JPH04206269A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH04206269A
JPH04206269A JP2333347A JP33334790A JPH04206269A JP H04206269 A JPH04206269 A JP H04206269A JP 2333347 A JP2333347 A JP 2333347A JP 33334790 A JP33334790 A JP 33334790A JP H04206269 A JPH04206269 A JP H04206269A
Authority
JP
Japan
Prior art keywords
air electrode
solid electrolyte
air
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2333347A
Other languages
Japanese (ja)
Inventor
Masayuki Tan
丹 正之
Shotaro Yoshida
昭太郎 吉田
Isao Kaji
加治 功
Shoichi Hasegawa
正一 長谷川
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2333347A priority Critical patent/JPH04206269A/en
Publication of JPH04206269A publication Critical patent/JPH04206269A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain sufficient durability and generation efficiency by forming an air electrode of perovskite lanthanum composite oxide and specifying each of the conductivity, the gas transmission coefficient, the expansion coefficient and the average cavity size. CONSTITUTION:An air electrode 10 formed of perovskite lanthanum composite oxide has the conductivity of 50s/cm or more, the gas transmission coefficient of 1.0X10<-4>cc.cm/sec(g/cm<2>).cm<2> or more, the expansion coefficient of 10 to 12X10<-6>/k, and the average cavity size of 0.1-50mum. In this way, the air electrode 10 and solid electrolyte 11 are adhered to each other, air or oxygen gas is transmitted through the air electrode 10 and supplied and diffused onto the surface of the solid electrolyte 11 and the air electrode 10 is formed into an anode. Voltage drop inside the air electrode 10 can, however, be prevented. It is thus possible to supply sufficient air or oxygen gas onto the surface of the solid electrolyte 11 for generation, prevent separation from the solid electrolyte 11 and crack thereto and improve durability.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は固体電解質を介して酸化還元反応を生じさせ
ることにより起電力を得る燃料電池に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a fuel cell that generates electromotive force by causing a redox reaction through a solid electrolyte.

従来の技術 この種の燃料電池の一例を第5図に概略図として示す。Conventional technology An example of this type of fuel cell is shown schematically in FIG.

すなわち符号1は支持管であって、アルミナ(A12o
3)などの粉末材料からなる焼結体であり、その外周に
空気電極2および固体電解質3が順次積層して形成され
ており、さらにその外周に燃料電極4が形成されている
。この燃料電極4は一部切り欠いた状態になっており、
ここに空気電極2に導通したインターコネクタ5が突出
して設けられている。
That is, reference numeral 1 is a support tube made of alumina (A12o
It is a sintered body made of a powder material such as 3), and has an air electrode 2 and a solid electrolyte 3 sequentially laminated on its outer periphery, and further has a fuel electrode 4 formed on its outer periphery. This fuel electrode 4 is partially cut out,
An interconnector 5 that is electrically connected to the air electrode 2 is provided here in a protruding manner.

上記の空気電極2および燃料電極4のそれぞれは多孔構
造であって、空気電極2の内周側に酸素ガスもしくは空
気を流し、かつ燃料電極4の外周側に例えば水素ガスを
流すことにより、酸素イオンが固体電解質3を燃料電極
4側に透過して燃料電極4側で酸化還元反応が生じ、そ
れに伴う起電力を空気電極2および燃料電極4から外部
に取り出すことができる。
Each of the above-mentioned air electrode 2 and fuel electrode 4 has a porous structure, and by flowing oxygen gas or air to the inner circumference of the air electrode 2 and flowing, for example, hydrogen gas to the outer circumference of the fuel electrode 4, oxygen can be removed. Ions permeate through the solid electrolyte 3 toward the fuel electrode 4 side, a redox reaction occurs on the fuel electrode 4 side, and the electromotive force accompanying this can be taken out from the air electrode 2 and the fuel electrode 4.

