中間体5を油状物として8.6 g
 得た。IR  νmax (film) 3460 
(br m), 2950 (s), 2920 (s
), 2870 (s), 1745 (s), 14
65 (s), 1380 (s), 1370 (s
h), 1240 (m), 1165 (s), 1
130 (m), 1100 (w),1045 (m
) cm −1
5) Synthesis of Intermediate 5 To a solution of Intermediate 4 (10 g) in ethyl acetate (200 ml) was added 5% palladium-carbon (1 g).
The reaction mixture was stirred at room temperature for 6 hours under hydrogen atmosphere. After the reaction, insoluble substances were removed by filtration through Celite, and the filtrate was concentrated under reduced pressure to obtain 8.6 g of the desired intermediate 5 as an oil.
Obtained. IR νmax (film) 3460
(br m), 2950 (s), 2920 (s
), 2870 (s), 1745 (s), 14
65 (s), 1380 (s), 1370 (s
h), 1240 (m), 1165 (s), 1
130 (m), 1100 (w), 1045 (m
) cm −1

【0027】6)  中間体6の合成 中間体5(5 g )とジイソプロピルエチルアミン(
1.15 g)の塩化メチレン(50 ml )溶液に
、ジフェニルホスホロクロリデート(2.4 g )を
加え、反応混合物を室温で1時間撹拌した。反応終了後
塩化メチレンで希釈し、水、飽和炭酸水素ナトリウム溶
液、飽和塩化ナトリウム溶液で洗浄後無水硫酸ナトリウ
ムで乾燥した。硫酸ナトリウムを濾過して除き、濾液を
減圧濃縮して中間体6を油状物質として5.2 g 得
た。IR  νmax (film) 3060 (w
), 2950 (s), 2930 (s), 28
60 (s), 1745 (s), 1595 (s
), 1490 (s), 1460 (s), 13
80 (m), 1370 (sh), 1290 (
m), 1190 (s), 1160 (m), 1
060 (m), 960 (s), 755 (s)
, 735 (m), 685 (m) cm −1
6) Synthesis of Intermediate 6 Intermediate 5 (5 g) and diisopropylethylamine (
To a solution of 1.15 g) in methylene chloride (50 ml) was added diphenylphosphorochloridate (2.4 g) and the reaction mixture was stirred at room temperature for 1 hour. After the reaction was completed, the mixture was diluted with methylene chloride, washed with water, saturated sodium bicarbonate solution, and saturated sodium chloride solution, and dried over anhydrous sodium sulfate. The sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain 5.2 g of Intermediate 6 as an oil. IR νmax (film) 3060 (w
), 2950 (s), 2930 (s), 28
60 (s), 1745 (s), 1595 (s
), 1490 (s), 1460 (s), 13
80 (m), 1370 (sh), 1290 (
m), 1190 (s), 1160 (m), 1
060 (m), 960 (s), 755 (s)
, 735 (m), 685 (m) cm -1


0028】7)  I−1の合成 中間体6(5.2 g )の酢酸エチル(60 ml 
)溶液に酸化白金(100 mg)を加え、反応混合物
を水素雰囲気下8時間室温で撹拌した。反応終了後不溶
性物質をセライト濾過して除き、濾液を減圧濃縮して目
的とするI−1を油状物として4.3 g 得た。IR
  νmax (film) 3600−2000 (
br m), 2950 (s), 2920 (s)
, 2860 (s), 1745 (s),1460
 (s), 1380 (s), 1370 (sh)
, 1240 (s), 1165 (s), 106
0 (s), 1020 (s) cm−1
[
7) Ethyl acetate (60 ml) of synthetic intermediate 6 (5.2 g) of I-1
) Platinum oxide (100 mg) was added to the solution and the reaction mixture was stirred at room temperature under hydrogen atmosphere for 8 hours. After the reaction was completed, insoluble substances were removed by filtration through Celite, and the filtrate was concentrated under reduced pressure to obtain 4.3 g of the desired I-1 as an oil. IR
νmax (film) 3600-2000 (
br m), 2950 (s), 2920 (s)
, 2860 (s), 1745 (s), 1460
(s), 1380 (s), 1370 (sh)
, 1240 (s), 1165 (s), 106
0 (s), 1020 (s) cm-1

