JPH04198736A - Detecting method for structure defect and detecting device thereof - Google Patents

Detecting method for structure defect and detecting device thereof

Info

Publication number
JPH04198736A
JPH04198736A JP32530490A JP32530490A JPH04198736A JP H04198736 A JPH04198736 A JP H04198736A JP 32530490 A JP32530490 A JP 32530490A JP 32530490 A JP32530490 A JP 32530490A JP H04198736 A JPH04198736 A JP H04198736A
Authority
JP
Japan
Prior art keywords
detected
generator
acoustic
signal
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32530490A
Other languages
Japanese (ja)
Inventor
Hidenori Yazawa
矢澤 秀宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIEI DENSHI KOGYO KK
Original Assignee
NICHIEI DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIEI DENSHI KOGYO KK filed Critical NICHIEI DENSHI KOGYO KK
Priority to JP32530490A priority Critical patent/JPH04198736A/en
Publication of JPH04198736A publication Critical patent/JPH04198736A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly detect a defect over a wide measurement range without using a fluid such as oil by feeding an acoustic wave signal to an acoustic generator, pressing it to the surface of a tested structure, and detecting the structural change. CONSTITUTION:An acoustic wave signal is fed to an acoustic generator 20 from signal generator 11, the generator 20 is pressed to a tested structure 30 with a constant pressure and closely stuck on the surface, the acoustic wave vibrates the structure 30, and the moving coil impedance of the generator 20 is changed by the vibration state. When the airtightness between the structure 30 and the generator 20 is kept constant, the same change is detected for the same tested structure, the impedance change is phase-detected by a phase detec tor 12 at the same frequency as that of the signal generator 11, it is then ampli fied by an amplifier 13, the noise signal other than the acoustic change signal is cancelled by a signal processor 14, it is displayed on an X-Y recorder 15, thus the position and size of a cavity section 21 of the structure 30 difficult to detect can be detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維等の新素材の構造物或いは新建材の複
合材等(以下、これらをまとめて構造物という。)の剥
離、空洞等の欠陥を検出する構造物の欠陥検出方法およ
びその検出装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to structures made of new materials such as carbon fibers, or composite materials of new building materials (hereinafter collectively referred to as structures), etc. The present invention relates to a method for detecting defects in structures and a device for detecting defects therein.

〔従来の技術〕[Conventional technology]

従来、構造物の欠陥を非破壊で検出するには、例えば超
音波探傷方式、渦電流探傷方式や打音検査方式がある。
Conventionally, methods for nondestructively detecting defects in structures include, for example, an ultrasonic flaw detection method, an eddy current flaw detection method, and a percussion testing method.

すなわち、超音波探傷方式は超音波を送受信する探触子
を用い、被検査材に超音波を投入すると、被検査材に欠
陥があれば、その大きさと形状に応じて超音波が反射散
乱する。その反射波の一部が上記探触子に受信され、画
像表示装置に表示されることによって、欠陥の位置と大
きさが検出される。
In other words, the ultrasonic flaw detection method uses a probe that transmits and receives ultrasonic waves. When ultrasonic waves are applied to the material to be inspected, if there is a defect in the material to be inspected, the ultrasonic waves are reflected and scattered depending on the size and shape of the defect. . A portion of the reflected wave is received by the probe and displayed on the image display device, thereby detecting the position and size of the defect.

また、渦電流探傷方式は金属管等の導体中をコイルで交
流磁界が貫くようにすると、導体に渦電流が流れる。そ
して、導体からなる被検査材が欠陥のない良品である場
合には、渦電流が変化せず一定であって、被検査材に欠
陥がある場合には、渦電流が変化することとなる。これ
により、被検査材の欠陥の有無と位置が検出される。
In addition, in the eddy current flaw detection method, when an alternating magnetic field is passed through a conductor such as a metal tube using a coil, an eddy current flows through the conductor. When the inspected material made of a conductor is a good product with no defects, the eddy current does not change and remains constant, and when the inspected material has a defect, the eddy current changes. As a result, the presence or absence and position of defects in the inspected material are detected.