したがって燃料電池では、固体電解質3の内周画および
外周面のそれぞれに空気もしくは酸素ガスおよび燃料ガ
スが充分供給されかつ拡散する必要があるが、上記の燃
料電池では、支持管1の外周面に空気電極2を形成する
とともに、その外周面に固体電解質3の層を形成してい
るから、空気もしくは酸素ガスは支持管1および空気電
極2を透過して固体電解質3の内周面に供給されること
になるので、その流動抵抗が大きく、空気もしくは酸素
ガスの供給が充分に行われずに発電効率が悪くなるおそ
れがあった。
Therefore, in a fuel cell, air or oxygen gas and fuel gas need to be sufficiently supplied and diffused to each of the inner and outer circumferential surfaces of the solid electrolyte 3, but in the above fuel cell, the outer circumferential surface of the support tube 1 is Since the air electrode 2 is formed and a layer of solid electrolyte 3 is formed on its outer peripheral surface, air or oxygen gas passes through the support tube 1 and the air electrode 2 and is supplied to the inner peripheral surface of the solid electrolyte 3. As a result, the flow resistance is large, and there is a risk that the supply of air or oxygen gas will not be sufficient, resulting in poor power generation efficiency.

また支持管1と空気電極2とは、その素材および構造が
、それぞれに要求される特性から自ずと異なっており、
しかも発電時には電池の全体が高温になるから、支持管
1と空気電極2との剥離やいずれかの亀裂などが生じる
おそれがあった。
Furthermore, the materials and structures of the support tube 1 and the air electrode 2 are naturally different due to the characteristics required for each.
Moreover, since the entire battery becomes high in temperature during power generation, there is a risk that the support tube 1 and the air electrode 2 may peel off or cracks may occur.

そこで本出願人は、空気電極に支持管としての機能を付
与した燃料電池を開発した。これは、円筒状の空気電極
の肉厚をある程度厚くしてその剛性を高<シ、その外周
面に固体電解質の層および燃料電極を順次形成した構造
であって、第5図に示す従来の燃料電池に比較して構成
要素が少ないから、上述したような問題は生じない。
Therefore, the present applicant has developed a fuel cell in which an air electrode is given the function of a support tube. This is a structure in which the wall thickness of a cylindrical air electrode is increased to a certain extent to increase its rigidity, and a layer of solid electrolyte and a fuel electrode are sequentially formed on the outer circumferential surface of the electrode. Since there are fewer components compared to fuel cells, the above-mentioned problems do not occur.

発明が解決しようとする課題 しかるに空気電極は高温状態で酸化雰囲気に置かれるか
ら、耐酸化性に優れたものであることが必要であり、従
来一般には、ペロブスカイト型ランタン系複合酸化物の
粉末材料を焼結して形成することが好ましいとされてい
る。しかしながらこれを支持管として機能する程度の剛
性を有するよう形成する場合の特性については何等知ら
れていず、電池として実用に耐え得る空気電極を得るこ
とは甚だ困難であった。
Problems to be Solved by the Invention However, since air electrodes are placed in an oxidizing atmosphere at high temperatures, they must have excellent oxidation resistance. It is said that it is preferable to form it by sintering. However, nothing is known about the characteristics of forming this so that it has enough rigidity to function as a support tube, and it has been extremely difficult to obtain an air electrode that can be put to practical use as a battery.

この発明は上記の事情を背景としてなされたもので、空
気電極が支持管を兼ねるよう構成した燃“ 料電池であ
って、充分な耐久性および発電効率を得ることのできる
燃料電池を提供することを目的とするものである。
The present invention was made against the background of the above-mentioned circumstances, and an object of the present invention is to provide a fuel cell configured such that an air electrode also serves as a support tube, and which can obtain sufficient durability and power generation efficiency. The purpose is to

