JPH0422953B2 - - Google Patents

Info

Publication number
JPH0422953B2
JPH0422953B2 JP57176002A JP17600282A JPH0422953B2 JP H0422953 B2 JPH0422953 B2 JP H0422953B2 JP 57176002 A JP57176002 A JP 57176002A JP 17600282 A JP17600282 A JP 17600282A JP H0422953 B2 JPH0422953 B2 JP H0422953B2
Authority
JP
Japan
Prior art keywords
added
condensate
coating
coating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57176002A
Other languages
Japanese (ja)
Other versions
JPS5964671A (en
Inventor
Osamu Isozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP17600282A priority Critical patent/JPS5964671A/en
Publication of JPS5964671A publication Critical patent/JPS5964671A/en
Publication of JPH0422953B2 publication Critical patent/JPH0422953B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無機質塗膜の形成方法に関し、更に詳
しくは珪素を含む無機質バインダーを造膜成分と
した塗料を用いて塗膜を形成せしめる方法に関
す。 従来シリケートをバインダーとする塗料は多く
のものが提案されており、たとえばアルキルシリ
ケート系ジンクリツチペイント、アルカリシリケ
ート系ジンクリツチペイント等の防蝕塗料や、ポ
リジメチルシロキサンのような有機シリコン系耐
熱塗料等が良く知られている。 アルキルシリケート系ジンクリツチペイントは
下記一般式 (但しRは炭素数1〜8の炭化水素基を示す)で
表わされる有機珪素化合物又は(及び)低縮合物
を出発原料とし、塩酸等の酸触媒の存在下で加水
分解し、これを部分縮合したものをバインダーと
し、これに多量の亜鉛末を添加したものである。
このバインダーは酸加水分解により末端に多くの
シラノール基を有し、このシラノール基は酸性領
域で準安定化している。そしてこの塗料は塗装前
に亜鉛末が添加混合されこの亜鉛末が酸触媒を消
費すると共にバインダーとも反応して架橋硬化す
るものである。上記加水分解物は反応水量や反応
条件によつて縮合反応の進行程度は異なるが、酸
触媒反応では(酸性領域では)高縮合物は生成し
ない。そして、このものは亜鉛末の未添加条件下
でも通常3〜6ケ月で安定性が低下し、増粘、ゲ
ル化する傾向がある。また、このバインダーを造
膜成分とした塗料は亜鉛末を添加した後のポツト
ライフは5〜10時間程度であり、その硬化反応は
亜鉛末とバインダーのシラノール基との反応に基
ずくものであり、亜鉛末に代えて反応性の無い一
般顔料を用いた場合は1μ以上の厚みの塗膜は形
成出来ずしかもその塗膜性能も極めて低劣で実用
性は無い。 一方、特開昭56−116761号公報には、低縮合ア
ルキルシリケートを用い、アルキルチタネートや
アルキルジルコネートを湿気硬化助剤として添加
する一液型のジンクリツチペイントが開示されて
いるが、この硬化反応に於いては湿気硬化に伴な
つて多量のアルコールを副生し、その揮発に伴な
つて大きな体積収縮を生じる。従つてこのものは
多量の亜鉛末を配合するジンクリツチペイント以
外には利用することが困難であり、クリヤー塗料
や厚膜形成用塗料としては使用不可能である。 またポリジメチルシロキサンのような有機珪素
樹脂をバインダーとしたクリヤー塗料や、ジンク
フリーエナメルなどの無機質塗料には、湿気硬化
型のものも開発されているが、これ等のバインダ
ー成分は多くのアルキル基を有しているので、高
度の耐熱性は無く、また塗膜の凝集力が小であ
り、加えて形成された塗膜の上に更に別の塗料を
塗布することは困難である等の点より限られた用
途にしか利用されていない。 またプラスチツクの表面改質用として高硬度の
有機珪素樹脂を用いることも知られているが、い
ずれも架橋官能基はシラノールである。 本発明者は従来からこの種珪素含有化合物を使
用した塗料の難点を解消するため研究を続けて来
たが、この研究に於いて上記一般式〔A〕で表わ
される有機珪素化合物および(又は)その低縮合
物と下記一般式〔B〕で示される有機珪素化合物
および(又は)その低縮合物
The present invention relates to a method of forming an inorganic coating film, and more particularly to a method of forming a coating film using a coating material containing an inorganic binder containing silicon as a film-forming component. Conventionally, many paints using silicate as a binder have been proposed, including corrosion-resistant paints such as alkyl silicate-based zinc-rich paints and alkali-silicate-based zinc-rich paints, and organosilicon-based heat-resistant paints such as polydimethylsiloxane. well known. The general formula for alkyl silicate zinc-rich paint is as follows: (where R represents a hydrocarbon group having 1 to 8 carbon atoms) or (and) a low condensate is used as a starting material, hydrolyzed in the presence of an acid catalyst such as hydrochloric acid, and partially The condensed product is used as a binder, and a large amount of zinc powder is added to this.
This binder has many silanol groups at its terminals due to acid hydrolysis, and these silanol groups are metastable in the acidic region. This paint is mixed with zinc dust before painting, and this zinc dust consumes the acid catalyst and also reacts with the binder, resulting in crosslinking and curing. Although the degree of progress of the condensation reaction of the above hydrolyzate varies depending on the amount of reaction water and reaction conditions, high condensation products are not produced in the acid-catalyzed reaction (in the acidic region). Even when no zinc powder is added, the stability of this product usually decreases after 3 to 6 months, and it tends to thicken and gel. In addition, the pot life of a paint containing this binder as a film-forming component after adding zinc dust is about 5 to 10 hours, and the curing reaction is based on the reaction between the zinc dust and the silanol group of the binder. If a non-reactive general pigment is used instead of zinc powder, a coating film with a thickness of 1 μm or more cannot be formed, and the coating performance is extremely poor, making it impractical. On the other hand, JP-A-56-116761 discloses a one-component zinc-rich paint using a low condensed alkyl silicate and adding alkyl titanate or alkyl zirconate as a moisture curing aid. During the reaction, a large amount of alcohol is produced as a by-product due to moisture curing, and its volatilization causes a large volumetric contraction. Therefore, it is difficult to use this product for anything other than a zinc-rich paint containing a large amount of zinc powder, and it cannot be used as a clear paint or a paint for forming thick films. Moisture-curable clear paints and inorganic paints such as zinc-free enamels have also been developed that use organosilicon resins such as polydimethylsiloxane as binders, but these binder components contain many alkyl groups. Because of this, it does not have a high degree of heat resistance, and the cohesive force of the paint film is small, and in addition, it is difficult to apply another paint on top of the formed paint film. It is only used for more limited purposes. It is also known to use highly hard organosilicon resins for surface modification of plastics, but in both cases the crosslinking functional group is silanol. The present inventor has been conducting research to solve the problems of paints using this type of silicon-containing compound, and in this research, the organosilicon compound represented by the above general formula [A] and/or A low condensate thereof and an organosilicon compound represented by the following general formula [B] and/or a low condensate thereof

【式】(但しR′は炭素数1〜12の炭 化水素基、Rは上記に同じ) との混合物を酸触媒の存在下に加水分解させた
後、そのPHを7以上として縮合せしめて得られる
縮合物はシラノール基を有しない高縮合物であ
り、これを造膜成分とした塗料は被塗物に塗布す
ると空気中の水分により硬化して優れた物性を有
する塗膜が得られると共に従来の上記難点が解消
出来ることを見出し、茲に本発明を完成するに至
つた。即ち本発明は、下記一般式〔A〕で示され
る有機珪素化合物および(又は)その低縮合物お
よび
[Formula] (where R' is a hydrocarbon group having 1 to 12 carbon atoms, R is the same as above) is hydrolyzed in the presence of an acid catalyst, and then condensed at a pH of 7 or higher. The condensate produced is a high condensate that does not have silanol groups, and when a coating containing this as a film-forming component is applied to an object, it is cured by moisture in the air, producing a coating film with excellent physical properties and The inventors have discovered that the above-mentioned difficulties can be overcome, and have finally completed the present invention. That is, the present invention relates to an organosilicon compound represented by the following general formula [A] and/or a lower condensate thereof, and

【式】 ……〔A〕 (但しRは炭素数1〜8の炭化水素基) 下記一般式〔B〕で示される有機珪素化合物お
よび(又は)その低縮合物
[Formula] ...[A] (where R is a hydrocarbon group having 1 to 8 carbon atoms) An organosilicon compound represented by the following general formula [B] and/or a lower condensate thereof

【式】 ……〔B〕 (但しRは炭素数1〜12の炭化水素基、Rは上記
に同じ) からなる混合物を酸触媒の存在下で加水分解した
後、PHを7以上として縮合せしめて得られるシラ
ノール基を有しない高縮合物を、造膜成分とした
塗料を被塗物に塗布し、水分によつて塗膜を硬化
せしめることを特徴とする無機質塗膜の形成方法
に係るものである。 本発明方法で用いる上記高縮合物は、分子末端
にシラノール基を有していないので貯蔵安定性が
良く、たとえば亜鉛末を加えても長期間ゲル化す
ることがない。また該高縮合物はテトラアルコキ
シシランとトリアルコキシシランとの併用によつ
て形成されているので配合割合を変えることによ
つて架橋密度を適当に調節することができ、その
結果硬化性と厚塗り性のバランスのすぐれた、す
なわち硬化時にドロ割れや剥離のないすぐれた無
機質塗膜をクリヤー塗装でも50〜100μの高厚膜
で形成することができる。さらに硬化塗膜は主骨
格が−Si−O−Si−結合であるので耐熱性、耐食
性、耐薬品性、耐候性などの性能にすぐれたもの
である。 本発明に於いて原料として使用する上記一般式
〔A〕で表わされる有機珪素化合物に於けるRは
同一または相異なる炭素数1〜8の炭化水素基で
あり、この際の炭化水素基としてはメチル、エチ
ル、プロピル、ヘキシルなどのアルキル基、フエ
ニル、トリル、キシリルなどのアリール基、シク
ロヘキシル、シクロブチル、シクロペンチルなど
のシクロアルキル基等である。具体的な化合物と
しては、たとえばテトラメトキシシラン、テトラ
エトキシシラン、テトラプロピオキシシラン、テ
トラブトキシシラン、テトラフエノキシシラン等
を例示出来る。またその低縮合物とは重合度10以
下のオリゴマーを意味する。 また、上記一般式〔B〕で表わされる有機珪素
化合物におけるRは上記一般式〔A〕の場合と同
様である。一方R′は炭素−ケイ素結合によりケ
イ素に結合する炭素数1〜12の炭化水素基であ
り、炭化水素基としてはメチル、エチル、プロピ
ル、ヘキシル、オクチルなどのアルキル基、フエ
ニル、トリル、キシリル、ナフチルなどのアリー
ル基、シクロヘキシル、シクロブチル、シクロペ
ンチルなどのシクロアルキル基などである。 具体的な化合物としては、メチルトリメトキシ
シラン、メチルトリエトキシシラン、フエニルト
リメトキシシラン、フエニルトリエトキシシラン
などを挙げることができる。 本発明の方法において、前記一般式〔A〕およ
び〔B〕を用いて高縮合物を得るに際し、両成分
の配合割合は、重量を基準にして下記の割合で配
合するのが適当である。 一般式〔A〕化合物:5〜95重量% 好ましくは20〜80重量% 一般式〔B〕化合物:5〜95重量% 好ましくは20〜80重量% 上記配合において、〔A〕化合物の量が5重量
%未満の場合、すなわち〔B〕化合物が95重量%
を超える場合には、この縮合物を用いて形成され
る無機質塗膜の硬化性が劣り、しかも上塗り性が
悪くなる。また、〔B〕化合物の量が5重量%未
満の場合、すなわち〔A〕化合物の量が95重量%
を超える場合、この縮合物を用いて厚塗り塗装す
ると塗膜がドロ割れや剥離を起こしやすくなる欠
点がある。 上記一般式〔A〕及び〔B〕で表わされる有機
珪素化合物及び(又は)その低縮合物の混合物を
縮合せしめるに際しては、該化合物及び(又は)
低縮合物の混合物を水溶性溶媒たとえばアルコー
ル系溶媒、セロソルブ系溶媒、セロソルブアセテ
ート系溶媒、グライム系溶媒などに添加し、塩
酸、硫酸、リン酸などの鉱酸あるいはギ酸、酢酸
等の有機酸の存在下に、Siに結合しているRO基
1モルに対し0.2〜2molの割合で水を加え、20〜
100℃程度で30分〜10時間程度撹拌下に反応せし
め、次いで水酸化ナトリウム、水酸化カリウム等
の無機塩基類、モノエチルアミン、ジエチルアミ
ン、トリエチルアミン等の脂肪族アミン類、アン
モニアなどを添加して系のPHを7以上にして縮合
反応を進行せしめる。反応終了後蒸留、共沸等に
より残存する水を除去することによつて容易に目
的物高縮合物を得ることが出来る。 かくして得られる高縮合物は三次元縮合物であ
つて少くとも縮合度は20以上で分子量約3000以上
のものであり、塗料の無機質バインダーとして充
分な機能を有し、たとえばそのままクリヤー塗装
しても50〜100μ程度の膜厚の塗膜を形成出来る。
塗布後10分〜10時間程度で空気中の水分によつて
硬化し、塗布後水と積極的に接触せしめると数分
以下で急速硬化する。この際強塩基触媒やチタ
ン、アルミニウム等の金属アルコキシドを添加す
ることにより更に硬化性を向上せしめ得る。 本発明に於いては金属末たとえば亜鉛末を添加
して一液型防錆塗料とすることが出来、また通常
の体質顔料や着色顔料だけを添加したエナメルと
することも出来る。またこの際多量の顔料を添加
すれば100μ以上の厚塗塗装もドロワレや剥離を
生ずることなく可能である。 本発明により形成される無機質塗膜は従来のシ
リケート系塗膜に比し優れた塗膜性能を有し、就
中耐食性、耐溶剤性、耐熱性、耐候性にすぐれて
いる。 以下に実施例を示して本発明を具体的に説明す
る。 実施例 1 反応容器に、テトラエトキシシラン62g、メチ
ルトリエトキシシラン125g及びエチルアルコー
ル187gを加え、内容物を撹拌しながら加熱して
80℃になつたのち0.2N−塩酸30gを添加し80℃
で10時間反応させた。ついで、この反応生成物に
トリエチルアミン30gを添加してPHを7以上に上
げて80℃で2時間縮合反応を行ない、その後ベン
ゼン100gを添加して不揮発分が40%(重量%、
以下も同様)になるまで脱溶剤を行なつた。 かくして得られた反応生成物(ワニス)は透明
で、粘度5.8センチポイズで、且つ30℃で2ケ月
貯蔵後も増粘及びゲル化することもなく、すぐれ
た貯蔵安定性を示した。 ついで、上記ワニスをみがき軟鋼板に膜厚50μ
に塗装し、温度20℃、湿度75%の部屋に7日間セ
ツテイングした。かくして形成した塗膜にはワレ
等の異常は全く見られず、耐ソルトスプレー試験
(JIS Z 2371)7日後も点サビは全く観察され
なかつた。 実施例 2 反応容器に、テトラブトキシシラン132g、フ
エニルトリブトキシシラン138g及びブチルアル
コール270gを加え、内容物を撹拌しながら加熱
して100℃になつたのち5%ギ酸水溶液66gを添
加し100℃で1時間反応させた。ついで、この反
応生成物にN−メチルモルホリン30gを添加して
PHを7以上に上げて90℃22時間縮合反応を行な
い、その後トルエン100gを添加し不揮発分が40
%(重量%、以下も同様)になるまで脱溶剤を行
なつた。 かくして得られた反応生成物(ワニス)は透明
で、粘度28.0センチポイズで、且つ30℃で2ケ月
貯蔵後も増粘及びゲル化することもなく、すぐれ
た貯蔵安定性を示した。 ついで、上記ワニスに酸化チタンを100PHRの
割合で分散した塗料をみがき軟鋼板に膜厚100μ
に塗装し、温度20℃、湿度75%の部屋に7日間セ
ツテイングした。かくして形成した塗膜にはワレ
等の異常は全く見られず、耐ソルトスプレー試験
(JIS Z 2371)15日後も点サビは全く観察され
なかつた。 実施例 3 反応容器に、ES−40(日本コルコート社製テト
ラエトキシシラン低縮合物)427g、エチルトリ
エトキシシラン58g及びエチルアルコール300g
を加え、内容物を撹拌しながら加熱して80℃にな
つたのち0.2N−塩酸142gを添加し80℃で30分間
反応させた。ついで、この反応生成物に水酸化カ
リウム5gを添加してPHを7以上に上げて80℃で
2時間縮合反応を行ない、その後ベンゼン200g
をて添加し不揮発分が30%(重量%、以下も同
様)になるまで脱溶剤を行なつた。 かくして得られた反応生成物(ワニス)は透明
で、粘度11.2センチポイズで、且つ30℃で2ケ月
貯蔵後も増粘及びゲル化することもなく、すぐれ
た貯蔵安定性を示した。 ついで、上記ワニスに亜鉛末を300PHRの割合
で添加した塗料をサンドプラストした鋼板に膜厚
100μに塗装し、温度20℃、湿度75%の部屋に7
日間セツテイングした。かくして形成した塗膜に
はワレ等の異常は全く見られず、40℃海水に3ケ
月浸漬後も赤さびの発生は見られなかつた。また
亜鉛末を添加した塗料も50℃で7日間貯蔵後もゲ
ル化しなかつた。 比較例 1 反応容器に、テトラエチルシリケート208g、
エチルアルコール208g及び0.2N塩酸72gを加
え、ついで内容物を撹拌しながら40℃で2時間反
応させた。つぎに、トリエチルアミン50gを添加
してPHを7以上に上げて縮合反応を行ない、つい
でベンゼン50gを添加し不揮発分が22%になるま
で脱溶剤を行なつた。かくして得られた反応生成
物は30℃で2ケ月間貯蔵後も何ら変化せず、すぐ
れた貯蔵安定性を示した。 この反応生成物をみがき軟鋼板に50μ膜厚に塗
装し温度20℃、湿度75%の部屋に7日間セツテイ
ングしたところ細かなワレが発生した。他方、こ
の反応生成物を10μ膜厚に塗装したものはワレの
発生もなく、耐ソルトスプレー試験2日後もサビ
の発生はなかつた。 比較例 2 実施例2において、N−メチルモルホリンを添
加する前の反応生成物に酸化チタンを100PHRの
割合で分散した塗料をみがき軟鋼板に100μ膜厚
に塗装したところ、10分後に大きなワレが発生し
た。また、この反応生成物は50℃で15日後ゲル化
した。 比較例 3 実施例3において、水酸化カリウムを添加する
前の反応生成物に亜鉛末を300PHR添加しサンド
ブラスト鋼板に100μ膜厚に塗布し、20℃、湿度
75%の部屋に7日間セツテイングしたが、塗膜に
何ら異常は見られず、40℃の海水に3ケ月浸漬後
赤さびの発生は見られなかつた。 しかし、亜鉛末添加ワニスは20℃で6時間でゲ
ル化し、亜鉛末未添加ワニスは50℃で5日間増粘
ゲル化した。
[Formula] ... [B] (where R is a hydrocarbon group having 1 to 12 carbon atoms, R is the same as above) is hydrolyzed in the presence of an acid catalyst, and then condensed at a pH of 7 or higher. A method for forming an inorganic coating film, which comprises applying a coating material containing a high condensate having no silanol groups as a film-forming component to an object to be coated, and curing the coating film with moisture. It is. The above-mentioned high condensate used in the method of the present invention has good storage stability since it does not have a silanol group at the molecular end, and does not gel for a long period of time even when zinc dust is added, for example. In addition, since the high condensate is formed by a combination of tetraalkoxysilane and trialkoxysilane, the crosslinking density can be adjusted appropriately by changing the blending ratio, resulting in improved curability and thick coating. It is possible to form an excellent inorganic coating film with a good balance of properties, that is, no cracking or peeling during curing, and a high thickness of 50 to 100 μm even with clear coating. Furthermore, since the main skeleton of the cured coating film is -Si-O-Si- bonds, it has excellent properties such as heat resistance, corrosion resistance, chemical resistance, and weather resistance. R in the organosilicon compound represented by the above general formula [A] used as a raw material in the present invention is the same or different hydrocarbon group having 1 to 8 carbon atoms, and the hydrocarbon group in this case is These include alkyl groups such as methyl, ethyl, propyl, and hexyl, aryl groups such as phenyl, tolyl, and xylyl, and cycloalkyl groups such as cyclohexyl, cyclobutyl, and cyclopentyl. Specific examples of the compound include tetramethoxysilane, tetraethoxysilane, tetrapropioxysilane, tetrabutoxysilane, and tetraphenoxysilane. Moreover, the low condensate means an oligomer having a degree of polymerization of 10 or less. Further, R in the organosilicon compound represented by the above general formula [B] is the same as in the case of the above general formula [A]. On the other hand, R' is a hydrocarbon group having 1 to 12 carbon atoms bonded to silicon through a carbon-silicon bond, and examples of hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl, hexyl, and octyl, phenyl, tolyl, xylyl, These include aryl groups such as naphthyl, and cycloalkyl groups such as cyclohexyl, cyclobutyl, and cyclopentyl. Specific examples of the compound include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane. In the method of the present invention, when obtaining a high condensate using the general formulas [A] and [B], it is appropriate to mix both components in the following proportions based on weight. Compound of general formula [A]: 5 to 95% by weight, preferably 20 to 80% by weight Compound of general formula [B]: 5 to 95% by weight, preferably 20 to 80% by weight In the above formulation, the amount of compound [A] is 5% by weight. If it is less than 95% by weight, that is, [B] compound is 95% by weight.
If it exceeds the above, the curability of the inorganic coating film formed using this condensate will be poor, and the overcoatability will be poor. In addition, if the amount of the [B] compound is less than 5% by weight, that is, the amount of the [A] compound is 95% by weight.
If it exceeds 100%, there is a drawback that if thick coating is applied using this condensate, the coating film is likely to cause cracking or peeling. When condensing a mixture of the organosilicon compounds represented by the above general formulas [A] and [B] and/or their low condensates, the compounds and/or
The mixture of low condensates is added to a water-soluble solvent such as an alcohol solvent, a cellosolve solvent, a cellosolve acetate solvent, or a glyme solvent. In the presence of Si, add water at a ratio of 0.2 to 2 mol per 1 mol of RO group bonded to Si,
The reaction is allowed to take place with stirring at approximately 100°C for approximately 30 minutes to 10 hours, and then inorganic bases such as sodium hydroxide and potassium hydroxide, aliphatic amines such as monoethylamine, diethylamine, and triethylamine, ammonia, etc. are added to form a system. The condensation reaction is allowed to proceed by adjusting the pH of the mixture to 7 or higher. After the reaction is completed, the desired high condensate can be easily obtained by removing remaining water by distillation, azeotropy, or the like. The high condensate thus obtained is a three-dimensional condensate with a degree of condensation of at least 20 and a molecular weight of approximately 3,000 or more, and has a sufficient function as an inorganic binder for paints. A coating film with a thickness of about 50 to 100μ can be formed.
It hardens due to moisture in the air within 10 minutes to 10 hours after application, and rapidly hardens within a few minutes when brought into active contact with water after application. At this time, the curability can be further improved by adding a strong base catalyst or a metal alkoxide such as titanium or aluminum. In the present invention, metal powder such as zinc dust can be added to produce a one-component rust-preventing paint, and enamel can also be produced by adding only ordinary extender pigments or coloring pigments. In addition, if a large amount of pigment is added at this time, thick coating of 100 microns or more is possible without causing drawdown or peeling. The inorganic coating film formed by the present invention has superior coating performance compared to conventional silicate coatings, and is especially excellent in corrosion resistance, solvent resistance, heat resistance, and weather resistance. EXAMPLES The present invention will be specifically described below with reference to Examples. Example 1 62 g of tetraethoxysilane, 125 g of methyltriethoxysilane and 187 g of ethyl alcohol were added to a reaction vessel, and the contents were heated while stirring.
After the temperature reached 80℃, add 30g of 0.2N hydrochloric acid and heat to 80℃.
The mixture was allowed to react for 10 hours. Next, 30 g of triethylamine was added to this reaction product to raise the pH to 7 or higher, and a condensation reaction was carried out at 80°C for 2 hours. After that, 100 g of benzene was added to reduce the nonvolatile content to 40% (wt%).
The same applies below). The reaction product (varnish) thus obtained was transparent, had a viscosity of 5.8 centipoise, and exhibited excellent storage stability without thickening or gelling even after being stored at 30°C for two months. Next, polish the above varnish onto a mild steel plate to a film thickness of 50μ.
The panels were painted and placed in a room with a temperature of 20°C and humidity of 75% for 7 days. No abnormalities such as cracks were observed in the coating film thus formed, and no spot rust was observed even after 7 days of the salt spray resistance test (JIS Z 2371). Example 2 132 g of tetrabutoxysilane, 138 g of phenyltributoxysilane and 270 g of butyl alcohol were added to a reaction vessel, and the contents were heated to 100°C with stirring, after which 66 g of a 5% formic acid aqueous solution was added and the mixture was heated to 100°C. The mixture was reacted for 1 hour. Then, 30 g of N-methylmorpholine was added to this reaction product.
Raise the pH to 7 or higher and conduct the condensation reaction at 90℃ for 22 hours, then add 100g of toluene to reduce the non-volatile content to 40%.
% (weight %, hereinafter the same). The reaction product (varnish) thus obtained was transparent, had a viscosity of 28.0 centipoise, and showed excellent storage stability without thickening or gelling even after being stored at 30°C for two months. Next, the above varnish was coated with a paint containing titanium oxide dispersed at a ratio of 100PHR, and a film thickness of 100μ was applied to the mild steel plate.
The panels were painted and placed in a room with a temperature of 20°C and humidity of 75% for 7 days. No abnormalities such as cracks were observed in the coating film thus formed, and no spot rust was observed even after 15 days of the salt spray resistance test (JIS Z 2371). Example 3 In a reaction vessel, 427 g of ES-40 (tetraethoxysilane low condensate manufactured by Nippon Colcoat Co., Ltd.), 58 g of ethyltriethoxysilane, and 300 g of ethyl alcohol were added.
was added, and the contents were heated with stirring until the temperature reached 80°C, after which 142 g of 0.2N hydrochloric acid was added and reacted at 80°C for 30 minutes. Next, 5 g of potassium hydroxide was added to this reaction product to raise the pH to 7 or more, and a condensation reaction was carried out at 80°C for 2 hours, and then 200 g of benzene was added.
The solvent was removed until the nonvolatile content became 30% (by weight, the same applies hereinafter). The reaction product (varnish) thus obtained was transparent, had a viscosity of 11.2 centipoise, and showed excellent storage stability without thickening or gelling even after being stored at 30°C for two months. Next, a paint made by adding zinc powder to the above varnish at a rate of 300 PHR was applied to a sandblasted steel plate to create a film thickness.
Painted 100μ and placed in a room with a temperature of 20℃ and humidity of 75%.
It was set for several days. The thus formed coating showed no abnormalities such as cracks, and no red rust was observed even after being immersed in 40°C seawater for three months. Also, the paint containing zinc dust did not gel even after being stored at 50°C for 7 days. Comparative Example 1 208g of tetraethyl silicate was added to the reaction vessel.
208 g of ethyl alcohol and 72 g of 0.2N hydrochloric acid were added, and the contents were then reacted at 40° C. for 2 hours with stirring. Next, 50 g of triethylamine was added to raise the pH to 7 or more to perform a condensation reaction, and then 50 g of benzene was added to remove the solvent until the nonvolatile content became 22%. The reaction product thus obtained did not change at all even after being stored at 30°C for 2 months, demonstrating excellent storage stability. When this reaction product was applied to a polished mild steel plate to a thickness of 50 μm and set in a room at a temperature of 20°C and a humidity of 75% for 7 days, small cracks appeared. On the other hand, a coating coated with this reaction product to a thickness of 10 μm showed no cracking and no rusting even after 2 days of the salt spray resistance test. Comparative Example 2 In Example 2, when a paint prepared by dispersing titanium oxide at a ratio of 100PHR into the reaction product before adding N-methylmorpholine was applied to a polished mild steel plate to a thickness of 100μ, large cracks were observed after 10 minutes. Occurred. Moreover, this reaction product gelled after 15 days at 50°C. Comparative Example 3 In Example 3, 300 PHR of zinc powder was added to the reaction product before adding potassium hydroxide, and the mixture was applied to a sandblasted steel plate to a thickness of 100μ, and kept at 20℃ and humidity.
Although it was set in a 75% room for 7 days, no abnormalities were observed in the paint film, and no red rust was observed after being immersed in seawater at 40°C for 3 months. However, the varnish to which zinc dust had been added gelled at 20°C for 6 hours, and the varnish to which no zinc dust had been added thickened and gelled at 50°C for 5 days.

Claims (1)

【特許請求の範囲】 1 下記一般式〔A〕で示される有機珪素化合物
および(又は)その低縮合物および 【式】 (但しRは炭素数1〜8の炭化水素基)
……〔A〕 下記一般式〔B〕で示される有機珪素化合物お
よび(又は)その低縮合物 【式】(但しR′は炭素数1〜12の炭 化水素基、Rは上記に同じ) ……〔B〕 とからなる混合物を酸触媒の存在下で加水分解し
た後、そのPHを7以上として縮合せしめて得られ
るシラノール基を有しない高縮合物を、造膜成分
とした塗料を被塗物に塗布し、水分によつて塗膜
を硬化せしめることを特徴とする無機質塗膜の形
成方法。
[Claims] 1. An organosilicon compound represented by the following general formula [A] and/or a low condensate thereof, and [Formula] (where R is a hydrocarbon group having 1 to 8 carbon atoms)
... [A] Organosilicon compound and/or its low condensate represented by the following general formula [B] [Formula] (where R' is a hydrocarbon group having 1 to 12 carbon atoms, and R is the same as above) ... ...[B] After hydrolyzing a mixture consisting of in the presence of an acid catalyst and then condensing the mixture to a pH of 7 or more, the coating is coated with a film-forming component containing a high condensate that does not have silanol groups. A method for forming an inorganic coating film, which is characterized by applying the coating to an object and curing the coating film with moisture.
JP17600282A 1982-10-05 1982-10-05 Formation of inorganic coating film Granted JPS5964671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17600282A JPS5964671A (en) 1982-10-05 1982-10-05 Formation of inorganic coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17600282A JPS5964671A (en) 1982-10-05 1982-10-05 Formation of inorganic coating film

Publications (2)

Publication Number Publication Date
JPS5964671A JPS5964671A (en) 1984-04-12
JPH0422953B2 true JPH0422953B2 (en) 1992-04-20

Family

ID=16005989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17600282A Granted JPS5964671A (en) 1982-10-05 1982-10-05 Formation of inorganic coating film

Country Status (1)

Country Link
JP (1) JPS5964671A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168772A (en) * 1984-02-13 1985-09-02 Kansai Paint Co Ltd Zinc shop coat primer
DE4243895A1 (en) * 1992-12-23 1994-06-30 Wacker Chemie Gmbh Process for the production of organopolysiloxane resin
JP4889135B2 (en) * 1998-11-25 2012-03-07 大日本印刷株式会社 Antireflection film
US7335392B2 (en) 2002-11-29 2008-02-26 Neomax Co., Ltd. Method for producing corrosion-resistant rare earth metal-based permanent magnet
EP2109645B1 (en) * 2006-07-04 2014-09-24 SigmaKalon B.V. A paint composition
US20150079407A1 (en) * 2012-04-12 2015-03-19 Dow Corning Corporation Silicone-polyester composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398324A (en) * 1977-02-10 1978-08-28 Kansai Paint Co Ltd Forming of inorganic film
JPS54112936A (en) * 1978-01-17 1979-09-04 Hempel Technology As Primer composition
JPS54129032A (en) * 1977-05-13 1979-10-06 Union Carbide Corp Single packaged zinc rich coating
JPS5541711A (en) * 1978-09-15 1980-03-24 Matsushita Electric Works Ltd Device for connecting terminal of cord reel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398324A (en) * 1977-02-10 1978-08-28 Kansai Paint Co Ltd Forming of inorganic film
JPS54129032A (en) * 1977-05-13 1979-10-06 Union Carbide Corp Single packaged zinc rich coating
JPS54112936A (en) * 1978-01-17 1979-09-04 Hempel Technology As Primer composition
JPS5541711A (en) * 1978-09-15 1980-03-24 Matsushita Electric Works Ltd Device for connecting terminal of cord reel

Also Published As

Publication number Publication date
JPS5964671A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
US4605446A (en) Process for preparing organosilicon high condensation products
US4218354A (en) Binder composition and coating containing the same
JP2003147206A (en) Composition containing silicon compound, method for producing the same, use thereof, lacquer produced by using the same composition, film containing the same lacquer and product having the same film
US5415688A (en) Water-borne polysiloxane/polysilicate binder
JPH06200032A (en) Preparation of epoxy functional solid silicone resin
US3932339A (en) Product and process
JPH0786183B2 (en) Coating composition for coating
JPH0422953B2 (en)
JP3221645B2 (en) Curable composition
JPH0346194B2 (en)
JPH01170668A (en) Production of coating composition for covering
NO790033L (en) ZINC-CONTAINING ANTI-CORROSION PRIMER AND PROCEDURE FOR PREPARING IT
JP2695113B2 (en) Method for repairing inorganic hardened body or metal surface having silicon-based coating layer
JPS60118715A (en) Production of organic silicon condensation product
JP4352568B2 (en) Inorganic paint
JPH06220402A (en) Coating composition
JP3191600B2 (en) Stainless steel painted structure and manufacturing method thereof
JPS60118716A (en) Production of organic silicon condensation product
JP3242442B2 (en) Composition for coating
JPH06240207A (en) Coating composition
JP3023392B2 (en) Painted article and method of manufacturing the same
JP3149347B2 (en) Coating composition
JPH093402A (en) Coating composition
JPS5945361A (en) Method for forming inorganic coating film
JP2608666B2 (en) Painted metal article and method of manufacturing the same