【0029
】次に実施例2として本発明の例示化合物I−2の合成
例を記す。ただしその合成方法はここに示したものに限
定されるものではない。例えばリン酸化剤としてホスホ
ロジ(1,2,4−トリアゾリド)を用いて反応を行い
、系内に生成する活性トリエステル中間体を加水分解す
る方法(C.B. Reese et al, Tet
rahedron Lett.,5059頁、1979
年)、またリン酸化剤としてジベンジルホスホロクロリ
デートを用いて反応を行い、得られるリン酸トリエステ
ルのベンジル基を1つ除去する方法(A.E. Ste
panov and V.I. Shevets, C
hem, Phys, Lipids, 41巻、21
頁、1980年)などがあげられるが、更にさまざまな
合成経路も可能である。なお各種保護基、溶媒、試薬は
通常用いられる略号によって表わした。
0029
] Next, as Example 2, a synthesis example of Compound I-2 of the present invention will be described. However, the synthesis method is not limited to that shown here. For example, there is a method in which a reaction is carried out using phosphorology (1,2,4-triazolide) as a phosphorylating agent and the active triester intermediate produced in the system is hydrolyzed (C.B. Reese et al, Tet
rahedron Lett. , 5059 pages, 1979
), and a method in which one benzyl group of the resulting phosphoric acid triester is removed by performing a reaction using dibenzyl phosphorochloridate as a phosphorylating agent (A.E. Ste.
panov and V. I. Shevets, C.
hem, Phys, Lipids, vol. 41, 21
Page, 1980), but various synthetic routes are also possible. In addition, various protecting groups, solvents, and reagents are represented by commonly used abbreviations.

【0030】[0030]

【化5】[C5]

【0031】実施例2  例示化合物I−2の合成実施
例1に記載の中間体5(2 g )とトリエチルアミン
(350 mg)の塩化メチレン(10 ml )溶液
にフェニルホスホロジクロリデート(620 mg)を
加え、反応混合物を室温で2時間撹拌した。水を加えて
室温で30分間撹拌したのち塩化メチレンで希釈し、水
、飽和塩化ナトリウム溶液で洗浄後無水硫酸ナトリウム
で乾燥した。硫酸ナトリウムを濾過して除き、濾液を減
圧濃縮した。残渣をシリカゲルクロマトグラフィー(溶
出液:クロロホルム/メタノール=9/1)で精製し、
I−2を油状物質として1.9 g 得た。IR  ν
max (film) 3600−2400 (br 
m), 3040 (w), 2950 (s), 2
920 (s), 2860 (s),1745 (s
), 1600 (w), 1460 (s), 13
80 (s), 1370 (sh), 1240 (
s), 1160 (s),  1030 (s), 
740 (s), 695 (m) cm −1
Example 2 Synthesis of Exemplified Compound I-2 Phenylphosphorodichloridate (620 mg) was added to a solution of Intermediate 5 (2 g) described in Example 1 and triethylamine (350 mg) in methylene chloride (10 ml). was added and the reaction mixture was stirred at room temperature for 2 hours. After adding water and stirring at room temperature for 30 minutes, the mixture was diluted with methylene chloride, washed with water and saturated sodium chloride solution, and dried over anhydrous sodium sulfate. The sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluent: chloroform/methanol = 9/1),
1.9 g of I-2 was obtained as an oily substance. IR ν
max (film) 3600-2400 (br
m), 3040 (w), 2950 (s), 2
920 (s), 2860 (s), 1745 (s
), 1600 (w), 1460 (s), 13
80 (s), 1370 (sh), 1240 (
s), 1160 (s), 1030 (s),
740 (s), 695 (m) cm −1