課題を解決するための手段 この発明は、上記の目的を達成するために、筒状の固体
電解質と、その内周もしくは外周に密着して設けられた
多孔質空気電極と、固体電解質の内周もしくは外周のう
ち空気電極とは反対側に密着して設けられた多孔質燃料
電極とからなる固体電解質型燃料電池であって、前記空
気電極が、ペロブスカイト型ランタン系複合酸化物から
なり、かつその導電率が50s/am以上、ガス透過係
数が1 、  OX 10−’cc−cn/ sec(
g/al)  ・cm2以上、膨張係数が10〜12X
10−6/K、平均気孔径が0.1〜50μmに設定さ
れていることを特徴とするのである。
Means for Solving the Problems In order to achieve the above object, the present invention includes a cylindrical solid electrolyte, a porous air electrode provided in close contact with the inner or outer periphery of the cylindrical solid electrolyte, and an inner periphery of the solid electrolyte. Or a solid oxide fuel cell comprising a porous fuel electrode provided in close contact with the outer periphery on the side opposite to the air electrode, wherein the air electrode is made of a perovskite-type lanthanum-based composite oxide; Electrical conductivity is 50 s/am or more, gas permeability coefficient is 1, OX 10-'cc-cn/sec (
g/al) ・cm2 or more, expansion coefficient 10-12X
10-6/K and an average pore diameter of 0.1 to 50 μm.

作     用 この発明の燃料電池においても、空気電極と固体電解質
とが互いに密着しており、空気や酸素ガスは空気電極を
透過して固体電解質の表面に供給かつ拡散させられ、さ
らに空気電極が陽極となるが、導電率を上記の値以上に
設定しであるから、空気電極の内部での電圧降下を防ぐ
ことができ、またガス透過係数および平均気孔径のそれ
ぞれを上記の値に設定しであるから、固体電解質の表面
に空気もしくは酸素ガスを充分に供給して発電を行うこ
とができる。さらに膨張係数を上記の値の範囲に設定し
ているから、固体電解質からの剥離や亀裂の発生を防止
し、耐久性に優れたものとすることができる。
Function: Also in the fuel cell of this invention, the air electrode and the solid electrolyte are in close contact with each other, and air and oxygen gas are supplied and diffused to the surface of the solid electrolyte by passing through the air electrode, and the air electrode is connected to the anode. However, since the conductivity is set above the above value, voltage drop inside the air electrode can be prevented, and the gas permeability coefficient and average pore diameter can be set to the above values. Therefore, it is possible to generate electricity by supplying a sufficient amount of air or oxygen gas to the surface of the solid electrolyte. Furthermore, since the expansion coefficient is set within the above value range, peeling from the solid electrolyte and generation of cracks can be prevented and excellent durability can be achieved.

実  施  例 つぎにこの発明を実施例に基づいて説明する。Example Next, the present invention will be explained based on examples.

第1図はこの発明の一実施例を示す模式的な斜視図であ
って、空気電極10は比較的厚肉の円筒状に形成される
とともに、その内部が空気もしくは酸素ガスの流路とさ
れている。この空気電極10の外周に固体電解質11お
よび燃料電極12が順次積層して形成されている。なお
、固体電解質11および燃料電極12は図に示すように
一部切り欠かれており、その切り欠いた部分に、空気電
極10に導通しかつ固体電解質11の外周側にわずか突
出するインターコネクタ13が設けられている。そして
全体の外周側が水素ガスなどの燃料ガス流路とされてい
る。
FIG. 1 is a schematic perspective view showing an embodiment of the present invention, in which an air electrode 10 is formed in a relatively thick cylindrical shape, and the inside thereof is used as a flow path for air or oxygen gas. ing. A solid electrolyte 11 and a fuel electrode 12 are sequentially stacked on the outer periphery of the air electrode 10 . Note that the solid electrolyte 11 and the fuel electrode 12 are partially cut out as shown in the figure, and an interconnector 13 that is electrically connected to the air electrode 10 and slightly protrudes toward the outer circumferential side of the solid electrolyte 11 is installed in the cutout part. is provided. The entire outer circumferential side is used as a flow path for fuel gas such as hydrogen gas.

上述した構成の燃料電池のうち、空気電極10はランタ
ンマンガナイトなどの下記の一般式で表されるペロブス
カイト型ランタン系複合酸化物を焼結して形成した多孔
質体である。
In the fuel cell configured as described above, the air electrode 10 is a porous body formed by sintering a perovskite-type lanthanum-based composite oxide represented by the following general formula, such as lanthanum manganite.

L!   Sr  MnO3−。L!   Sr MnO3-.

