JPH04234206A - Compound plane antenna - Google Patents

Compound plane antenna

Info

Publication number
JPH04234206A
JPH04234206A JP41712390A JP41712390A JPH04234206A JP H04234206 A JPH04234206 A JP H04234206A JP 41712390 A JP41712390 A JP 41712390A JP 41712390 A JP41712390 A JP 41712390A JP H04234206 A JPH04234206 A JP H04234206A
Authority
JP
Japan
Prior art keywords
antenna
conductor
conductors
circular
radiating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41712390A
Other languages
Japanese (ja)
Inventor
Shinichi Kuroda
慎一 黒田
Ichiro Toriyama
鳥山 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP41712390A priority Critical patent/JPH04234206A/en
Publication of JPH04234206A publication Critical patent/JPH04234206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To obtain a compound plane antenna displaying broad band characteristics in plural available frequency bands, respectively. CONSTITUTION:Plural parasitic conductors 13, 15 with almost the same shape as that of plural plane radiant conductors 33, 41 excited by different frequencies, respectively are arranged at the front of the radiant conductors.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、複数の周波数帯でそ
れぞれ広帯域特性を呈する複合型平面アンテナに関する
。 【0002】 【従来の技術】従来、静止人工衛星を中継として、地上
の基地局と移動局との間に構成された無線通信系が知ら
れている。このような無線通信系では、それぞれ衛星を
介して、基地局から多数の移動局への下り回線が構成さ
れると共に、各移動局から基地局への上り回線が構成さ
れる。上り回線の使用周波数は、例えば1.6GHzと
され、下り回線の使用周波数は、例えば2.5GHzと
される。そして、移動局側のアンテナとしては、構成が
簡単で形状が小さく、マイクロストリップアンテナのよ
うに低プロファイルであることが必要である。 【0003】 【発明が解決しようとする課題】上述のような低プロフ
ァイルアンテナとして、本出願人は、実願平1−133
686号において、円環アンテナと、円形放射素子のマ
イクロストリップアンテナ(以下円板アンテナと略称す
る)とを組み合わせて、円形放射素子の直径を円環アン
テナの円環状放射素子の内径より小さく設定し、円形放
射素子を円環状放射素子と同心に配置することにより、
小形かつ簡単な構成で、比較的近接した複数の周波数帯
においても、各単位アンテナの偏波特性及び放射特性を
任意に設定することができるようにした複合アンテナを
既に提案している。 【0004】まず、図7及び図8を参照しながら、既提
案の複合アンテナについて説明する。図7及び図8にお
いて、30は円環アンテナであって、いずれも円形の接
地導体31上に、ふっ素樹脂のような低損失の誘電体層
32を介して、円環導体(放射素子)33が同軸に積層
配設され、この円環導体33の内周部33iが、多数箇
所のスルーホール34を介して、接地導体31と接続さ
れて構成される。円環導体33には、その中心から等し
くオフセットされた2ヶ所に給電点35,36が設けら
れ、両給電点35,36に同軸給電線37,38がそれ
ぞれ接続される。この場合、両給電線37,38の外部
導体は接地導体31に接続される。 【0005】円板導体(放射素子)41が、円環アンテ
ナ30の誘電体層32上で、円環導体33の内側に同心
に配置されて、接地導体31を共用する円板アンテナが
構成される。この円板導体41にも、その中心から等し
くオフセットされた2ヶ所に給電点42,43が設けら
れて、円環アンテナ30とは独立に、両給電点42,4
3に同軸給電線44,45がそれぞれ接続される。 【0006】後述のように、放射素子41はTM21モ
ードで励振されるが、TM01モード以外では、周知の
ように、放射素子41の中点のインピーダンスが基本的
に0Ωであるから、スルーホール46を介して、円板導
体41の中央部を接地導体31に接続して動作の安定が
図られる。 【0007】なお、円板導体41と円環導体33とは、
同じ銅張積層板をエッチング処理して容易に形成するこ
とができる。また、各放射素子33,41の給電点を半
径方向に整列させる必要はない。 【0008】既提案の複合アンテナが、例えば1.6G
Hz帯及び2.5GHz帯でそれぞれ使用される場合、
放射導体33,41の半径、誘電体層32の半径、厚さ
及び誘電率は、例えばそれぞれ次のように設定される。       ro33=71.0mm,       
 ri33=42.0mm,      r41 =3
5.5mm      r32 =100mm,   
      t32 =1.6mm,       ε
r  =2.6 【0009】また、各給電点35,3
6;42,43のオフセット距離及び角間隔は例えばそ
れぞれ次のように設定される。       rf3 =53.0mm,       
 rf4 =17.0mm,      θ =135
°【0010】上述の既提案例の動作は次のとおりであ
る。例えば、1.6GHz帯と2.5GHz帯とで、円
環アンテナの放射素子33と、円板アンテナの放射素子
41とは、いずれも、90°の位相差で、TM21モー
ドで励振されて、放射素子41が右旋性円偏波を放射し
、放射素子33が左旋性円偏波を放射する。そして、そ
れぞれほぼ円錐状の所望の垂直指向性が得られる。 【0011】この既提案例では、円環アンテナと円板ア
ンテナとを組み合わせたことにより、接地導体を共用し
ているにもかかわらず、両者のアイソレーションが大き
くとれ、給電系が独立しているため、それぞれの共振周
波数、偏波特性及び放射特性を任意に設定することがで
きる。 【0012】ところが、上述のような既提案の複合アン
テナでは、円環アンテナと円板アンテナのそれぞれが、
例えば図9,11に示すようなインピーダンス特性を呈
し、図10,12に示すように、電圧定在波比(VSW
R)が2以内の周波数帯域が、例えばそれぞれ1%未満
と、きわめて狭いので、特に2周波数共用の場合には、
製造時に寸法精度をきびしく管理する必要があり、コス