【00
32】実施例3  例示化合物I−3の合成天然に存在
するセスキテルペンであるファルネソールを出発原料と
し、実施例1と同様の方法により水素添加、アルコール
のカルボン酸への酸化、酸塩化物への変換、エステル化
、加水素分解によるベンジル基の除去、リン酸エステル
化、加水素分解によるフェニル基の除去をこの順に行い
、化合物I−3を油状物として得た。IR  νmax
 (film) 3600−2200 (br m),
 2950 (s), 2920 (s), 2860
 (s), 1745 (s),1460 (s), 
1380 (s), 1370 (sh), 1240
 (s), 1165 (s), 1060 (s),
 1020 (s) cm−1
00
Example 3 Synthesis of Exemplified Compound I-3 Using farnesol, a naturally occurring sesquiterpene, as a starting material, hydrogenation, oxidation of alcohol to carboxylic acid, and acid chloride were carried out in the same manner as in Example 1. Conversion, esterification, removal of the benzyl group by hydrolysis, phosphoric acid esterification, and removal of the phenyl group by hydrolysis were performed in this order to obtain Compound I-3 as an oil. IR νmax
(film) 3600-2200 (br m),
2950 (s), 2920 (s), 2860
(s), 1745 (s), 1460 (s),
1380 (s), 1370 (sh), 1240
(s), 1165 (s), 1060 (s),
1020 (s) cm-1

【0033】実施例4 
 I−4の合成天然に存在するモノテルペンであるゲラ
ニオールを出発原料とし、実施例1と同様の方法により
水素添加、アルコールのカルボン酸への酸化、酸塩化物
への変換、エステル化、加水素分解によるベンジル基の
除去、リン酸エステル化、加水素分解によるフェニル基
の除去をこの順に行い、化合物I−4を油状物として得
た。IR  νmax (film) 3550−21
00 (br m), 2960 (s), 2930
 (s), 2860 (s), 1745(s),1
460 (s), 1380 (s), 1370 (
m), 1240 (s), 1165 (s), 1
060 (s), 1020 (s)cm−1
Example 4
Synthesis of I-4 Using geraniol, a naturally occurring monoterpene, as a starting material, hydrogenation, oxidation of alcohol to carboxylic acid, conversion to acid chloride, esterification, and hydrogenation were carried out in the same manner as in Example 1. Removal of the benzyl group by decomposition, phosphoric acid esterification, and removal of the phenyl group by hydrolysis were performed in this order to obtain Compound I-4 as an oil. IR νmax (film) 3550-21
00 (br m), 2960 (s), 2930
(s), 2860 (s), 1745 (s), 1
460 (s), 1380 (s), 1370 (
m), 1240 (s), 1165 (s), 1
060 (s), 1020 (s) cm-1

【003
4】
003
4]

【発明の効果】本発明の化合物を用いることにより、以
下のような顕著な効果を得ることができる。 (1)  グリセロール部と炭化水素鎖の連結方法を古
細菌の生体膜脂質にみられるエーテル型ではなく、エス
テル結合としているため合成が容易であり、特に大量合
成に非常に有利である。 (2)原料となる鎖状イソプレノイドはイソ酸やアンチ
イソ酸と比較して構造や立体化学の確実なものが容易に
入手できるので、この点からも合成に有利である。 (3)本発明の化合物は、イソプレノイド型リン脂質の
合成が容易に行えるような重要中間体である。このよう
なリン脂質は従来用いられてきた飽和脂肪酸のみからな
るリン脂質や不飽和脂肪酸を有するリン脂質では達成で
きない性質、すなわち生体適合性に優れ、膜流動性が良
好かつその膜のバリアー能が高く、さらに分散性、化学
的安定性に特に優れた性質を有するものであると考えら
れる。 (4)さらに本発明の化合物はそれ自体でも脂質2分子
膜構成成分となり得る両親媒性分子であり、リン酸基を
有するため系に負電荷を付与することが可能である。従
って乳剤や生体膜ミメティクス研究の分野において、特
異な性質を有する素材として応用が考えられる。
[Effects of the Invention] By using the compound of the present invention, the following remarkable effects can be obtained. (1) Synthesis is easy because the glycerol moiety and the hydrocarbon chain are linked by an ester bond rather than the ether type found in archaeal biomembrane lipids, which is particularly advantageous for large-scale synthesis. (2) Chain isoprenoids serving as raw materials are easier to obtain with reliable structure and stereochemistry than isoacids and antiisoacids, which is also advantageous for synthesis. (3) The compound of the present invention is an important intermediate that facilitates the synthesis of isoprenoid-type phospholipids. These phospholipids have properties that cannot be achieved with the conventionally used phospholipids consisting only of saturated fatty acids or phospholipids containing unsaturated fatty acids, namely excellent biocompatibility, good membrane fluidity, and membrane barrier ability. Furthermore, it is considered to have particularly excellent properties in terms of dispersibility and chemical stability. (4) Furthermore, the compound of the present invention is an amphipathic molecule that can itself be a component of a lipid bilayer membrane, and since it has a phosphate group, it is possible to impart a negative charge to the system. Therefore, it can be used as a material with unique properties in the fields of emulsion and biomembrane mimetic research.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  下記一般式(I)で表わされるグリセ
ロール誘導体。一般式(I) 【化1】 式中nは1〜3の整数を表わす。RおよびR’は水素ま
たはリン酸の保護基を表わす。リン酸基は適当な対イオ
ンと塩を形成している状態を含むものとする。また分子
内に存在する不斉炭素原子の立体化学に関しては、光学
活性体でもラセミ体でも良い。
1. A glycerol derivative represented by the following general formula (I). General Formula (I) embedded image In the formula, n represents an integer of 1 to 3. R and R' represent hydrogen or a phosphoric acid protecting group. The phosphate group is intended to include a state in which it forms a salt with a suitable counter ion. Furthermore, regarding the stereochemistry of the asymmetric carbon atoms present in the molecule, it may be an optically active form or a racemic form.
JP3018874A 1991-02-12 1991-02-12 Glycerol derivatives Expired - Fee Related JP2665630B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3018874A JP2665630B2 (en) 1991-02-12 1991-02-12 Glycerol derivatives
US07/833,559 US5221796A (en) 1991-02-12 1992-02-11 Glycerol derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018874A JP2665630B2 (en) 1991-02-12 1991-02-12 Glycerol derivatives