1!      ! (x−0〜0.5’、 y =0〜0.5 )また固体
電解質11はイツトリア安定化ジルコニア(YSZ)も
しくはカルシア安定化ジルコニア(C8Z)によって形
成されている。
1! ! (x-0 to 0.5', y = 0 to 0.5) Furthermore, the solid electrolyte 11 is formed of yttria-stabilized zirconia (YSZ) or calcia-stabilized zirconia (C8Z).

さらに燃料電極12およびインターコネクタ13はニッ
ケルN1もしくはニッケルとジルコニアとの複合材(N
 + + Z r O2)によって形成されている。
Further, the fuel electrode 12 and the interconnector 13 are made of nickel N1 or a composite material of nickel and zirconia (N
+ + Z r O2).

そして上記の空気電極1.0は、導電率が50s/an
以上、ガス透過係数が1.0×10−’cc−on/s
ee(g/al)  ・cm2以上、膨張係数が10〜
12×10”6/K、平均気孔径が0.1〜50μlに
設定されている。
The above air electrode 1.0 has a conductivity of 50 s/an
Above, the gas permeability coefficient is 1.0×10-'cc-on/s
ee (g/al) ・cm2 or more, expansion coefficient 10~
The average pore size is set to 12×10”6/K and 0.1 to 50 μl.

これらの値は本発明者等の実験に基づいて、実用に供し
得るものとして初めて、求められたものであり、その実
験の結果を下記の一覧表に示す。
These values were determined for the first time based on experiments conducted by the present inventors, and were found to be practically applicable, and the results of the experiments are shown in the table below.

(注)導電率:s/ai ガス透過係数: ce−am/sec It/al) 
 ・d膨張係数:に−1 平均気孔径二μI なお、上記の表に示す評価は、所定の電圧に対して予め
決めた値以上の電流密度が得られた否か、剥離や亀裂が
生じたか否かによって行った。
(Note) Electrical conductivity: s/ai Gas permeability coefficient: ce-am/sec It/al)
・d expansion coefficient: -1 Average pore diameter 2 μI The evaluation shown in the table above is based on whether a current density higher than a predetermined value was obtained for a given voltage, and whether peeling or cracking occurred. I went by whether or not.

以下具体的に説明する。This will be explained in detail below.

まず導電率について説明すると、表のNIILl、  
2゜3に示すように、ガス透過係数、膨張係数および平
均気孔径を同一にし、導電率を4Qs/a11,50s
/am、100s/amに変えたところ、第2図に示す
ように空気電極の導電率を40s/amとした燃料電池
では、0.6vの電圧のとき電流密度は150mA/a
lLかなく、これに対して導電率を50s/cmとした
ときには電流密度が210mA/ciとなり、さらに1
00S/a11としたときには電流密度が300mA/
carとなった。これらの結果から、この発明では空気
電極の導電率を4Qs/a11以上とした、 またガス透過係数については、表のtk4.5゜6に示
すように、1.[l X1ll’、  1.11 X1
0’、 1.0X 10−4 (cc ・an / s
ee (g/ai)  ・al)に変え、他の条件を同
一にしたところ、第3図に示すように、1、 OX l
O’i ce * al/ see (g/a/l  
・alの場合には、電流密度が低すぎて実用に不向きで
あり、これに反して1.0 X 10−4 cc−an
/ 5ec(i/cd)  ・alでは、0.6vの電
圧に対して250mA/aIrの電流密度を得ることが
できた。これらの結果からこの発明では、ガス透過率を
1.0×10°4 cc a am / sec (g
/aIr)・−以上とした。
First, to explain the conductivity, NIILl in the table,
As shown in Figure 2.3, the gas permeability coefficient, expansion coefficient, and average pore diameter are the same, and the electrical conductivity is 4Qs/a11,50s.
/am, 100s/am, as shown in Figure 2, in a fuel cell with an air electrode conductivity of 40s/am, the current density is 150mA/a at a voltage of 0.6V.
On the other hand, when the conductivity is 50 s/cm, the current density is 210 mA/ci, and 1
When set to 00S/a11, the current density is 300mA/
It became a car. From these results, in this invention, the electrical conductivity of the air electrode was set to 4Qs/a11 or more, and the gas permeability coefficient was set to 1.1 as shown in tk4.5°6 in the table. [l X1ll', 1.11 X1
0', 1.0X 10-4 (cc ・an/s
ee (g/ai) ・al) and keeping other conditions the same, as shown in Figure 3, 1, OX l
O'i ce * al/ see (g/a/l
- In the case of al, the current density is too low and is not suitable for practical use; on the other hand, 1.0 x 10-4 cc-an
/5ec(i/cd)・al, it was possible to obtain a current density of 250 mA/aIr for a voltage of 0.6 V. Based on these results, in this invention, the gas permeability is set to 1.0×10°4 cc a am / sec (g
/aIr)・- or more.

さらに膨張係数については、9XI04/にとしたとこ
ろ(表の1lkL7)、空気電極と固体電極との間に剥
離が生じ、また13X104/にとしたところ(表のN
119) 、空気電極にクラックが生じた。
Furthermore, when the expansion coefficient was set to 9XI04/ (1lkL7 in the table), separation occurred between the air electrode and the solid electrode, and when it was set to 13X104/ (N
119), a crack occurred in the air electrode.

そこでこの発明では空気電極の膨張係数を、上記の値の
中間値、すなわち10〜12X104/にとした。これ
らの値のいずれかであれば、剥離やクラックの発生は認
められなかった。
Therefore, in this invention, the expansion coefficient of the air electrode is set to an intermediate value between the above values, that is, 10 to 12×10 4 /. At any of these values, no peeling or cracking was observed.

そして平均気孔径については表のklo、11゜12お
よび第4図に示すとおりであり、0.1〜100μmで
あれば、充分な電流密度を得ることができ、したがって
この発明では、平均気孔径をこれらの値に限定した。
The average pore diameter is as shown in the table klo, 11°12, and Figure 4. If it is 0.1 to 100 μm, sufficient current density can be obtained. Therefore, in this invention, the average pore diameter was limited to these values.

これらの結果から、空気電極の各値を上記のように設定
することにより、充分な起電力および耐久性を得ること
ができる。
From these results, sufficient electromotive force and durability can be obtained by setting each value of the air electrode as described above.

発明の効果 以上の説明から明らかなようにこの発明によれば、空気
電極が強度部材である支持管を兼ねていても、実用に供
し得る程度の充分な起電力で、かつ耐久性のある燃料電
池を得ることができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, even if the air electrode also serves as a support tube, which is a strength member, the fuel can be produced with sufficient electromotive force and durability for practical use. You can get batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す概略図、第2図ない
し第4図はこの発明の燃料電池についての実験結果を示
す線図であって、第2図は導電率をパラメータとした電
圧と電流密度との関係を示し、第3図はガス透過係数を
パラメータとした電圧と電流密度との関係を示し、さら
に第4図は平均気孔径と電流密度との関係を示す。第5
図は支持管のある従来の燃料電池の一例を示す概略図で
ある。 10・・・空気電極、 11・・・固体電解質、 12
・・・燃料電極。 第2図 を−丸”35・7を 第3図 第4図 平均気化奔 第5図
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIGS. 2 to 4 are diagrams showing experimental results regarding the fuel cell of the present invention, and FIG. 2 shows conductivity as a parameter. The relationship between voltage and current density is shown, FIG. 3 shows the relationship between voltage and current density using the gas permeability coefficient as a parameter, and FIG. 4 shows the relationship between average pore diameter and current density. Fifth
The figure is a schematic diagram showing an example of a conventional fuel cell with a support tube. 10... Air electrode, 11... Solid electrolyte, 12
...Fuel electrode. Figure 2 - circle 35.7 Figure 3 Figure 4 Average vaporization rate Figure 5

Claims (1)