トが上昇するという問題があった。 【0013】もっとも、マイクロストリップアンテナの
分野では、円板アンテナの放射素子の正面に同形状の無
給電素子を装荷して、それぞれ異なる周波数で励振し、
広帯域化ないしは2周波数共用としたものがある。しか
しながら、従来の無給電素子装荷型のマイクロストリッ
プアンテナは、2周波数共用あるいは広帯域化の一方を
満足するのみで、同時に双方を達成し得るものはなかっ
た。 【0014】かかる点に鑑み、この発明の目的は、複数
の使用周波数帯でそれぞれ広帯域特性を呈する複合型平
面アンテナを提供するところにある。 【0015】 【課題を解決するための手段】この発明は、誘電体層3
2を介して接地導体31に対向する平板状の複数の放射
導体33,41に周波数の異なる電力をそれぞれ供給す
る複合型平面アンテナであって、複数の放射導体の正面
に、当該複数の放射導体とほぼ同一形状の複数の無給電
導体13、15をそれぞれ配設した複合型平面アンテナ
である。 【0016】 【作用】この発明によれば、複数の使用周波数帯でそれ
ぞれ広帯域特性を呈する複合型平面アンテナが得られる
。 【0017】 【実施例】以下、図1〜図5を参照しながら、この発明
による複合型平面アンテナの一実施例について説明する
。 【0018】この発明の一実施例の構成を図1に示す。 この図1において、前出図8に対応する部分には同一の
符号を付して重複説明を省略する。図1において、10
は装荷素子群であって、ふっ素樹脂のような低損失の誘
電体層12の一面に、無給電の円環導体13と円板導体
15とが同心に配設され、円環導体13の内周部と円板
導体15の中心とに、それぞれスルーホール14,16
が穿設される。装荷素子群10の円環導体13と円板導
体15は、図示は省略するが、適宜の結合部材と所定厚
のスペーサとにより、放射素子33,41に対向して同
軸に配置され、対応するスルーホール14,34及び1
6,46が導線17によりそれぞれ接続される。その余
の構成は前出図7及び図8と同様である。 【0019】上述の実施例の複合型平面アンテナが、例
えば1.6GHz帯及び2.5GHz帯でそれぞれ使用
される場合、装荷導体13,15、放射導体33,41
の半径、誘電体層12,32の半径、厚さ及び誘電率並
びに両誘電体層の距離は、例えばそれぞれ次のように設
定される。       ro13=76.5mm,       
 ri13=42.0mm,      r15 =3
8.5mm      ro33=71.0mm,  
      ri33=42.0mm,      r
41 =35.5mm      r12 =r32 
=100mm,  t12 =t32 =1.6mm,
      εr  =2.6,          
 d1  =10mm【0020】また、各給電点35
,36;42,43のオフセット距離及び角間隔は例え
ばそれぞれ次のように設定される。       rf3 =59.0mm,       
 rf4 =22.0mm,      θ=135°
【0021】これらの値と前述の既提案例の値とを比較
すれば、装荷導体13,15の外径が対応する放射導体
33,41の外径よりも僅かに大きく、また、各給電点
のオフセット距離は、実施例のほうが既提案例よりも僅
かに大きいことが判る。 【0022】上述の実施例の複合型平面アンテナでは、
円環アンテナと円板アンテナのそれぞれが、使用周波数
ごとに、例えば図2及び図4に示すようなインピーダン
ス特性を呈し、図3及び図5に示すように、VSWRが
2以内の周波数帯域が、例えば、それぞれ3.35%及
び2.53%と、既提案例に比べて格段に広帯域となっ
ているので、加工精度や、使用環境の変化による共振周
波数のずれを無視することができて、特に2周波数共用
の場合に好適である。 【0023】次に、図6を参照しながら、この発明によ
る複合型平面アンテナの他の実施例について説明する。 この発明の他の実施例の構成を図6に示す。この図6に
おいて、前出図1及び図8に対応する部分には同一の符
号を付して重複説明を省略する。図6において、10s
は装荷素子群であって、ふっ素樹脂のような低損失の誘
電体層12sの一面に、無給電の円環導体13と円板導
体15とが同心に配設され、円環導体13の内周部に、
比較的大径のスルーホール14bが所定の角間隔で複数
個設けられると共に、円板導体15の中心にも、比較的
大径のスルーホール16bが設けられる。 【0024】この実施例では、装荷素子群10sが、円
環導体13と円板導体15とを外側にして、それぞれ放
射素子33,41に対向するように、同軸に配置される
。この放射素子33,41は、いずれも円形の接地導体
31s上に、ふっ素樹脂のような低損失の誘電体層32
sを介して、同軸に積層配設される。 【0025】また、この実施例では、接地導体31s及
び誘電体層32sの半径が、放射素子33の外径より僅
かに大きくされる。そして、接地導体31sに対接して
、例えばアルミニウム材から構成される大径の導電板2
1が設けられる。この導電板21は、前出図7,図8に
示した既提案例の接地導体31とほぼ等径とされて、図
6に示すように、中心及び中間部に複数のネジ孔22が
穿設される。 【0026】また、円環導体33の内周部33iに、所
定の角間隔で、比較的大径のスルーホール34bが複数
個設けられると共に、円板導体41の中心にも、比較的
大径のスルーホール46bが設けられる。放射導体33
,41のスルーホール34b,46bと、装荷導体13
,15の対応するスルーホール14b,16bに共通に
ネジ23がそれぞれ挿通されて、このネジ23が導電板
21のネジ孔22に係合され、装荷導体13,15及び
放射導体33,41がそれぞれ導電板21に結合される
。その余の構成は前出図1及び図8と同様である。 【0027】図6の実施例の複合型平面アンテナが、例
えば1.6GHz帯及び2.5GHz帯でそれぞれ使用
される場合、装荷導体13,15、導電板21、各放射
導体33,41の半径、誘電体層12,32sの厚さ及
び誘電率並びに両誘電体層の距離は、例えばそれぞれ次
のように設定される。       ro13=76.5mm,       
 ri13=42.0mm,      r15 =3
8.5mm      ro33=71.0mm,  
      ri33=42.0mm,      r
41 =35.5mm      r12 =r32 
=77mm,   t12 =t32 =1.6mm,
      εr  =2.6,          
 d2  =8.5mm,       r21 =1
00mm【0028】上述のような構成により、図6の
実施例でも、前出図2〜図5に示すような広帯域特性が
得られて、前述のような作用効果を奏すると共に、高価
な誘電体層を節約することができて、所望の周波数特性
を安定かつ経済的に実現することができる。 【0029】 【発明の効果】以上詳述のように、この発明によれば、
それぞれ異なる周波数で励振される複数の平板状放射導
体の正面に、当該複数の放射導体とほぼ同一形状の複数
の無給電導体をそれぞれ配設するようにしたので、複数
の使用周波数帯でそれぞれ広帯域特性を呈する複合型平
