JPH04220587A - Method for detecting inclination and position deviation of object to be measured in measurement of traveling speed and length of object to be measured in laser doppler system - Google Patents

Method for detecting inclination and position deviation of object to be measured in measurement of traveling speed and length of object to be measured in laser doppler system

Info

Publication number
JPH04220587A
JPH04220587A JP41170090A JP41170090A JPH04220587A JP H04220587 A JPH04220587 A JP H04220587A JP 41170090 A JP41170090 A JP 41170090A JP 41170090 A JP41170090 A JP 41170090A JP H04220587 A JPH04220587 A JP H04220587A
Authority
JP
Japan
Prior art keywords
measured
light source
laser
length
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41170090A
Other languages
Japanese (ja)
Inventor
Kosaku Shiono
幸策 塩野
Shinji Sugiki
伸次 杉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACT Electronics Corp
Original Assignee
ACT Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACT Electronics Corp filed Critical ACT Electronics Corp
Priority to JP41170090A priority Critical patent/JPH04220587A/en
Publication of JPH04220587A publication Critical patent/JPH04220587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enable inclination and position deviation to be corrected by adjusting direction and position of a laser beam based on a detection signal of inclination and position deviation of an object to be measured for laser light source when setting the object to be measured. CONSTITUTION:A laser light source 2 emits a laser beam to an object to be measured 1 and a sensor 3 receives a scattering light b from the object to be measured 1. The sensor 3 uses a four-division detector 5 and receives the scattering light b by a detector 5 through a cylindrical lens 4. An output level of each pair is obtained with two opposing light-receiving portions 6 and 7 and 8 and 9 as pairs out of a doppler signal d which is output from four light- receiving portions 6-9 of the detector 5 and an inclination of the object to be measured 1 for the light source 2 or a position deviation of the object to be measured 1 for the light source 2 is detected from the output level.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はレ−ザドップラ方式によ
り被測定物の移動速度、長さ等を測定する場合に、レ−
ザ光源を光源とする二つのビ−ムの2等分線の法線に対
する被測定物の傾き、レ−ザ光源に対する被測定物の位
置ずれを検出し、その検出信号に基ずいて被測定物の傾
き、被測定物までの位置ずれを矯正して、その傾き或は
位置ずれに基づく速度、長さ等の測定誤差がでないよう
にしたものである。
[Industrial Application Field] The present invention is applicable to the laser Doppler method when measuring the moving speed, length, etc. of an object to be measured.
The inclination of the object to be measured with respect to the normal line of the bisector of two beams with the laser light source as the light source, and the positional deviation of the object to be measured with respect to the laser light source are detected, and the This corrects the inclination of the object and the positional deviation of the object to be measured, so that errors in measuring speed, length, etc. due to the inclination or positional deviation do not occur.

【0002】0002

【従来の技術】レ−ザドップラ方式により被測定物の移
動速度や長さを測定することは本件発明者が先に開発し
た。その測定原理は図1に示すように、He−Neレ−
ザ等のレ−ザ光源2からのレ−ザ光aをビ−ムスプリッ
タ11で二分し、その一方のレ−ザ光aとミラ−12で
反射されたレ−ザ光aとを交差角φで被測定物(例えば
ロ−プ等の走行体)1に照射すると、被測定物1からの
散乱光bが集光レンズ等の光学系13を介してセンサ(
光電変換器)3に受光されてヘテロダイン検波され、同
センサ3からドップラ信号dが出力されるようにしたも
のである。
2. Description of the Related Art Measuring the moving speed and length of an object to be measured using a laser Doppler method was first developed by the inventor of the present invention. The measurement principle is as shown in Figure 1.
Laser light a from a laser light source 2 such as a laser is split into two by a beam splitter 11, and one of the laser lights a and the laser light a reflected by a mirror 12 are separated at an intersection angle. When the object to be measured (for example, a traveling body such as a rope) 1 is irradiated with φ, the scattered light b from the object to be measured 1 is transmitted to the sensor (
The light is received by a photoelectric converter (photoelectric converter) 3 and subjected to heterodyne detection, and the Doppler signal d is output from the sensor 3.

【0003】このドップラ信号dのドップラ周波数fD
 は次式で表される。 fD =2v/λ sinφ/2・cos ΔθfD 
:ドップラ周波数 v:被測定物の走行速度 λ:レ−ザ波長(632.8nm) φ:ビ−ム交差角 Δθ:ビ−ム法線と被測定物の直角からのずれ角前記式
のようにドップラ周波数fD は被測定物dの移動速度
vに比例するので、前記測定原理によれば同移動速度v
を求めることができるのは勿論、同移動速度vを時間積
分すれば被測定物1の長さを測定することができる。
Doppler frequency fD of this Doppler signal d
is expressed by the following formula. fD =2v/λ sinφ/2・cos ΔθfD
: Doppler frequency v: Traveling speed of the object to be measured λ: Laser wavelength (632.8 nm) φ: Beam crossing angle Δθ: Angle of deviation from the right angle between the beam normal and the object to be measured As shown in the above equation Since the Doppler frequency fD is proportional to the moving speed v of the object d, according to the measurement principle, the same moving speed v
Of course, the length of the object to be measured 1 can be measured by integrating the moving speed v over time.

【0004】0004

【発明が解決しようとする課題】レ−ザドップラ方式に
よる移動速度、長さ等の測定方法では、レ−ザ光源2を
光源とする2つのビ−ムの2等分線の法線に対する被測
定物1の向きが図8のようにθだけ傾くと、cos θ
分だけ速度誤差となり、この速度誤差が測定長(速度の
積分値)の誤差となる、という問題があった。
[Problems to be Solved by the Invention] In the method of measuring moving speed, length, etc. using the laser Doppler method, the measurement target is When the direction of object 1 is tilted by θ as shown in Figure 8, cos θ
There is a problem in that this speed error becomes an error in the measurement length (integral value of speed).

【0005】また、被測定物1の位置が図10のように
所定位置よりΔlだけレ−ザ光源2から遠くなる(位置
がずれる)と、被測定物1からの散乱光bの量が少なく
なってドップラ信号dの出力レベルが低下する。また、
逆に被測定物1の位置が所定位置よりΔlだけレ−ザ光
源2に近づくと、被測定物1からの散乱光bの量が多く
なってドップラ信号dの出力レベルが高くなる。
Furthermore, when the position of the object to be measured 1 becomes farther from the laser light source 2 by Δl than the predetermined position (shifts in position) as shown in FIG. As a result, the output level of the Doppler signal d decreases. Also,
Conversely, when the position of the object to be measured 1 approaches the laser light source 2 by .DELTA.l from the predetermined position, the amount of scattered light b from the object to be measured 1 increases and the output level of the Doppler signal d increases.

【0006】この場合、ドップラ信号dの出力レベルが
高くなる分には特に問題はないが、ドップラ信号dの出
力レベルが低くなるとドップラ信号dを処理する処理部
において、ドップラ信号dをノイズと区別することがで
きなかったり、出力レベルが著しく低い場合にはドップ
ラ信号dが処理部に入力されないことがある。このため
その部分でドップラ信号dが欠落し、被測定物1の長さ
が実際の長さより短く測定されて測定誤差となる、とい
う問題があった。
In this case, there is no particular problem as the output level of the Doppler signal d increases, but when the output level of the Doppler signal d decreases, the processing section that processes the Doppler signal d has trouble distinguishing the Doppler signal d from noise. If it is not possible to do so, or if the output level is extremely low, the Doppler signal d may not be input to the processing section. For this reason, there was a problem in that the Doppler signal d was missing at that portion, and the length of the object to be measured 1 was measured to be shorter than the actual length, resulting in a measurement error.

【0007】[0007]

【発明の目的】本発明の目的は前記レ−ザ光源に対する
被測定物の傾き、位置ずれに起因する移動速度、長さ等
の測定誤差を解決するため、被測定物の各種測定に先立
って、被測定物にレ−ザ光源を対向させてセッティング
するときに、レ−ザ光源に対する被測定物の傾きと、レ
−ザ光源の位置ずれを検出し、その検出信号に基ずいて
レ−ザ光源の向きや位置を調節して、前記傾き、位置ず
れを矯正できるようにしたものである。
OBJECTS OF THE INVENTION The purpose of the present invention is to solve measurement errors in moving speed, length, etc. caused by inclination and positional deviation of the object to be measured with respect to the laser light source. When setting the laser light source to face the object to be measured, the inclination of the object to be measured and the positional deviation of the laser light source with respect to the laser light source are detected, and the laser is activated based on the detection signal. By adjusting the direction and position of the light source, the above-mentioned inclination and positional deviation can be corrected.

【0008】[0008]

【課題を解決するための手段】本件発明者は本件発明の
開発に先立って、レ−ザ光源に対する被測定物の傾きと
出力光レベルとの関係、レ−ザ光源から被測定物までの
距離と出力光レベルとの関係について鋭意研究した。
[Means for Solving the Problems] Prior to the development of the present invention, the inventor of the present invention determined the relationship between the inclination of the object to be measured with respect to the laser light source and the output light level, and the distance from the laser light source to the object to be measured. The relationship between this and the output light level was studied intensively.

【0009】その結果、図9のようにレ−ザ光源2に対
して被測定物1がθ/2だけ傾くとン1のビ−ム交差角
がφ/4となり、レ−ザ光aが正反射してセンサ3に入
力して図10のようにドップラ信号dの出力レベルが大
きくなることを見出した。
As a result, when the object to be measured 1 is tilted by θ/2 with respect to the laser light source 2 as shown in FIG. 9, the beam intersection angle of the beam 1 becomes φ/4, and the laser beam a It has been found that when it is specularly reflected and input to the sensor 3, the output level of the Doppler signal d increases as shown in FIG.

【0010】また、被測定物1の位置ずれが0(距離1
00mm)のときのドップラ信号dの出力レベルを図1
1のAとすると、被測定物1の位置が図10のようにレ
−ザ光源2に対してΔlだけ近ずいた場合(−Δl)は
ドップラ信号dの出力レベルが図11のように高くなり
、図10のようにΔlだけ離れた場合(+Δl)はドッ
プラ信号dの出力レベルが同図のように低くなることも
見出した。
[0010] Furthermore, the positional deviation of the object to be measured 1 is 0 (distance 1).
Figure 1 shows the output level of Doppler signal d when
1, when the position of the object to be measured 1 is closer to the laser light source 2 by Δl as shown in Fig. 10 (-Δl), the output level of the Doppler signal d is high as shown in Fig. 11. It has also been found that when the distance is Δl (+Δl) as shown in FIG. 10, the output level of the Doppler signal d becomes low as shown in the figure.

【0011】本発明は前記知見に基ずいて開発されたも
のである。本発明は図1のように被測定物1にレ−ザ光
源2からレ−ザ光aを照射し、同被測定物1からの散乱
光bをセンサ3により受光して、同センサ3からドップ
ラ信号dを出力し、同ドップラ信号dに基づいて被測定
物1の移動速度、長さ等を測定するようにしたレ−ザド
ップラ方式による被測定物の移動速度、長さ等の測定方
法において、図2〜図4のようにセンサ3として四分割
デイテクタ5を使用し、前記散乱光bをシリンドカルレ
ンズ4を通して同四分割デイテクタ5で受光し、図5に
示す四分割デイテクタ5の四つの受光部6、7、8、9
から出力されるドップラ信号dのうち、対向する二つの
受光部6と7、8と9を一対として各対の出力レベルを
求め、その出力レベルからレ−ザ光源2に対する被測定
物1の傾き、又はレ−ザ光源2に対する被測定物1の位
置ずれを検出するようにしたものである。
The present invention was developed based on the above findings. In the present invention, as shown in FIG. In a method for measuring the moving speed, length, etc. of an object to be measured using a laser Doppler method, which outputs a Doppler signal d and measures the moving speed, length, etc. of the object to be measured 1 based on the Doppler signal d. As shown in FIGS. 2 to 4, a four-division detector 5 is used as the sensor 3, and the scattered light b is received by the four-division detector 5 through the cylindrical lens 4. Four light receiving sections 6, 7, 8, 9
Among the Doppler signals d output from the Doppler signal d, the output level of each pair is determined by pairing the two opposing light receiving sections 6 and 7 and 8 and 9, and from the output level, the inclination of the object to be measured 1 with respect to the laser light source 2 is determined. , or a positional shift of the object to be measured 1 with respect to the laser light source 2.

【0012】0012

【作用】本発明では図2のシリンドカルレンズ4を通し
た散乱光bが四分割デイテクタ5に受光される。この場
合、被測定物1が傾いていない場合は四分割デイテクタ
5に受光される散乱光bの形は図3、bのように真円に
なり、しかも四つの受光部6、7、8、9に均等に受光
される。
In the present invention, the scattered light b passing through the cylindrical lens 4 shown in FIG. 2 is received by the four-part detector 5. In this case, if the object to be measured 1 is not tilted, the shape of the scattered light b received by the four-part detector 5 will be a perfect circle as shown in FIG. 9, the light is evenly received.

【0013】被測定物1が右下りに傾いたときは四分割
デイテクタ5に受光される散乱光bの形は図3、aのよ
うに真円ではあるが、左上に片寄って四つの受光部6、
7、8、9のうち受光部4の受光量が最大になる。
When the object to be measured 1 is tilted downward to the right, the shape of the scattered light b received by the four-part detector 5 is a perfect circle as shown in FIG. 6,
Out of 7, 8, and 9, the amount of light received by the light receiving section 4 is the largest.

【0014】被測定物1が右上りに傾いたときは四分割
デイテクタ5に受光される散乱光bの形は図3、cのよ
うに真円ではあるが、右上に片寄って四つの受光部6、
7、8、9のうち受光部3の受光量が最大になる。
When the object to be measured 1 is tilted upward to the right, the shape of the scattered light b received by the four-part detector 5 is a perfect circle as shown in FIG. 6,
Among 7, 8, and 9, the amount of light received by the light receiving section 3 is the largest.

【0015】前記いずれの場合も四分割デイテクタ5は
受光量に応じてドップラ−信号dを出力するので、受光
部6と7、8と9を夫々一対として各対のドップラ−信
号dの出力レベルを検出すれば、被測定物1が傾いてい
るか否か、右上りに傾いているのか右下りに傾いている
のかを検出することができる。
In any of the above cases, the four-division detector 5 outputs the Doppler signal d according to the amount of received light, so the output level of the Doppler signal d of each pair is determined by setting the light receiving sections 6 and 7 and 8 and 9 as a pair. By detecting this, it is possible to detect whether the object to be measured 1 is tilted, whether it is tilted upward to the right or downward to the right.

【0016】被測定物1が位置ずれしていない場合は四
分割デイテクタ5に受光される散乱光bの形は図4、b
のように真円になり、しかも四つの受光部6、7、8、
9に均等に受光される。
When the object to be measured 1 is not displaced, the shape of the scattered light b received by the four-part detector 5 is as shown in FIG.
It becomes a perfect circle as shown, and has four light receiving parts 6, 7, 8,
9, the light is evenly received.

【0017】被測定物1がレ−ザ光源2に近づいたとき
は被測定物1の位置がシリンドカルレンズ4の焦点距離
より手前になるので、四分割デイテクタ5に受光される
散乱光bの形はシリンドカルレンズ4の特性から図4、
aのように左上方に傾斜する横長楕円形になり、四つの
受光部6、7、8、9のうち受光部4の受光量が最大に
なる。
When the object to be measured 1 approaches the laser light source 2, the position of the object to be measured 1 is in front of the focal length of the cylindrical lens 4, so that the scattered light b received by the quadrant detector 5 The shape of is based on the characteristics of the cylindrical lens 4 as shown in Figure 4.
It becomes a horizontally oblong ellipse that slopes upward to the left as shown in a, and among the four light receiving sections 6, 7, 8, and 9, the amount of light received by the light receiving section 4 is the largest.

【0018】被測定物1がレ−ザ光源2より離れたとき
は被測定物1の位置がシリンドカルレンズ4の焦点距離
より先方(奥)になるので、四分割デイテクタ5に受光
される散乱光bの形はシリンドカルレンズ4の特性から
図4、cのように右上方に傾斜する横長楕円形になり、
四つの受光部6、7、8、9のうち受光部3の受光量が
最大になる。
When the object to be measured 1 is separated from the laser light source 2, the position of the object to be measured is beyond the focal length of the cylindrical lens 4, so that the light is received by the quadrant detector 5. Due to the characteristics of the cylindrical lens 4, the shape of the scattered light b is an oblong ellipse that slopes upward to the right as shown in Fig. 4, c.
Of the four light receiving sections 6, 7, 8, and 9, the amount of light received by the light receiving section 3 is the largest.

【0019】従って、受光部6と7、8と9を夫々一対
として各対のドップラ−信号dの出力レベルを検出すれ
ば、被測定物1がレ−ザ光源2から位置ずれしていない
か否か、或は近づいているか離れているかを検出するこ
とができる。
Therefore, by detecting the output level of the Doppler signal d of each pair of light receiving sections 6 and 7 and 8 and 9, it is possible to check whether the object to be measured 1 is displaced from the laser light source 2. It is possible to detect whether the object is approaching or moving away.

【0020】前記のようにして検出されたモニタ信号を
デジタル或はアナログ的に表示すれば、被測定物1の速
度、長さ等の測定に先立って、レ−ザ光源2を被測定物
1に対向させてセッティングするときに、それを見なが
ら出力レベルが基準値に合うようにレ−ザ光源2の向き
や位置を調整することができる。
If the monitor signal detected as described above is displayed digitally or analogously, the laser light source 2 can be directly connected to the object 1 before measuring the speed, length, etc. of the object 1. When setting the laser light source 2 so as to face it, the direction and position of the laser light source 2 can be adjusted while looking at it so that the output level matches the reference value.

【0021】[0021]

【実施例】図1はレ−ザドップラ方式による被測定物の
長さ測定方法の原理図である。この長さ測定方法は半導
体レ−ザ等のレ−ザ光源2から出力されるレ−ザ光aを
ビ−ムスプリッタ11を通して被測定物1に照射すると
共に、ビ−ムスプリッタ11で分岐されてミラ−12に
より反射されたレ−ザ光aを被測定物1に交差角φで照
射する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the principle of a method for measuring the length of an object to be measured using the laser Doppler method. In this length measurement method, a laser beam a outputted from a laser light source 2 such as a semiconductor laser is irradiated onto the object 1 to be measured through a beam splitter 11, and the beam is split by the beam splitter 11. The laser beam a reflected by the mirror 12 is irradiated onto the object to be measured 1 at an intersection angle φ.

【0022】被測定物1からの散乱光bを図2、図5の
ように集光レンズ10、シリンドカルレンズ4を通して
センサ3で受光する。本発明では同センサ3として四分
割デイテクタ5を使用し、その受光部6、7、8、9か
ら出力されるドップラ信号dを差動増幅器15で合成し
て測定部に入力し、そのドップラ信号dを同測定部にお
いて処理して被測定物1の移動速度vを求めたり、この
移動速度vに基づいて被測定物1の長さを求めたりする
。この場合、差動増幅器15の出力信号は例えば図6の
ようになる。
Scattered light b from the object to be measured 1 is received by the sensor 3 through the condenser lens 10 and the cylindrical lens 4 as shown in FIGS. 2 and 5. In the present invention, a four-division detector 5 is used as the sensor 3, and the Doppler signals d output from the light receiving sections 6, 7, 8, and 9 are synthesized by the differential amplifier 15 and input to the measuring section, and the Doppler signal d is d is processed in the measuring section to determine the moving speed v of the object to be measured 1, and the length of the object to be measured 1 is determined based on this moving speed v. In this case, the output signal of the differential amplifier 15 will be as shown in FIG. 6, for example.

【0023】同時に、四分割デイテクタ5の四つの受光
部6、7、8、9から出力されるドップラ信号dを図5
のようにモニタ信号として取り出して、対向する二つの
受光部6と7、8と9を一対として各対の出力レベルを
図5の差動増幅器16、17で検出し、その差動増幅器
16、17から出力される各対の出力レベルに基づいて
被測定物1の傾き、位置ずれを検出する。この場合、被
測定物1の傾きを検出する信号は図7のようになる。
At the same time, the Doppler signals d output from the four light receiving sections 6, 7, 8, and 9 of the quadrant detector 5 are shown in FIG.
The output level of each pair is detected by the differential amplifiers 16 and 17 shown in FIG. The inclination and positional deviation of the object to be measured 1 are detected based on the output level of each pair outputted from the device 17. In this case, the signal for detecting the inclination of the object to be measured 1 is as shown in FIG.

【0024】[0024]

【発明の効果】本発明によればレ−ザ光源2対する被測
定物1の傾きや位置ずれを手軽に検出することができる
。しかも被測定物1の位置ずれをシリンドカルレンズ4
の焦点距離からのずれとして検出するので、被測定物1
表面が凹凸して散乱状態が一定しない場合でも、正確に
位置ずれを検出することができる。また、検出された傾
き又は位置ずれをアナログ、デジタル的に表示すれば、
それを見ながらレ−ザ光源2の向きや位置を調節して、
測定に先立って被測定物1の傾きや位置ずれを手軽に矯
正することができる。
According to the present invention, the inclination and positional deviation of the object to be measured 1 with respect to the laser light source 2 can be easily detected. Moreover, the positional deviation of the object to be measured 1 can be corrected by using the cylindrical lens 4.
Since it is detected as a deviation from the focal length of the object to be measured 1
Even if the surface is uneven and the scattering state is not constant, positional deviation can be detected accurately. In addition, if the detected tilt or positional deviation is displayed in analog or digital form,
While watching this, adjust the direction and position of the laser light source 2,
The inclination and positional deviation of the object to be measured 1 can be easily corrected prior to measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】レ−ザドップラ方式による被測定物の長さ測定
方法の原理図である。
FIG. 1 is a diagram showing the principle of a method for measuring the length of an object using a laser Doppler method.

【図2】本発明の検出方法の一実施例を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing an embodiment of the detection method of the present invention.

【図3】本発明において被測定物が傾いた場合の四分割
デイテクタの散乱光の説明図である。
FIG. 3 is an explanatory diagram of scattered light from a four-part detector when the object to be measured is tilted in the present invention.

【図4】本発明において被測定物が一ずれした場合の四
分割デイテクタの散乱光の説明図である。
FIG. 4 is an explanatory diagram of scattered light from a four-part detector when the object to be measured is shifted by one position in the present invention.

【図5】本発明における検出信号取り出し方法の説明図
である。
FIG. 5 is an explanatory diagram of a detection signal extraction method in the present invention.

【図6】図5における検出信号の説明図である。FIG. 6 is an explanatory diagram of detection signals in FIG. 5;

【図7】図5における傾き検出信号の説明図である。FIG. 7 is an explanatory diagram of a tilt detection signal in FIG. 5;

【図8】被測定物が傾いた場合のビ−ムの入射角度と散
乱光との関係を示す説明図である。
FIG. 8 is an explanatory diagram showing the relationship between the incident angle of the beam and scattered light when the object to be measured is tilted.

【図9】被測定物の傾き角度と出力レベルとの関係を示
す説明図である。
FIG. 9 is an explanatory diagram showing the relationship between the inclination angle of the object to be measured and the output level.

【図10】被測定物からレ−ザ光源までの距離のずれを
示す説明図である。
FIG. 10 is an explanatory diagram showing the deviation in distance from the object to be measured to the laser light source.

【図11】被測定物からレ−ザ光源までの距離のずれと
出力レベルとの関係を示す説明図である。
FIG. 11 is an explanatory diagram showing the relationship between the distance difference from the object to be measured to the laser light source and the output level.

【符号の説明】[Explanation of symbols]

1  被測定物 2  レ−ザ光源 3  センサ 4  シリンドカルレンズ 5  四分割デイテクタ 6〜9  受光部 a  レ−ザ光 b  散乱光 d  ドップラ信号 1 Object to be measured 2 Laser light source 3 Sensor 4 Cylindrical lens 5 Quadrant detector 6-9 Light receiving part a Laser light b Scattered light d Doppler signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被測定物1にレ−ザ光源2からレ−ザ光a
を照射し、同被測定物1からの散乱光bをセンサ3によ
り受光してドップラ信号dを出力し、同ドップラ信号d
に基づいて被測定物1の移動速度、長さ等を測定するよ
うにしたレ−ザドップラ方式による被測定物の移動速度
、長さ等の測定方法において、前記センサ3として四分
割デイテクタ5を使用し、前記散乱光bをシリンドカル
レンズ4を通して同四分割デイテクタ5で受光し、同四
分割デイテクタ5の四つの受光部6、7、8、9から出
力されるドップラ信号dのうち、対向する二つの受光部
6と7、8と9を一対として各対の出力レベルを求め、
それらの出力レベルからレ−ザ光源2に対する被測定物
1の傾き、又はレ−ザ光源2に対する被測定物1の位置
ずれを検出することを特徴とするレ−ザドップラ方式に
よる被測定物の移動速度、長さ測定等における被測定物
の傾き、位置ずれ検出方法。
Claim 1: A laser beam a is emitted from a laser light source 2 to an object to be measured 1.
The sensor 3 receives the scattered light b from the object to be measured 1 and outputs the Doppler signal d.
In a method for measuring the moving speed, length, etc. of a measured object 1 based on the laser Doppler method, a four-part detector 5 is used as the sensor 3. The scattered light b is received by the quadrant detector 5 through the cylindrical lens 4, and among the Doppler signals d output from the four light receiving sections 6, 7, 8, and 9 of the quadrant detector 5, the The two light receiving sections 6 and 7 and 8 and 9 are taken as a pair, and the output level of each pair is determined.
Movement of the object to be measured using the laser Doppler method, which is characterized by detecting the inclination of the object to be measured 1 with respect to the laser light source 2 or the positional deviation of the object to be measured 1 with respect to the laser light source 2 from the output level thereof. Method for detecting inclination and positional deviation of objects to be measured in speed, length measurements, etc.
JP41170090A 1990-12-19 1990-12-19 Method for detecting inclination and position deviation of object to be measured in measurement of traveling speed and length of object to be measured in laser doppler system Pending JPH04220587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41170090A JPH04220587A (en) 1990-12-19 1990-12-19 Method for detecting inclination and position deviation of object to be measured in measurement of traveling speed and length of object to be measured in laser doppler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41170090A JPH04220587A (en) 1990-12-19 1990-12-19 Method for detecting inclination and position deviation of object to be measured in measurement of traveling speed and length of object to be measured in laser doppler system

Publications (1)

Publication Number Publication Date
JPH04220587A true JPH04220587A (en) 1992-08-11

Family

ID=18520655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41170090A Pending JPH04220587A (en) 1990-12-19 1990-12-19 Method for detecting inclination and position deviation of object to be measured in measurement of traveling speed and length of object to be measured in laser doppler system

Country Status (1)

Country Link
JP (1) JPH04220587A (en)

Similar Documents

Publication Publication Date Title
US11054434B2 (en) Laser diode based multiple-beam laser spot imaging system for characterization of vehicle dynamics
EP0279347B1 (en) Optical axis displacement sensor
JPH07280563A (en) Car-to-car distance detector
EP0278269A3 (en) Non-contact sensor with particular utility for measurement of road profile
US20190369136A1 (en) Measuring device and processing device
US5870199A (en) Method and apparatus for highly accurate distance measurement with respect to surfaces
JPH04220587A (en) Method for detecting inclination and position deviation of object to be measured in measurement of traveling speed and length of object to be measured in laser doppler system
JPH08292264A (en) Laser doppler speed measuring equipment and color image forming equipment using the same
US6256101B1 (en) Open loop fiber optic gyroscope for measuring ultra-high rates of rotation
JPH04220586A (en) Method for detecting inclination and position deviation of object to be measured in measurement of speed and length of object to be measured in laser doppler system
US4884888A (en) Method and device for contactless optical measurement of distance changes
JPS61112905A (en) Optical measuring apparatus
EP0851210B1 (en) Non-contact strain meter
JPS5948324B2 (en) Inclination detection roughness measurement method using light reflection
JPH02309204A (en) Step detector for object to be measured
JP2822010B2 (en) Measuring Method and Apparatus for Measuring Entry Angle and Actual Side Length of Rectangular Article during Transportation Using Laser Doppler Method
JPH10122813A (en) Optical displacement sensor
JPH0447266B2 (en)
JPH07294537A (en) Speed and distance detector
JPH04276514A (en) Noncontact displacement measuring apparatus
JPS5826325Y2 (en) position detection device
JPS644928A (en) Optical track tracing device
JPS6238365A (en) Velocity measuring instrument using laser beam
JPS5912146B2 (en) distance detection device
JPH01239409A (en) Detecting device for projection state of front road surface