【特許請求の範囲】  筒状の固体電解質と、その内周もしくは外周に密着し
て設けられた多孔質空気電極と、固体電解質の内周もし
くは外周のうち空気電極とは反対側に密着して設けられ
た多孔質燃料電極とからなる固体電解質型燃料電池にお
いて、 前記空気電極が、ペロブスカイト型ランタン系複合酸化
物からなり、かつその導電率が50s/cm以上、ガス
透過係数が1.0×10^−^4cc・cm/sec(
g/cm^2)・cm^2以上、膨張係数が10〜12
×10^−^6/K、平均気孔径が0.1〜50μmに
設定されていることを特徴とする固体電解質型燃料電池
[Claims] A cylindrical solid electrolyte, a porous air electrode provided in close contact with the inner or outer periphery of the solid electrolyte, and a porous air electrode provided in close contact with the inner or outer periphery of the solid electrolyte on the side opposite to the air electrode. In a solid oxide fuel cell comprising a porous fuel electrode, the air electrode is made of a perovskite-type lanthanum-based composite oxide, and has an electrical conductivity of 50 s/cm or more and a gas permeability coefficient of 1.0×. 10^-^4cc・cm/sec(
g/cm^2)・cm^2 or more, expansion coefficient 10-12
×10^-^6/K, and an average pore diameter of 0.1 to 50 μm.
JP2333347A 1990-11-29 1990-11-29 Solid electrolyte fuel cell Pending JPH04206269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2333347A JPH04206269A (en) 1990-11-29 1990-11-29 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2333347A JPH04206269A (en) 1990-11-29 1990-11-29 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH04206269A true JPH04206269A (en) 1992-07-28

Family

ID=18265099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2333347A Pending JPH04206269A (en) 1990-11-29 1990-11-29 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH04206269A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171064A (en) * 1985-01-22 1986-08-01 ウエスチングハウス エレクトリック コ−ポレ−ション Pneumatic electrode material for high temperature electrochemical battery
JPH01105472A (en) * 1987-10-16 1989-04-21 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPH02262260A (en) * 1989-03-22 1990-10-25 Westinghouse Electric Corp <We> Porous fuel electrode
JPH0467564A (en) * 1990-07-07 1992-03-03 Ngk Insulators Ltd Solid electrolytic fuel cell and porous electrode body using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171064A (en) * 1985-01-22 1986-08-01 ウエスチングハウス エレクトリック コ−ポレ−ション Pneumatic electrode material for high temperature electrochemical battery
JPH01105472A (en) * 1987-10-16 1989-04-21 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPH02262260A (en) * 1989-03-22 1990-10-25 Westinghouse Electric Corp <We> Porous fuel electrode
JPH0467564A (en) * 1990-07-07 1992-03-03 Ngk Insulators Ltd Solid electrolytic fuel cell and porous electrode body using the same

Similar Documents

Publication Publication Date Title
KR100648144B1 (en) High performance anode-supported solide oxide fuel cell
JP5498510B2 (en) Thermal shock resistant solid oxide fuel cell stack
JP4605885B2 (en) Support membrane type solid oxide fuel cell
TWI761479B (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and manufacturing method for electrochemical element
JPH0748378B2 (en) Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
JP2008047545A (en) Solid oxide fuel cell having gas channel
JP2001196069A (en) Fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JPH1092446A (en) Solid electrolyte type fuel cell
JP6154042B1 (en) Fuel cell stack
JP6180628B2 (en) High temperature unit cell with porous gas induction channel layer
JP2004172062A (en) Fuel cell system and multilayer cell for the same
JP2017188437A (en) Electrochemical cell
JP2018181745A (en) Conductive member, electrochemical reaction unit, and electrochemical reaction cell stack
JP2012142241A (en) Method for manufacturing single cell for solid oxide fuel cell
KR101905499B1 (en) Unit cell module and stack for solid oxide fuel cell
JPH04206269A (en) Solid electrolyte fuel cell
JP2009146805A (en) Electrochemical device
JP2980921B2 (en) Flat solid electrolyte fuel cell
JP2005216619A (en) Fuel battery cell and fuel battery
JP2020113503A (en) Electrochemical reaction cell stack
JPH03238758A (en) Fuel cell of solid electrolyte type
JP2771090B2 (en) Solid oxide fuel cell
JP5824560B1 (en) Fuel cell stack structure
JP2013257973A (en) Solid oxide fuel cell stack