面アンテナが得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite planar antenna that exhibits broadband characteristics in a plurality of frequency bands. [0002] Hitherto, a wireless communication system is known that is constructed between a base station on the ground and a mobile station using a geostationary artificial satellite as a relay. In such a wireless communication system, downlinks are configured from a base station to a large number of mobile stations via satellites, and uplinks are configured from each mobile station to the base station. The frequency used in the uplink is, for example, 1.6 GHz, and the frequency used in the downlink is, for example, 2.5 GHz. The antenna on the mobile station side needs to have a simple configuration, a small shape, and a low profile like a microstrip antenna. [0003] As a low profile antenna as described above, the present applicant has proposed
In No. 686, a circular antenna is combined with a microstrip antenna having a circular radiating element (hereinafter referred to as a disk antenna), and the diameter of the circular radiating element is set smaller than the inner diameter of the circular radiating element of the circular antenna. , by placing the circular radiating element concentrically with the annular radiating element,
A composite antenna has already been proposed that has a small and simple configuration and allows the polarization characteristics and radiation characteristics of each unit antenna to be arbitrarily set even in a plurality of relatively close frequency bands. First, a previously proposed composite antenna will be explained with reference to FIGS. 7 and 8. 7 and 8, 30 is a circular antenna, in which a circular conductor (radiating element) 33 is placed on a circular ground conductor 31 via a low-loss dielectric layer 32 such as fluororesin. are coaxially stacked, and the inner circumferential portion 33i of the annular conductor 33 is connected to the ground conductor 31 via through holes 34 at many locations. The circular conductor 33 is provided with two feeding points 35 and 36 equally offset from its center, and coaxial feeding lines 37 and 38 are connected to both feeding points 35 and 36, respectively. In this case, the outer conductors of both feeder lines 37 and 38 are connected to the ground conductor 31. A circular conductor (radiating element) 41 is arranged concentrically inside the circular conductor 33 on the dielectric layer 32 of the circular antenna 30, forming a circular plate antenna that shares the ground conductor 31. Ru. This disc conductor 41 is also provided with feeding points 42 and 43 at two locations equally offset from its center, and both feeding points 42 and 43 are provided independently of the circular antenna 30.
Coaxial feed lines 44 and 45 are connected to 3, respectively. As will be described later, the radiating element 41 is excited in the TM21 mode, but in modes other than the TM01 mode, as is well known, the impedance at the midpoint of the radiating element 41 is basically 0Ω, so the through hole 46 The central portion of the disc conductor 41 is connected to the ground conductor 31 via the ground conductor 31 to stabilize the operation. Note that the disc conductor 41 and the circular conductor 33 are
It can be easily formed by etching the same copper-clad laminate. Further, it is not necessary to align the feeding points of each radiating element 33, 41 in the radial direction. [0008] The previously proposed composite antenna is, for example, 1.6G
When used in the Hz band and 2.5 GHz band, respectively,
The radius of the radiation conductors 33 and 41 and the radius, thickness, and dielectric constant of the dielectric layer 32 are set, for example, as follows. ro33=71.0mm,
ri33=42.0mm, r41=3
5.5mm r32 = 100mm,
t32 =1.6mm, ε
r = 2.6 [0009] Also, each feeding point 35, 3
6; The offset distance and angular interval of 42 and 43 are set as follows, for example. rf3 =53.0mm,
rf4 = 17.0mm, θ = 135
The operation of the previously proposed example described above is as follows. For example, in the 1.6 GHz band and the 2.5 GHz band, the radiating element 33 of the circular antenna and the radiating element 41 of the circular antenna are both excited in the TM21 mode with a phase difference of 90°, The radiating element 41 emits right-handed circularly polarized waves, and the radiating element 33 emits left-handed circularly polarized waves. Then, the desired vertical directivity, each approximately conical, is obtained. [0011] In this proposed example, by combining a circular antenna and a circular plate antenna, even though they share a ground conductor, the isolation between the two is large and the feeding system is independent. Therefore, each resonance frequency, polarization characteristic, and radiation characteristic can be set arbitrarily. However, in the previously proposed composite antenna as described above, each of the annular antenna and the disc antenna is
For example, it exhibits impedance characteristics as shown in Figures 9 and 11, and voltage standing wave ratio (VSW) as shown in Figures 10 and 12.
Since the frequency bands in which R) is within 2 are extremely narrow, for example less than 1% each, especially when two frequencies are shared,
There was a problem in that dimensional accuracy had to be strictly controlled during manufacturing, which increased costs. However, in the field of microstrip antennas, parasitic elements of the same shape are loaded in front of the radiating element of a circular plate antenna, and each element is excited at a different frequency.
There are some that have a wide band or share two frequencies. However, conventional parasitic element-loaded microstrip antennas have only been able to satisfy either dual frequency sharing or broadbandization, and none have been able to achieve both at the same time. [0014] In view of the above, an object of the present invention is to provide a composite planar antenna that exhibits broadband characteristics in each of a plurality of usable frequency bands. [Means for Solving the Problems] The present invention provides a dielectric layer 3
This is a composite planar antenna that supplies power of different frequencies to a plurality of flat radiation conductors 33 and 41 facing a ground conductor 31 through a ground conductor 31, wherein the plurality of radiation conductors are arranged in front of the plurality of radiation conductors. This is a composite planar antenna in which a plurality of parasitic conductors 13 and 15 each having approximately the same shape are arranged. [0016]According to the present invention, it is possible to obtain a composite planar antenna that exhibits broadband characteristics in each of a plurality of usable frequency bands. [Embodiment] An embodiment of the composite planar antenna according to the present invention will be described below with reference to FIGS. 1 to 5. FIG. 1 shows the configuration of an embodiment of the present invention. In FIG. 1, parts corresponding to those in FIG. 8 described above are given the same reference numerals, and redundant explanation will be omitted. In Figure 1, 10
is a loaded element group, in which a parasitic circular conductor 13 and a disc conductor 15 are arranged concentrically on one surface of a low-loss dielectric layer 12 such as fluororesin. Through holes 14 and 16 are formed at the periphery and at the center of the disc conductor 15, respectively.
is drilled. Although not shown, the annular conductor 13 and the disc conductor 15 of the loading element group 10 are coaxially arranged facing the radiating elements 33 and 41 by an appropriate coupling member and a spacer of a predetermined thickness, so that they correspond to each other. Through holes 14, 34 and 1
6 and 46 are connected by conductive wires 17, respectively. The rest of the configuration is the same as in FIGS. 7 and 8 described above. When the composite planar antenna of the above embodiment is used, for example, in the 1.6 GHz band and the 2.5 GHz band, the loading conductors 13 and 15 and the radiating conductors 33 and 41
The radius, the radius, thickness and dielectric constant of the dielectric layers 12 and 32, and the distance between both dielectric layers are set, for example, as follows. ro13=76.5mm,
ri13=42.0mm, r15=3
8.5mm ro33=71.0mm,
ri33=42.0mm, r
41 = 35.5mm r12 = r32
=100mm, t12 =t32 =1.6mm,
εr=2.6,
d1 = 10mm [0020] Also, each feeding point 35
, 36; 42, 43 are set, for example, as follows. rf3=59.0mm,
rf4 =22.0mm, θ=135°
Comparing these values with the values of the previously proposed example described above, it is found that the outer diameters of the loaded conductors 13 and 15 are slightly larger than the outer diameters of the corresponding radiating conductors 33 and 41, and that each feeding point It can be seen that the offset distance of the example is slightly larger than that of the previously proposed example. In the composite planar antenna of the above embodiment,
Each of the circular antenna and the disc antenna exhibits impedance characteristics as shown in FIGS. 2 and 4 for each frequency used, and as shown in FIGS. 3 and 5, the frequency band where the VSWR is within 2 is For example, the bandwidth is 3.35% and 2.53%, respectively, which is much wider than the previously proposed example, so it is possible to ignore deviations in the resonant frequency due to processing accuracy or changes in the usage environment. This is particularly suitable when two frequencies are shared. Next, another embodiment of the composite planar antenna according to the present invention will be described with reference to FIG. The configuration of another embodiment of the invention is shown in FIG. In FIG. 6, parts corresponding to those in FIGS. 1 and 8 are given the same reference numerals and redundant explanation will be omitted. In Figure 6, 10s
is a loaded element group, in which a parasitic circular conductor 13 and a disc conductor 15 are arranged concentrically on one surface of a low-loss dielectric layer 12s such as fluororesin. Around the periphery
A plurality of relatively large diameter through holes 14b are provided at predetermined angular intervals, and a relatively large diameter through hole 16b is also provided at the center of the disc conductor 15. In this embodiment, the loading element group 10s is coaxially arranged with the annular conductor 13 and the disk conductor 15 facing the radiating elements 33 and 41, respectively. The radiating elements 33 and 41 each have a low-loss dielectric layer 32 such as a fluororesin on a circular ground conductor 31s.
They are coaxially stacked and arranged via s. Further, in this embodiment, the radius of the ground conductor 31s and the dielectric layer 32s is made slightly larger than the outer diameter of the radiating element 33. A large-diameter conductive plate 2 made of aluminum material, for example, is placed in contact with the ground conductor 31s.
1 is provided. This conductive plate 21 has approximately the same diameter as the grounding conductor 31 of the previously proposed example shown in FIGS. will be established. Furthermore, a plurality of relatively large diameter through holes 34b are provided at predetermined angular intervals on the inner peripheral portion 33i of the circular conductor 33, and a relatively large diameter through hole 34b is also provided at the center of the circular conductor 41. A through hole 46b is provided. Radiation conductor 33
, 41 through holes 34b, 46b and loading conductor 13
, 15 are commonly inserted through the corresponding through holes 14b, 16b, and the screws 23 are engaged with the screw holes 22 of the conductive plate 21, so that the loading conductors 13, 15 and the radiation conductors 33, 41 are inserted into the corresponding through holes 14b, 15, respectively. It is coupled to a conductive plate 21. The rest of the configuration is the same as in FIGS. 1 and 8 described above. When the composite planar antenna of the embodiment shown in FIG. 6 is used, for example, in the 1.6 GHz band and the 2.5 GHz band, the radius of the loaded conductors 13 and 15, the conductive plate 21, and each radiation conductor 33 and 41 , the thickness and dielectric constant of the dielectric layers 12 and 32s, and the distance between both dielectric layers are set, for example, as follows. ro13=76.5mm,
ri13=42.0mm, r15=3
8.5mm ro33=71.0mm,
ri33=42.0mm, r
41 = 35.5mm r12 = r32
=77mm, t12 =t32 =1.6mm,
εr=2.6,
d2 =8.5mm, r21 =1
With the above-described configuration, the embodiment shown in FIG. 6 can also achieve the broadband characteristics shown in FIGS. Layers can be saved, and desired frequency characteristics can be achieved stably and economically. Effects of the Invention As detailed above, according to the present invention,
In front of a plurality of flat radiating conductors that are excited at different frequencies, a plurality of parasitic conductors having almost the same shape as the radiating conductors are arranged, so each of them can be used in a wide range of frequency bands. A composite planar antenna exhibiting characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】    この発明による複合型平面アンテナの
一実施例の構成を示す断面図、
FIG. 1 is a sectional view showing the configuration of an embodiment of a composite planar antenna according to the present invention;

【図2】    この発明の一実施例の要部の特性を示
すスミスチャート、
[Fig. 2] A Smith chart showing the characteristics of the main parts of an embodiment of the present invention.

【図3】    この発明の一実施例の要部の特性を示
す線図、
[Fig. 3] Diagram showing characteristics of main parts of an embodiment of the present invention,

【図4】    この発明の一実施例の他の要部の特性
を示すスミスチャート、
FIG. 4 is a Smith chart showing the characteristics of other essential parts of an embodiment of the present invention;

【図5】    この発明の一実施例の他の要部の特性
を示す線図、
FIG. 5 is a diagram showing the characteristics of other main parts of an embodiment of the present invention;

【図6】    この発明の他の実施例の構成を示す断
面図、
FIG. 6 is a sectional view showing the configuration of another embodiment of the present invention;

【図7】    既提案による複合アンテナの構成例を
示す平面図、
[Fig. 7] A plan view showing an example of the configuration of a composite antenna according to an existing proposal.

【図8】    既提案例の構成を示す断面図、[Figure 8] Cross-sectional view showing the configuration of an existing proposed example,

【図9
】    既提案例の要部の特性を示すスミスチャート
[Figure 9
] Smith chart showing the characteristics of the main parts of the already proposed example,

【図10】  既提案例の要部の特性を示す線図、[Figure 10] Diagram showing the characteristics of the main parts of the existing proposed example,

【図
11】  既提案例の他の要部の特性を示すスミスチャ
ート、
[Figure 11] Smith chart showing the characteristics of other important parts of the already proposed example,

【図12】  既提案例の他の要部の特性を示す線図で
ある。
FIG. 12 is a diagram showing the characteristics of other main parts of the already proposed example.

【符号の説明】[Explanation of symbols]

12,32,12s,32s          誘電
体層13,15                  
        無給電素子(装荷導体)
12, 32, 12s, 32s dielectric layer 13, 15
Parasitic element (loaded conductor)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  誘電体層を介して接地導体に対向する
平板状の複数の放射導体に周波数の異なる電力をそれぞ
れ供給する複合型平面アンテナであって、上記複数の放
射導体の正面に、当該複数の放射導体とほぼ同一形状の
複数の無給電導体をそれぞれ配設したことを特徴とする
複合型平面アンテナ。
1. A composite planar antenna that supplies power of different frequencies to a plurality of flat radiation conductors facing a ground conductor via a dielectric layer, the antenna comprising: A composite planar antenna characterized by disposing a plurality of radiating conductors and a plurality of parasitic conductors having substantially the same shape.
JP41712390A 1990-12-28 1990-12-28 Compound plane antenna Pending JPH04234206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41712390A JPH04234206A (en) 1990-12-28 1990-12-28 Compound plane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41712390A JPH04234206A (en) 1990-12-28 1990-12-28 Compound plane antenna

Publications (1)

Publication Number Publication Date
JPH04234206A true JPH04234206A (en) 1992-08-21

Family

ID=18525257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41712390A Pending JPH04234206A (en) 1990-12-28 1990-12-28 Compound plane antenna

Country Status (1)

Country Link
JP (1) JPH04234206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141337A (en) * 2006-11-30 2008-06-19 Mitsumi Electric Co Ltd Antenna system
CN101771198A (en) * 2009-01-06 2010-07-07 三美电机株式会社 Composite antenna element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141337A (en) * 2006-11-30 2008-06-19 Mitsumi Electric Co Ltd Antenna system
CN101771198A (en) * 2009-01-06 2010-07-07 三美电机株式会社 Composite antenna element
JP2010161436A (en) * 2009-01-06 2010-07-22 Mitsumi Electric Co Ltd Composite antenna element

Similar Documents

Publication Publication Date Title
AU760084B2 (en) Circularly polarized dielectric resonator antenna
JP3288059B2 (en) Feeder for radiating element operating with two polarizations
JP4128686B2 (en) Planar antenna
US4316194A (en) Hemispherical coverage microstrip antenna
JP2001514827A (en) Microstrip array antenna
JP2003078336A (en) Laminated spiral antenna
JPH08181532A (en) Omnidirectional antenna
JPH10233617A (en) Antenna
JPH04122107A (en) Microstrip antenna
US6819288B2 (en) Singular feed broadband aperture coupled circularly polarized patch antenna
CN116231297A (en) Single-layer broadband omnidirectional circularly polarized antenna
JPH07336133A (en) Antenna device
JP2004048369A (en) Composite antenna
Hong et al. Low profile S-band dual-polarized antenna for SDARS application
JP2002344238A (en) Polarized wave shared planar antenna
JPH04234206A (en) Compound plane antenna
US20190103675A1 (en) Broadband kandoian loop antenna
JPS62210703A (en) Plane antenna
JP2961862B2 (en) Planar antenna
JPH03182102A (en) Microstrip antenna
JPH02179102A (en) Microstrip antenna
JPH05291816A (en) Plane antenna sharing linearly and circularly polarized waves
JPH05129823A (en) Microstrip antenna
JP2520605Y2 (en) Composite antenna
JP2693045B2 (en) Slot-fed microstrip antenna