Publications (2)

Publication Number Publication Date
JPH04257595A true JPH04257595A (en) 1992-09-11
JP2665630B2 JP2665630B2 (en) 1997-10-22

Family

ID=11983695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018874A Expired - Fee Related JP2665630B2 (en) 1991-02-12 1991-02-12 Glycerol derivatives

Country Status (1)

Country Link
JP (1) JP2665630B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124318A (en) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology Branched chain type glycero compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124318A (en) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology Branched chain type glycero compound
JP4518910B2 (en) * 2004-10-28 2010-08-04 独立行政法人産業技術総合研究所 Branched glycero compounds

Also Published As

Publication number Publication date
JP2665630B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
LU87290A1 (en) 4'-PHOSPHATE DERIVATIVES OF EPIPODOPHYLLOTOXIN GLUCOSIDES
JPS63182029A (en) Liposome
DE2820893A1 (en) NEW STRUCTURAL ANALOGS OF PHOSPHATIDES AND METHOD FOR PRODUCING THESE COMPOUNDS
JPS62174094A (en) Alpha, alpha-trehalose derivative and production thereof
JPH0482893A (en) Peptide-derived phospholipid compound and production of polypeptide liposome using the same
EP1819824B1 (en) Compounds analogous to lipid membranes in archaebacteria and liposomal compositions including said compounds
JP2614149B2 (en) New alkyl phosphate
JP3102798B2 (en) Inositol derivatives, formulations containing them and their use
US5221796A (en) Glycerol derivatives
US4751320A (en) Phosphoric ester and process for producing same
JPH04257595A (en) Glycerol derivative
JP2670908B2 (en) Glycerol derivatives
JP2665633B2 (en) Glycerol derivative
JP2618759B2 (en) Glycerol derivatives
JPH09278726A (en) New liposome
JPH11180929A (en) Ester derivative
JPH0523576A (en) Liposome vesicle
JPH04266849A (en) Glycerol derivative
JP2661639B2 (en) 1,3-bisphytanyl glyceryl ether type oligosaccharide glycolipid
US4517297A (en) Method for the preparation of physiological effectors
JPS5940839B2 (en) Method for producing mixed acid type 1,2-diacyl-3-glycerylphosphorylcholines
JPH05320152A (en) Glabridin derivative
US5117034A (en) Phosphatidylserine derivatives
US7777066B2 (en) Glycero-compound having triple bond and membrane material containing the same
JPH064651B2 (en) Phosphate ester and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees