JPH0422506B2 - - Google Patents

Info

Publication number
JPH0422506B2
JPH0422506B2 JP59241529A JP24152984A JPH0422506B2 JP H0422506 B2 JPH0422506 B2 JP H0422506B2 JP 59241529 A JP59241529 A JP 59241529A JP 24152984 A JP24152984 A JP 24152984A JP H0422506 B2 JPH0422506 B2 JP H0422506B2
Authority
JP
Japan
Prior art keywords
resin
photographic
present
support
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59241529A
Other languages
Japanese (ja)
Other versions
JPS61120140A (en
Inventor
Kazuto Kyohara
Takanori Nakatate
Kazuya Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP24152984A priority Critical patent/JPS61120140A/en
Publication of JPS61120140A publication Critical patent/JPS61120140A/en
Publication of JPH0422506B2 publication Critical patent/JPH0422506B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/95Photosensitive materials characterised by the base or auxiliary layers rendered opaque or writable, e.g. with inert particulate additives

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は反射写真材料およびその製造方法に関
するものである。ここで反射写真材料とは、写真
画像を透過光により投影しその投影画像を利用す
る所謂透過写真材料に対し、支持体として不透明
な材料を用いその上に写真層を設けたものであつ
て、通常、該写真層に形成された写真画像を反射
光により直接観賞するための通常印画紙と呼ばれ
ている如き写真材料をいう。 [従来技術] 従来、反射写真材料の支持体としては、パルプ
から製造された原紙上に白色顔料等を混練したポ
リエチレン層を設けたポリエチレン被覆紙が一般
に使用されている。しかしながら、ポリエチレン
被覆紙支持体を用いた反射写真材料では、隣接す
る原紙支持体表面の凹凸のため、ざらざらしたさ
ざ波状の光沢面になり、写真画像の明るさ、鮮明
さおよびそれらに起因する美しさが著しく損なわ
れる。また、支持体の原紙の両面は水を通さない
ポリエチレン薄膜で被覆されるが、原紙の切断面
は被覆されないため、ここから現像処理液等のし
み込みが生じ、経時変化で処理液が写真層に移行
すると、得られた写真画像に悪影響を与える等の
欠点があつた。 上記欠点を解消する方法として、支持体に原紙
を用いず熱可塑性樹脂フイルムのみを用いる方法
がいくつか提案されている。 特開昭49−114921号、特公昭55−5104号には、
ポリスチレン系樹脂フイルムに白色顔料を填する
方法が開示されているが、これらのフイルムは硬
く、脆い欠点を有している。このフイルムの機械
的強度等の物性面からはポリエチレンテレフタレ
ート等のポリエステル樹脂が優れており、このポ
リエステル樹脂を用いた技術として、英国特許第
1563591号および同第1563592号に硫酸バリウムを
ポリエステル樹脂に添加し、延伸する方法が開示
されている。しかしながら、同方法では、反射写
真材料用の支持体としての十分な白色度が得られ
ない。これは同特許の実施例において蛍光増白剤
や他顔料を多用していることから明らかである。
また、延伸の結果、硫酸バリウム粒子周囲に空隙
を生じ、写真層を塗設した場合得られる画像の解
像力が不十分となる。また、特公昭56−4901号に
は、硫酸バリウムと酸化チタンを併用する技術が
開示されている。同特許では使用しうる熱可塑性
樹脂としてオレフイン系樹脂、スチレン系樹脂、
塩化ビニル系樹脂、ポリアクリレート系樹脂、ポ
リカーボネート系樹脂などと併せて飽和ポリエス
テル系樹脂も好適であると述べられているが、次
の二点の理由からポリエステル系樹脂には適用し
かねるものである。その第一点は、硫酸バリウム
とポリエステル樹脂の屈折率の値が近く、延伸し
ないかぎり好適な白色度は得られず、同特許には
ポリエステル系樹脂に添加した場合について何ら
開示していない。第二には、塩化チタンはそのま
まポリエステル系樹脂に添加し延伸すると粒子周
囲に空隙を生じてしまい好適な白色度が得られな
いばかりか、前述したように写真画像の解像力も
不十分となる。以上述べた如く、反射写真材料と
しては、未だ満足が得られないものであつた。 [発明の目的] 本発明は上記の欠点を解消するためになされた
ものであり、本発明の第1の目的は、支持体断面
からの写真処理液等の浸透がなく支持体を薄くし
ても白色度、不透明度、光沢度に優れ、さらに写
真画像に解像力に優れた反射写真材料を提供する
ことであり、本発明の第2の目的は、前記特性を
有する反射写真材料の製造方法を提供することで
ある。 [発明の構成] 本発明の上記第1の目的は、樹脂中に、周囲に
空隙を有する状態で分散されている微粒子Aおよ
び周囲に実質的に空隙を有さない状態で分散され
ている白色顔料Bとを含有する、ポリエステル樹
脂を主成分とする熱可塑性樹脂の膜厚40〜
300μm、全可視光透過率20%以下であるフイルム
支持体の少なくとも片面に感光性写真乳剤層を塗
設した反射写真材料により達成される。 また、本発明の上記第2の目的は、ポリエステ
ル樹脂を主成分とする熱可塑性樹脂中に、該熱可
塑性樹脂との接着力が弱くかつ該熱可塑性樹脂に
不活性な微粒子Aおよび前記熱可塑性樹脂との接
着力が強い白色顔料Bとを含む樹脂組成物を溶融
後急冷して無定形シートとした後、前記微粒子A
の周囲に空隙を形成させ、かつ前記白色顔料Bの
周囲に実質的に空隙を形成させないように二軸方
向に延伸を施し、膜厚40〜300μm、全可視光透過
率20%以下である白色フイルム支持体を形成し、
該白色フイルム支持体の少なくとも片面に感光性
写真乳剤層を塗設する反射写真材料の製造方法に
より達成される。 [発明の具体的構成] 本発明に用いられるポリエステル樹脂を主成分
とする熱可塑性樹脂(以下、本発明の樹脂とい
う)とは、ポリエステルのみからなる熱可塑性樹
脂はもちろんのこと、主成分であるポリエステル
の樹脂特性を実用的に変動させない範囲において
他のポリマー、添加剤等を加えたものも包含され
る。 本発明に用いられるポリエステル樹脂として
は、テレフタル酸、イソフタル酸、フタル酸、ナ
フタレンジカルボン酸等の芳香族ジカルボン酸と
エチレングリコール、1,3−プロパンジオー
ル、1,4−ブタンジオール等のグリコール類と
の縮合物のポリマー、例えば、ポリエチレンテレ
フタレート、ポリエチレン2,6ジナフタレー
ト、ポリプロピレンテレフタレート、ポリブチレ
ンテレフタレート等あるいはこれらの共重合体が
挙げられる。 本発明に用いられるポリエステル樹脂として
は、ポリエチレンテレフタレート(以下、PET
と略称する)が好ましい。PET樹脂フイルムは、
水を浸透せず、平滑性に優れ、引張強度、引き裂
き強度等の機械的特性に優れ、熱収縮等の寸法安
定性に優れ、さらに現像処理時の耐薬品性に優れ
ているものである。 本発明の樹脂のフエノール/テトラクロロエタ
ン(60/40重量比)の混合溶媒中、20℃で測定し
た固有粘度は、0.4〜1.0が好ましく、より好まし
くは0.5〜0.8である。 本発明に用いられる微粒子Aは、本発明の樹脂
との接着力が弱くかつ該樹脂との反応性がほとん
どない微粒子であり、例えば、硫酸バリウム、炭
酸バリウム、リトポン(ZoS+BaSO4)、ルチル
型又はアナターゼ型酸化チタン()等の無機微
粒子あるいはポリエチレン、ポリプロピレン等の
ポリオレフイン樹脂等の1種又は2種以上から選
ばれる。微粒子Aの平均粒子径は0.1〜10μmが好
ましく、最大粒子径が50μmを越えないことが好
ましい。 上記微粒子Aを実質的に50μmを越える粒子が
存在しないように本発明の樹脂中に分散、含有さ
せ、次いで延伸することにより、微粒子Aの周囲
に空隙を形成し、前記熱可塑性樹脂フイルムしを
不透明化、白色化することができる。この際、微
粒子Aの平均粒子径は、不透明性、白色度、平滑
性および光沢度等から前記の範囲が好ましい。さ
らに、平均粒子径が0.1〜10μmの範囲内でも、本
発明の樹脂中で再凝集して、実質的に50μm以上
の粒状体を形成することがあり、その場合、延伸
性、フイルムの平滑性、光沢度および機械的強度
さらに写真層を設けた場合、得られる写真画像に
対して白抜け状の欠点等が表われ等の点より微粒
子Aの最大粒子径が50μmを越えないのはもちろ
んのこと、再凝集して50μmを越える粒状体を形
成しないように樹脂中に分散し、成形するのが好
ましい。 微粒子Aを本発明の樹脂中に分散させ、後述す
るように二軸方向に延伸すると、微粒子Aを核と
する空隙がフイルムの面内方向に生成する。第1
図にこの空隙のモデルを示す。 同図において、1は微粒子Aであり、2は空
隙、3は後述する白色顔料B、4は本発明の樹脂
である。同図は、フイルムを500〜10,000倍の倍
率で顕微鏡、特に電子顕微鏡または位相差顕微鏡
で観察すれば容易に見ることができるものであ
る。上記空隙は、微粒子Aと本発明樹脂との間に
存在する小空間を意味するものである。 本発明に用いられる白色顔料Bとは、酸素結合
あるいは水酸基結合を有するアルミニウム化合
物、例えばアルミナ等および/またはケイ素化合
物、例えばケイ酸等で表面処理した酸化チタン
()、または該処理の後さらに金属石けん、界面
活性剤、カツプリング剤等で表面処理した酸化チ
タン等が挙げられるが、白色顔料で本発明の樹
脂との接着力が強く、樹脂フイルムの延伸時に実
質的に空隙を生じないような微粒子であればよ
く、上記表面処理方法、無機化合物に限定される
ものではない。 本発明において、白色顔料B化合物としては、
特に酸化チタン()が好ましい。これは、酸化
チタン()の屈折率(n=2.5〜2.75)が本発
明の樹脂の屈折率(例えば、PETの屈折率1.66)
に比べて大きく光反射能力に優れ、写真材料の支
持体中に用いた場合に、得られる写真画像の解像
力に優れたものとなるためである。 酸化チタン()としては、ルチル型、アナタ
ーゼ型のどちらでも、あるいは両者を混合したも
のでも用いることができる。 本発明の白色顔料Bの平均粒子径は、支持体と
しての光反射能力の点から0.1〜0.5μmの範囲が好
ましく、最大粒子径が50μmを越えないことが好
ましい。 本発明において、周囲に実質的に空隙を有さな
い状態で分散されている白色顔料Bとは、白色顔
料Bを本発明の樹脂中に分散させ、後述するよう
に二軸方向に延伸してフイルムを形成しても、白
色顔料Bの周囲に実質的に第1図に示す如きの空
隙が形成されないものである。 本発明の微粒子Aと白色顔料Bとを本発明の樹
脂に分散含有させる方法としては、エチレングリ
コール等のグリコール類に微粒子Aと白色顔料B
とを添加分散させ、スラリーとなし、該スラリー
をポリエステル形成性前駆物質に添加する方法、
ポリエステル樹脂中にヘンシエルミキサー、バン
バリミキサー、2軸スクリユー混練機等の混練機
を用いて、本発明の微粒子Aと白色顔料Bとを分
散含有させる方法、さらにポリエステル樹脂チツ
プの成形加工時に本発明の微粒子Aと白色顔料B
とを添加し分散含有させる方法等が挙げられる
が、微粒子Aおよび白色顔料Bの添加時期および
添加順序は、特に制限はなくフイルム成形までの
任意の時期でよい。 本発明において、前記白色顔料Bに対する微粒
子Aの割合は、写真画像の解像力、フイルムの機
械的強度および不透明性等から0.1〜1.0が好まし
く、より好ましくは0.2〜0.5である。 上記微粒子Aと白色顔料Bとを上記の添加割合
で本発明の樹脂中に分散含有させ、後述する如き
成形条件にて成形した時、写真層に形成される写
真画像は解像力が良好で、不透明度、白色度も良
好な支持体(以下、本発明の支持体という)を得
ることができる。 本発明の支持体において、本発明の目的を害し
ない範囲で、通常用いられる他の白色顔料、添加
剤、例えば蛍光増白剤、染料、紫外線吸収剤、帯
電防止剤等を含有することができる。 本発明の支持体を成形加工するには、本発明の
微粒子Aと白色顔料Bとが添加された本発明の樹
脂を溶融後、スリツトダイから押し出し、回転ド
ラム等の急冷表面に接地し、無定形のシートとし
た後、本発明の樹脂のガラス転移温度Tg以上130
℃以下の温度範囲で、縦又は横方向の一軸方向に
順次または二軸同時に延伸することができる。こ
の際、不透明性向上に有用な空隙を形成し、かつ
フイルム支持体の機械的強度、寸法安定性を満足
させるために、面積比で4〜16倍の範囲で延伸が
行なわれることが好ましい。延伸に次いで、熱固
定、熱緩和を行なうことが好ましい。 本発明の支持体の膜厚は、40〜300μmであり、
好ましくは60〜250μmである。40μmより薄い場
合は、支持体としての腰が弱く、しわになり易
い。また、300μmを越える場合は、厚すぎて取り
扱いが不便となる等の欠点が生じる。 また、本発明の支持体の全可視光透過率は、目
で見た時の不透明性、白色度を十分にするために
20%以下、より好ましくは10%以下とする。従つ
て、本発明の支持体の膜厚40〜300μm、好ましく
は60〜250μmで全可視光透過率20%以下、好まし
くは10%以下になるように前記微粒子Aと白色顔
料Bの添加量および延伸比を選択する。 上記の如く成形され、不透明、白色化された本
発明の支持体の少なくとも片面に感光性写真乳剤
層が塗設される。この場合、必要に応じて感光性
写真乳剤層塗布に先んじてコロナ放電等の表面活
性化処理および/または下引層を塗設することが
できる。 本発明の反射写真材料およびその製造方法は、
支持体を用いる写真材料であればすべてに適用で
き、例えば白黒用、カラー用等の制限はなく、写
真構成層においても、感光性写真乳剤層、中間
層、保護層、フイルター層、バツクコート層等の
層数、層順序に特に制限はなく適用できる。 本発明における写真乳剤層とは、通常のハロゲ
ン化銀乳剤層であり、例えば、塩化銀、臭化銀、
塩臭化銀、沃臭化銀、塩沃臭化銀乳剤等を好まし
く用いることができる。また、この層の中にはカ
ラー像を作るためのカプラーを含ませることも可
能でり、また結合剤としてゼラチン以外の親水性
高分子物質、例えばポリビニルアルコール、ポリ
ビニルピロリドン等を含ませることも可能であ
る。更に、上記ハロゲン化銀乳剤層は、シアニン
色素、メロシアニン色素等により感光波長域を増
感させることもでき、また、その他種々の写真用
添加剤、例えば、カブリ防止剤、金、イオウ等を
用いた科学増感剤、硬膜剤、帯電防止剤等を好ま
しく加えることができる。従つて、本発明による
写真材料の現像処理も、白黒用現像処理であつて
も、カプラーを含有するか、或いは含有しないカ
ラー用現像処理であつても、本発明は有効であ
る。 [発明の具体的効果] 以上説明した如く、本発明の反射写真材料およ
びその製造方法によれば、支持体断面からの写真
処理液等の浸透がないので写真画像の経時保存性
に優れ、支持体を薄くしても、白色度、不透明
度、光沢度に優れ、さらに写真画像の解像力に優
れ、観賞用、記録用に敵した反射写真材料が得ら
れる。 [発明の具体的実施例] 以下、本発明を実施例により具体的に説明する
が本発明の実施の態様がこれに限定されるもので
はない。 実施例 1 固有粘度0.74のPET樹脂100重量部、平均粒子
径0.6μmの硫酸バリウム8重量部、アルミナで表
面処理した平均粒子径0.2μmのルチル型酸化チタ
ン()17重量部からなる組成物を溶融混練後、
スリツトダイより急冷回転ドラム上に押出し、膜
厚1.1mmの無定形シートとした。 この無定形シートを縦方向に90℃で3.0倍、次
いで横方向に110℃で3.0倍延伸し、さらに220℃
で熱固定し本発明の写真用フイルム支持体を得
た。 得られた写真用フイルム支持体の膜厚は125μm
であつた。また不透明性を評価するために全可視
光透過率をデジタル濁度計モデルT−2600DA
(東京電色株式会社製)により測定した。結果を
表1に示す。 上記の写真用フイルム支持体をコロナ放電処理
後下引き処理し、該面上に通常カラー写真印画紙
に用いられているゼラチン−ハロゲン化銀カラー
写真乳剤を乾燥膜厚15μmになるように塗布し、
所期の反射写真材料試料1を調製した。 上記で得られた反射写真材料試料1に解像力測
定用密線チヤートを焼き付け露光した後、通常の
方法で現像処理し、密線プリント画像の光学的濃
度差をマイクロデンシトメータPDM−5(小西六
写真工業株式会社製)で測定し、次式で表わされ
る値を解像力とした。 解像力(%)=5本/mmの密線プリント画像のDmaxと
Dminの濃度差/0.1本/mmの密線プリント画像のDmaxとD
minの濃度差×100 また、現像後の白地部分について、分光光度計
320型(日立制作所社製)で測定した380〜780nm
の分光反射率をJIS−Z−8722(1982年)に従つて
計算し、白色度(L値)を求め、さらに、グロス
メータで20°−20°の反射率をJIS−Z−8741の方
法4に従つて求め、光沢度(%)を測定した。 結果を併せて表1に示す。 実施例 2 上記反射写真材料試料1において、写真用フイ
ルム支持体組成物を固有粘度0.74のPET樹脂100
重量部、平均粒子径0.2μmでアルミナ、シリカで
表面処理したアナターゼ型酸化チタン17重量部、
延伸用グレードのプロピレン単独重合体8重量部
に代えた以外は実施例1と同様にして反射写真材
料試料2を調製した。 実施例 3 実施例1の反射写真材料試料1において、写真
用フイルム支持体組成物を固有粘度0.68のPET樹
脂100重量部、平均粒子径0.3μmでアルミナで表
面処理したルチル型酸化チタン15重量部、平均粒
子径0.3μmの硫酸バリウム10重量部、マクロレツ
クスブル−RRとして市販されている青色染料
50ppmに代えた以外は実施例1と同様にして反射
写真材料試料3を調製した。 実施例 4 実施例1の反射写真材料試料1において、試料
1と同様の組成の写真用フイルム支持体組成物を
実施例1と同様の方法で溶融後急冷し、厚さ
1.6μmの無定形シートとした。 このシートを実施例1と同様の方法で延伸成形
し、厚さ180μmの本発明の写真用フイルム支持体
を得、実施例1と同様の方法で反射写真材料試料
4を調製した。 実施例 5 実施例1の反射写真材料試料1において、試料
1と同様の組成の写真用フイルム支持体組成物を
実施例1と同様の方法で溶融後急冷し、厚さ
0.9μmの無定形シートを製造し、実施例1と同様
の方法で延伸成形し、厚さ100μmの本発明の写真
用フイルム支持体となし、これを実施例1と同様
の方法で反射写真材料試料5を調製した。 比較例 1 実施例1の反射写真材料試料1において、写真
用フイルム支持体組成物を固有粘度0.74のPET樹
脂100重量部、平均粒子径0.6μmの硫酸バリウム
25重量部からなる組成物に代えた以外は実施例1
と同様の方法で反射写真材料試料6を調製した。 比較例 2 実施例1の反射写真材料試料1において、写真
用フイルム支持体組成物を固有粘度0.74のPET樹
脂100重量部、平均粒子径0.2μmで何ら表面処理
をしていないアナターゼ型酸化チタン25重量部か
らなる組成物に代えた以外は実施例1と同様の方
法で反射写真材料試料7を調製した。 比較例 3 実施例1の反射写真材料試料1において、写真
用フイルム支持体組成物を固有粘度0.74のPET樹
脂100重量部、平均粒子径0.2μmで何ら表面処理
をしていないアナターゼ型酸化チタン17重量部、
平均粒子径1.0μmの硫酸バリウム8重量部からな
る組成物に代え、膜厚を50μmと薄くしたことを
除いて実施例1と同様の方法で反射写真材料試料
8を調製した。 上記試料1〜5の支持体は、断面を電子顕微鏡
により倍率5,000倍で観察すると、20μm以上の
粗大粒子は観察されず、いずれも分散性は良好で
あることがわかつた。また支持体製造中に割れた
りすることなく、安定して製造できた。 一方、試料6〜8の支持体は、断面を電子顕微
鏡により倍率5,000倍で観察すると、10〜20μm
の粒子が多数みられ、なかには50μmをこえる組
大粒子もみられ、あまり分散性が良くないもので
あつた。また支持体製造中に割れたりして、安定
した製造が困難であつた。さらに、できたフイル
ムも平滑性が良好ではなかつた。 上記実施例2〜5および比較例1〜3で得られ
た試料2〜8を試料1と同様にして露光、現像
し、各試料の特性を同様にして測定し、結果を併
せて表1に示した。
[Industrial Field of Application] The present invention relates to a reflective photographic material and a method for producing the same. Here, the reflection photographic material is a material in which an opaque material is used as a support and a photographic layer is provided on the so-called transmission photographic material, in which a photographic image is projected by transmitted light and the projected image is used. Usually, it refers to a photographic material called a photographic paper for directly viewing the photographic image formed on the photographic layer using reflected light. [Prior Art] Conventionally, as a support for reflective photographic materials, polyethylene-coated paper is generally used, which is a base paper made from pulp and provided with a polyethylene layer kneaded with a white pigment or the like. However, in reflective photographic materials using polyethylene-coated paper supports, the unevenness of the surface of the adjacent base paper support results in a glossy surface with rough ripples, which impairs the brightness, sharpness, and resulting beauty of the photographic image. quality is significantly impaired. Also, both sides of the base paper of the support are covered with a water-impermeable polyethylene thin film, but since the cut side of the base paper is not coated, the developing processing solution etc. seeps in from there, and over time the processing solution is transferred to the photographic layer. However, there were drawbacks such as an adverse effect on the photographic images obtained. As a method for solving the above-mentioned drawbacks, several methods have been proposed in which only a thermoplastic resin film is used as a support without using base paper. In JP-A-49-114921 and JP-A-55-5104,
Methods of filling polystyrene resin films with white pigments have been disclosed, but these films have the drawback of being hard and brittle. Polyester resins such as polyethylene terephthalate are superior in terms of physical properties such as mechanical strength of this film, and a technology using this polyester resin has been patented in the UK.
No. 1563591 and No. 1563592 disclose a method of adding barium sulfate to a polyester resin and stretching the resin. However, this method does not provide sufficient whiteness as a support for reflective photographic materials. This is clear from the extensive use of optical brighteners and other pigments in the examples of the same patent.
Furthermore, as a result of stretching, voids are formed around the barium sulfate particles, and when a photographic layer is coated, the resolution of the image obtained becomes insufficient. Further, Japanese Patent Publication No. 56-4901 discloses a technique in which barium sulfate and titanium oxide are used in combination. The patent states that the thermoplastic resins that can be used include olefin resins, styrene resins,
It has been stated that saturated polyester resins are suitable in addition to vinyl chloride resins, polyacrylate resins, polycarbonate resins, etc., but it cannot be applied to polyester resins for the following two reasons. . The first point is that the refractive index values of barium sulfate and polyester resin are close, and suitable whiteness cannot be obtained unless stretched, and the patent does not disclose anything about adding barium to polyester resin. Second, if titanium chloride is directly added to a polyester resin and then stretched, voids will be created around the particles, making it impossible to obtain a suitable degree of whiteness, and as mentioned above, the resolution of photographic images will also be insufficient. As mentioned above, it has not yet been satisfactory as a reflective photographic material. [Object of the Invention] The present invention has been made in order to eliminate the above-mentioned drawbacks, and the first object of the present invention is to prevent the penetration of photographic processing liquid etc. from the cross section of the support and to make the support thin. A second object of the present invention is to provide a reflective photographic material having excellent whiteness, opacity, and gloss as well as excellent resolution of photographic images.A second object of the present invention is to provide a method for producing a reflective photographic material having the above characteristics. It is to provide. [Structure of the Invention] The above-mentioned first object of the present invention is to provide fine particles A dispersed in a resin with voids around them and white particles dispersed in a resin with substantially no voids around them. Film thickness of thermoplastic resin containing Pigment B and mainly composed of polyester resin: 40~
This is achieved by using a reflective photographic material having a film support having a diameter of 300 μm and a total visible light transmittance of 20% or less and a light-sensitive photographic emulsion layer coated on at least one side. The second object of the present invention is to provide fine particles A which have a weak adhesive force to the thermoplastic resin and are inert to the thermoplastic resin, and which are contained in a thermoplastic resin containing polyester resin as a main component. After melting and rapidly cooling a resin composition containing a white pigment B that has strong adhesive strength with resin to form an amorphous sheet, the fine particles A
A white pigment with a film thickness of 40 to 300 μm and a total visible light transmittance of 20% or less, which is obtained by stretching in biaxial directions so as to form voids around the white pigment B and to substantially prevent voids from forming around the white pigment B. forming a film support;
This is achieved by a method for producing a reflective photographic material in which a light-sensitive photographic emulsion layer is coated on at least one side of the white film support. [Specific structure of the invention] The thermoplastic resin whose main component is a polyester resin used in the present invention (hereinafter referred to as the resin of the present invention) is not only a thermoplastic resin consisting only of polyester, but also a thermoplastic resin whose main component is a polyester resin. It also includes polyesters to which other polymers, additives, etc. are added within a range that does not practically change the resin properties of the polyester. The polyester resin used in the present invention includes aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, and naphthalene dicarboxylic acid, and glycols such as ethylene glycol, 1,3-propanediol, and 1,4-butanediol. Polymers of condensates of, for example, polyethylene terephthalate, polyethylene 2,6 dinaphthalate, polypropylene terephthalate, polybutylene terephthalate, etc., or copolymers thereof. The polyester resin used in the present invention is polyethylene terephthalate (hereinafter referred to as PET).
) is preferred. PET resin film is
It does not permeate water, has excellent smoothness, has excellent mechanical properties such as tensile strength and tear strength, has excellent dimensional stability such as heat shrinkage, and has excellent chemical resistance during development processing. The intrinsic viscosity of the resin of the present invention measured at 20° C. in a mixed solvent of phenol/tetrachloroethane (60/40 weight ratio) is preferably 0.4 to 1.0, more preferably 0.5 to 0.8. The fine particles A used in the present invention are fine particles that have weak adhesion to the resin of the present invention and have almost no reactivity with the resin, such as barium sulfate, barium carbonate, lithopone (Z o S + B a SO 4 ). , inorganic fine particles such as rutile type or anatase type titanium oxide (), or polyolefin resins such as polyethylene and polypropylene. The average particle size of the fine particles A is preferably 0.1 to 10 μm, and the maximum particle size preferably does not exceed 50 μm. The fine particles A are dispersed and contained in the resin of the present invention so that substantially no particles exceeding 50 μm are present, and then stretched, thereby forming voids around the fine particles A and forming the thermoplastic resin film. It can be made opaque and white. In this case, the average particle diameter of the fine particles A is preferably within the above range from the viewpoint of opacity, whiteness, smoothness, glossiness, etc. Furthermore, even if the average particle size is within the range of 0.1 to 10 μm, it may re-agglomerate in the resin of the present invention to form granules with a size of substantially 50 μm or more. , Glossiness and Mechanical Strength In addition, when a photographic layer is provided, defects such as white spots appear in the photographic image obtained, so of course the maximum particle diameter of fine particles A should not exceed 50 μm. In particular, it is preferable to disperse it in a resin and mold it so that it does not re-agglomerate to form particles exceeding 50 μm. When fine particles A are dispersed in the resin of the present invention and stretched in biaxial directions as described below, voids with fine particles A as cores are generated in the in-plane direction of the film. 1st
The figure shows a model of this void. In the figure, 1 is a fine particle A, 2 is a void, 3 is a white pigment B, which will be described later, and 4 is a resin of the present invention. This figure can be easily seen by observing the film under a microscope, especially an electron microscope or a phase contrast microscope, at a magnification of 500 to 10,000 times. The above-mentioned void means a small space existing between the fine particles A and the resin of the present invention. The white pigment B used in the present invention is titanium oxide (2) whose surface has been treated with an aluminum compound having an oxygen bond or a hydroxyl group bond, such as alumina, and/or a silicon compound such as silicic acid, or which has been further treated with a metal. Examples include titanium oxide surface-treated with soap, surfactants, coupling agents, etc., but fine particles that are white pigments, have strong adhesive strength with the resin of the present invention, and do not substantially create voids when stretching the resin film. Any surface treatment method may be used, and the surface treatment method is not limited to the inorganic compound. In the present invention, the white pigment B compound includes:
Particularly preferred is titanium oxide. This means that the refractive index of titanium oxide (n = 2.5 to 2.75) is higher than the refractive index of the resin of the present invention (for example, PET's refractive index of 1.66).
This is because it has a greater light-reflecting ability and, when used in a support for a photographic material, the resulting photographic image has excellent resolution. As titanium oxide (2), either rutile type, anatase type, or a mixture of both can be used. The average particle size of the white pigment B of the present invention is preferably in the range of 0.1 to 0.5 μm from the viewpoint of light reflection ability as a support, and it is preferable that the maximum particle size does not exceed 50 μm. In the present invention, the white pigment B that is dispersed with substantially no voids in the periphery refers to the white pigment B that is dispersed in the resin of the present invention and stretched biaxially as described below. Even when a film is formed, voids as shown in FIG. 1 are not substantially formed around the white pigment B. As a method for dispersing the fine particles A and the white pigment B of the present invention in the resin of the present invention, the fine particles A and the white pigment B are added to a glycol such as ethylene glycol.
A method of adding and dispersing to form a slurry, and adding the slurry to a polyester-forming precursor,
A method of dispersing the fine particles A and white pigment B of the present invention in a polyester resin using a kneading machine such as a Henschel mixer, a Banbury mixer, a twin-screw kneader, etc., and a method of the present invention during molding of polyester resin chips. fine particles A and white pigment B
The timing and order of addition of the fine particles A and the white pigment B are not particularly limited, and may be added at any time up to film forming. In the present invention, the ratio of the fine particles A to the white pigment B is preferably 0.1 to 1.0, more preferably 0.2 to 0.5, in view of the resolution of the photographic image, the mechanical strength and opacity of the film, and the like. When the above-mentioned fine particles A and white pigment B are dispersed and contained in the resin of the present invention in the above-mentioned addition ratios and molded under the molding conditions described below, the photographic image formed in the photographic layer has good resolution and no defects. A support having good transparency and whiteness (hereinafter referred to as the support of the present invention) can be obtained. The support of the present invention may contain other commonly used white pigments and additives, such as optical brighteners, dyes, ultraviolet absorbers, antistatic agents, etc., as long as they do not impede the purpose of the present invention. . In order to mold the support of the present invention, the resin of the present invention to which the fine particles A of the present invention and the white pigment B are added is extruded from a slit die after being melted, and is ground on a rapidly cooling surface such as a rotating drum to form an amorphous form. After forming into a sheet, the glass transition temperature of the resin of the present invention T g or more 130
Stretching can be performed sequentially or biaxially in a uniaxial direction in the longitudinal or transverse directions or simultaneously in a temperature range of .degree. C. or lower. At this time, in order to form voids useful for improving opacity and to satisfy the mechanical strength and dimensional stability of the film support, it is preferable that the stretching be carried out in an area ratio of 4 to 16 times. After stretching, it is preferable to carry out heat setting and heat relaxation. The film thickness of the support of the present invention is 40 to 300 μm,
Preferably it is 60 to 250 μm. When it is thinner than 40 μm, it is weak as a support and tends to wrinkle easily. Moreover, if it exceeds 300 μm, there will be drawbacks such as being too thick and making it inconvenient to handle. In addition, the total visible light transmittance of the support of the present invention is determined in order to ensure sufficient opacity and whiteness when viewed with the naked eye.
It should be 20% or less, more preferably 10% or less. Therefore, the amount of the fine particles A and the white pigment B to be added is adjusted so that the total visible light transmittance of the support of the present invention is 20% or less, preferably 10% or less at a film thickness of 40 to 300 μm, preferably 60 to 250 μm. Select stretch ratio. A light-sensitive photographic emulsion layer is coated on at least one side of the support of the present invention, which has been shaped as described above and has been rendered opaque and white. In this case, if necessary, a surface activation treatment such as corona discharge and/or a subbing layer can be applied prior to coating the photosensitive photographic emulsion layer. The reflective photographic material of the present invention and its manufacturing method include:
It can be applied to all photographic materials that use a support, for example, there are no restrictions on black and white or color, and even in photographic constituent layers, such as a light-sensitive photographic emulsion layer, an intermediate layer, a protective layer, a filter layer, a back coat layer, etc. There are no particular restrictions on the number of layers or the order of the layers. The photographic emulsion layer in the present invention is a normal silver halide emulsion layer, such as silver chloride, silver bromide,
Silver chlorobromide, silver iodobromide, silver chloroiodobromide emulsions, etc. can be preferably used. In addition, this layer can contain a coupler for creating a color image, and it is also possible to contain a hydrophilic polymer substance other than gelatin as a binder, such as polyvinyl alcohol, polyvinylpyrrolidone, etc. It is. Furthermore, the silver halide emulsion layer can be sensitized in the photosensitive wavelength range using cyanine dyes, merocyanine dyes, etc., and various other photographic additives such as antifoggants, gold, sulfur, etc. Chemical sensitizers, hardeners, antistatic agents, etc. can be preferably added. Therefore, the present invention is effective regardless of whether the photographic material according to the present invention is developed in black and white or in color with or without a coupler. [Specific Effects of the Invention] As explained above, according to the reflective photographic material and the method for producing the same of the present invention, there is no penetration of photographic processing liquid etc. from the cross section of the support, so the preservation of photographic images over time is excellent, and the support Even if the body is made thinner, a reflective photographic material with excellent whiteness, opacity, and gloss, and excellent resolution of photographic images, suitable for viewing and recording purposes, can be obtained. [Specific Examples of the Invention] Hereinafter, the present invention will be specifically explained using Examples, but the embodiments of the present invention are not limited thereto. Example 1 A composition consisting of 100 parts by weight of PET resin with an intrinsic viscosity of 0.74, 8 parts by weight of barium sulfate with an average particle size of 0.6 μm, and 17 parts by weight of rutile titanium oxide () with an average particle size of 0.2 μm surface-treated with alumina was prepared. After melt kneading,
It was extruded from a slit die onto a rapidly cooling rotary drum to form an amorphous sheet with a film thickness of 1.1 mm. This amorphous sheet was stretched 3.0 times in the longitudinal direction at 90°C, then 3.0 times in the transverse direction at 110°C, and further stretched at 220°C.
The photographic film support of the present invention was obtained by heat setting. The film thickness of the obtained photographic film support was 125 μm.
It was hot. In addition, to evaluate the opacity, the total visible light transmittance was measured using a digital turbidimeter model T-2600DA.
(manufactured by Tokyo Denshoku Co., Ltd.). The results are shown in Table 1. The above photographic film support was subjected to corona discharge treatment and subbing treatment, and a gelatin-silver halide color photographic emulsion, which is commonly used in color photographic paper, was coated on the surface to a dry film thickness of 15 μm. ,
Intended reflective photographic material sample 1 was prepared. After printing a dense line chart for resolution measurement on the reflection photographic material sample 1 obtained above and exposing it to light, it was developed in the usual manner, and the optical density difference of the dense line printed image was measured using a microdensitometer PDM-5 (Konishi (manufactured by Rokusha Kogyo Co., Ltd.), and the value expressed by the following formula was defined as the resolution. Dmax of dense line print image with resolution (%) = 5 lines/mm
Density difference of Dmin/Dmax and D of dense line print image of 0.1 lines/mm
min density difference x 100 Also, for the white background area after development, the spectrophotometer
380-780nm measured with Model 320 (manufactured by Hitachi, Ltd.)
Calculate the spectral reflectance of the area according to JIS-Z-8722 (1982) to determine the whiteness (L value), and then measure the reflectance of 20°-20° with a gloss meter using the method of JIS-Z-8741. 4, and the glossiness (%) was measured. The results are also shown in Table 1. Example 2 In the above reflective photographic material sample 1, the photographic film support composition was made of PET resin 100 having an intrinsic viscosity of 0.74.
17 parts by weight of anatase-type titanium oxide with an average particle size of 0.2 μm and surface treated with alumina and silica,
Reflection photographic material sample 2 was prepared in the same manner as in Example 1, except that 8 parts by weight of stretching grade propylene homopolymer was used instead. Example 3 In the reflective photographic material sample 1 of Example 1, the photographic film support composition was composed of 100 parts by weight of PET resin with an intrinsic viscosity of 0.68 and 15 parts by weight of rutile-type titanium oxide surface-treated with alumina and having an average particle size of 0.3 μm. , 10 parts by weight of barium sulfate with an average particle size of 0.3 μm, a blue dye commercially available as Macrolex Blue-RR
Reflection photographic material sample 3 was prepared in the same manner as in Example 1 except that the concentration was changed to 50 ppm. Example 4 In reflective photographic material Sample 1 of Example 1, a photographic film support composition having the same composition as Sample 1 was melted and rapidly cooled in the same manner as in Example 1, and the thickness was
It was made into an amorphous sheet of 1.6 μm. This sheet was stretch-molded in the same manner as in Example 1 to obtain a photographic film support of the present invention having a thickness of 180 μm, and reflective photographic material sample 4 was prepared in the same manner as in Example 1. Example 5 In reflection photographic material Sample 1 of Example 1, a photographic film support composition having the same composition as Sample 1 was melted and rapidly cooled in the same manner as in Example 1, and the thickness was
A 0.9 μm amorphous sheet was produced and stretched in the same manner as in Example 1 to obtain a 100 μm thick photographic film support of the present invention, which was then made into a reflective photographic material in the same manner as in Example 1. Sample 5 was prepared. Comparative Example 1 In reflective photographic material sample 1 of Example 1, the photographic film support composition was composed of 100 parts by weight of PET resin with an intrinsic viscosity of 0.74 and barium sulfate with an average particle size of 0.6 μm.
Example 1 except that the composition was replaced with a composition consisting of 25 parts by weight.
Reflection photographic material sample 6 was prepared in the same manner as described above. Comparative Example 2 In the reflective photographic material sample 1 of Example 1, the photographic film support composition was made of 100 parts by weight of PET resin with an intrinsic viscosity of 0.74, anatase type titanium oxide 25 with an average particle size of 0.2 μm and no surface treatment. Reflection photographic material sample 7 was prepared in the same manner as in Example 1, except that the composition consisted of parts by weight. Comparative Example 3 In the reflective photographic material sample 1 of Example 1, the photographic film support composition was made of 100 parts by weight of PET resin with an intrinsic viscosity of 0.74, anatase type titanium oxide 17 with an average particle size of 0.2 μm and no surface treatment. weight part,
Reflection photographic material sample 8 was prepared in the same manner as in Example 1, except that the composition was replaced with 8 parts by weight of barium sulfate having an average particle diameter of 1.0 μm, and the film thickness was reduced to 50 μm. When the cross sections of the supports of Samples 1 to 5 were observed using an electron microscope at a magnification of 5,000 times, no coarse particles of 20 μm or more were observed, indicating that they all had good dispersibility. Moreover, the support could be stably manufactured without cracking during manufacture. On the other hand, when the cross section of the supports of samples 6 to 8 was observed with an electron microscope at a magnification of 5,000 times, the diameter was 10 to 20 μm.
A large number of particles were observed, and some particles were larger than 50 μm, indicating that the dispersibility was not very good. In addition, the support may crack during manufacture, making stable manufacture difficult. Furthermore, the resulting film also did not have good smoothness. Samples 2 to 8 obtained in Examples 2 to 5 and Comparative Examples 1 to 3 above were exposed and developed in the same manner as Sample 1, and the characteristics of each sample were measured in the same manner. The results are also shown in Table 1. Indicated.

【表】 表1から本発明の試料1〜5はいずれも画像の
解像力が著るしく向上することがわかる。また支
持体の不透明度、反射写真材料としての白色度、
光沢度とも良好である。 一方、比較例による試料6〜7は支持体の不透
明度、反射写真材料としての白色度は悪くない
が、画像の解像力が本発明により明らかに劣るこ
とがわかる。また、試料8では支持体の不透明度
が良好ではなく、反射写真材料としての解像力も
劣ることがわかる。 また試料1〜8は、いずれも切断面からの現像
処理液等のしみ込みがなく、得られた画像の保存
性は良好であつた。 このように本発明によれば、支持体断面からの
写真処理液等の浸透がなく、支持体を薄くしても
白色度、不透明度、光沢度に優れ、さらに写真画
像の解像力に優れた反射写真材料が得られる。
[Table] From Table 1, it can be seen that all of Samples 1 to 5 of the present invention have significantly improved image resolution. Also, the opacity of the support, the whiteness of the reflective photographic material,
The gloss level is also good. On the other hand, Samples 6 and 7 according to Comparative Examples have good opacity of the support and good whiteness as a reflective photographic material, but it can be seen that the resolution of the image is clearly inferior to that of the present invention. In addition, it can be seen that in sample 8, the opacity of the support was not good and the resolution as a reflective photographic material was also poor. In addition, in all of Samples 1 to 8, there was no seepage of the developing processing solution from the cut surface, and the obtained images had good storage stability. As described above, according to the present invention, there is no penetration of photographic processing liquid etc. from the cross section of the support, and even if the support is made thin, it has excellent whiteness, opacity, and gloss, and furthermore, it can provide reflection with excellent resolution of photographic images. Photographic material is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の反射写真材料の支持体フイルム
に形成される空隙の説明図である。 1……微粒子A、2……空隙、3……白色顔料
B、4……フイルム樹脂。
The drawing is an explanatory diagram of voids formed in the support film of the reflective photographic material of the present invention. 1...Fine particles A, 2...Void, 3...White pigment B, 4...Film resin.

Claims (1)

【特許請求の範囲】 1 樹脂中に、周囲に空隙を有する状態で分散さ
れている微粒子Aおよび周囲に実質的に空隙を有
さない状態で分散されている白色顔料Bとを含有
する、ポリエステル樹脂を主成分とする熱可塑性
樹脂の膜厚40〜300μm、全可視光透過率20%以下
であるフイルム支持体の少なくとも片面に感光性
写真乳剤層を塗設したことを特徴とする反射写真
材料。 2 ポリエステル樹脂を主成分とする熱可塑性樹
脂中に、該熱可塑性樹脂との接着力が弱くかつ該
熱可塑性樹脂に不活性な微粒子Aおよび前記熱可
塑性樹脂との接着力が強い白色顔料Bとを含有す
る樹脂組成物を溶融後急冷して無定形シートとし
た後、前記微粒子Aの周囲に空隙を形成させ、か
つ前記白色顔料Bの周囲に実質的に空隙を形成さ
せないように二軸方向に延伸を施し、膜厚40〜
300μm、全可視光透過率20%以下である白色フイ
ルム支持体を形成し、該白色フイルム支持体の少
なくとも片面に感光性写真乳剤層を塗設すること
を特徴とする反射写真材料の製造方法。
[Claims] 1. A polyester containing fine particles A dispersed in a resin with voids around them and white pigment B dispersed in a resin with substantially no voids around them. A reflective photographic material, characterized in that a photosensitive photographic emulsion layer is coated on at least one side of a film support made of a thermoplastic resin whose main component is a film having a thickness of 40 to 300 μm and a total visible light transmittance of 20% or less. . 2. In a thermoplastic resin whose main component is polyester resin, fine particles A have a weak adhesive force with the thermoplastic resin and are inert to the thermoplastic resin, and white pigment B has a strong adhesive force with the thermoplastic resin. After melting and quenching the resin composition to form an amorphous sheet, the resin composition containing the pigment A is melted and then rapidly cooled to form an amorphous sheet. Stretched to a film thickness of 40~
300 μm and a total visible light transmittance of 20% or less, a white film support is formed, and a light-sensitive photographic emulsion layer is coated on at least one side of the white film support.
JP24152984A 1984-11-15 1984-11-15 Reflection photographic material and its production Granted JPS61120140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24152984A JPS61120140A (en) 1984-11-15 1984-11-15 Reflection photographic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24152984A JPS61120140A (en) 1984-11-15 1984-11-15 Reflection photographic material and its production

Publications (2)

Publication Number Publication Date
JPS61120140A JPS61120140A (en) 1986-06-07
JPH0422506B2 true JPH0422506B2 (en) 1992-04-17

Family

ID=17075703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24152984A Granted JPS61120140A (en) 1984-11-15 1984-11-15 Reflection photographic material and its production

Country Status (1)

Country Link
JP (1) JPS61120140A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119964B2 (en) * 1986-12-02 1995-12-20 富士写真フイルム株式会社 Silver halide color photographic light-sensitive material and color photographic print
JPH0717778B2 (en) * 1988-06-21 1995-03-01 ダイアホイルヘキスト株式会社 Polyester film containing fine bubbles
JPH02293842A (en) * 1989-05-09 1990-12-05 Konica Corp Reflex photographic substrate containing titanium oxide and silver halide photographic sensitive material using the substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041526A (en) * 1973-08-17 1975-04-16
GB1415686A (en) * 1972-10-24 1975-11-26 Ici Ltd Voided films
JPS5254428A (en) * 1975-10-23 1977-05-02 Ici Ltd Image forming photosensitive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1415686A (en) * 1972-10-24 1975-11-26 Ici Ltd Voided films
JPS5041526A (en) * 1973-08-17 1975-04-16
JPS5254428A (en) * 1975-10-23 1977-05-02 Ici Ltd Image forming photosensitive material

Also Published As

Publication number Publication date
JPS61120140A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
JPH0428291B2 (en)
JPH11249255A (en) Photographic element
US4910235A (en) Polyester film for recording materials
JP2000516546A (en) Polyester film
US4847149A (en) Base for reflection-photographic elements
JPH11249257A (en) Composite photographic material including laminated biaxial oriented polyolefin sheet having improved optical performance
US6153367A (en) Biaxially oriented polyolefin paperless imaging material
US5061612A (en) Reflective support for photography
US5180658A (en) White polyester composition and support for photography
JPH0422506B2 (en)
JP2000187300A (en) Image-forming element and method for fusion-bonding same
JPH11265038A (en) Photographing element and its production
EP0327768A2 (en) Reflection-photographic element and process of preparation thereof
JPH07117703B2 (en) Photo paper
CN1453634A (en) Method for producing sheet material with foam holes and pores
JPH02242846A (en) White polyester composition and substrate for photography
US6132951A (en) Photographic support and photographic material
JPH02248456A (en) White polyester composition and photographic support
US20040062921A1 (en) Nacreous polyester sheet
JPH01173030A (en) Reflecting photographic element having excellent glossy feel
JPH01173031A (en) Reflecting photographic element having excellent glossy feel and its production
JPH0832440B2 (en) Composite white polyester resin film
JPH0415640A (en) Silver halide photographic sensitive material
JPH0336543A (en) Reflecting photographic element improving contamination by fingerprint
JPH03109541A (en) Manufacture of reflective photographic element