さらに、打音検査方式は被検査材を叩いて振動を与え、
その音色を検査者が聞いて音色の変化に基づいて欠陥を
検出している。
Furthermore, the hammering sound inspection method taps the material to be inspected to generate vibrations.
An inspector listens to the tone and detects defects based on changes in tone.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来技術にあっては次のような問題
点があった。すなわち、 超音波探傷方式では、探触子と被検査材との間にオイル
等の流体を介在させるため、被検査材を汚損させる。ま
た、被検査材の構造が超音波の伝達性能と大きく異なる
場合には、境界面からの反射が大きく、接着面付近の剥
離や空洞の有無が測定不可能である。そして、超音波は
その性質から指向性が強く、−点の測定範囲が狭い。こ
れは小さな欠陥を測定する場合には利点となるものの、
広い範囲の測定では正確なスキャンニング機構が必要と
なり、構造を複雑化させてしまう問題点がある。
However, the above conventional technology has the following problems. That is, in the ultrasonic flaw detection method, a fluid such as oil is interposed between the probe and the material to be inspected, thereby contaminating the material to be inspected. Furthermore, if the structure of the material to be inspected is significantly different from the ultrasonic transmission performance, the reflection from the boundary surface will be large, making it impossible to measure the presence or absence of peeling or cavities near the adhesive surface. Further, due to its nature, ultrasonic waves have strong directivity, and the measurement range of the negative point is narrow. Although this is an advantage when measuring small defects,
Measurement over a wide range requires an accurate scanning mechanism, which poses the problem of complicating the structure.

また、渦電流探傷方式では、被検査材に対する電磁作用
を測定するため、金属等の導体にしか対応できないため
、非金属等の絶縁体からなる被検査材の検査が不可能で
あり、汎用性に欠ける問題点がある。
In addition, since the eddy current testing method measures electromagnetic effects on the material being inspected, it can only be used with conductors such as metals, making it impossible to inspect materials made of insulators such as non-metals. There is a problem with this.

さらに、打音検査方式では検査者が叩いた音色を聞いて
欠陥を判断しなければならないため、検査者の感性と経
験が要求され、画一的に判断できないという問題点があ
る。これを解決するために、マイクロホンを通して音色
の変化を測定する方式もあるが、この方式では被検査材
を叩いた振動音以外の不要な雑音も入力されることとな
り、望ましい検出精度が得られない問題点か新たに発生
する。
Furthermore, the hammering sound inspection method requires the inspector to judge defects by listening to the tone of the hammer, which requires the inspector's sensitivity and experience, and there is a problem in that it is not possible to make a uniform judgment. To solve this problem, there is a method that measures the change in tone through a microphone, but this method also inputs unnecessary noise other than the vibration sound of hitting the test material, making it difficult to obtain the desired detection accuracy. A new problem arises.

そこで、本発明は上記事情を考慮してなされたもので、
その目的とするところは、オイル等の流体を介在させる
ことなく、測定範囲が広く画一的に欠陥を検出でき、汎
用性を高めた構造物の欠陥検出方法を提供することにあ
る。
Therefore, the present invention has been made in consideration of the above circumstances.
The purpose is to provide a method for detecting defects in structures that can uniformly detect defects over a wide measurement range without intervening fluids such as oil, and has increased versatility.

また、本発明の他の目的とするところは、構造を簡略化
するとともに、雑音の影響を低減し検出精度を向上させ
た構造物の欠陥検出装置を提供することにある。
Another object of the present invention is to provide a structural defect detection device that has a simplified structure, reduces the influence of noise, and improves detection accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明に係る構造物の欠
陥検出方法にあっては、音響発生器に少なくとも1つの
音波信号を与え、上記音響発生器を被検出構造物の表面
に密着するように一定の圧力で押圧したとき、上記被検
出構造物の構造変化による音響インピーダンスの変化を
測定し、被検出構造物の構造変化を検出することにある
In order to achieve the above object, in the structure defect detection method according to the present invention, at least one sound wave signal is applied to an acoustic generator, and the acoustic generator is brought into close contact with the surface of the structure to be detected. The object of the present invention is to measure changes in acoustic impedance due to structural changes in the structure to be detected when the structure is pressed with a constant pressure, thereby detecting structural changes in the structure to be detected.

また、本発明に係る構造物の欠陥検出装置にあっては、
少なくとも1つの音波信号を発信する発信器と、被検出
構造物の表面に密着し上記発信器の音波信号を得て被検
出構造物の構造変化による音響インピーダンスの変化を
測定する音響発生器と、この音響発生器のインピーダン
ス変化信号を上記発信器と同一周波数にて位相検波する
手段と、上記音響インピーダンスの変化を記録・表示す
る手段とを備えたことにある。そして、音響発生器の開
口縁には弾性体よりなる緩衝幅を設けることか好ましい
Further, in the structure defect detection device according to the present invention,
a transmitter that emits at least one sound wave signal; an acoustic generator that is in close contact with the surface of a structure to be detected and obtains the sound wave signal of the transmitter to measure changes in acoustic impedance due to structural changes of the structure to be detected; The present invention includes means for phase-detecting the impedance change signal of the acoustic generator at the same frequency as the oscillator, and means for recording and displaying the change in acoustic impedance. Preferably, a buffer width made of an elastic material is provided at the edge of the opening of the sound generator.

〔作  用〕[For production]

上記の構成を有する本発明においては、音響発生器に少
なくとも1つの音波信号を与え音響発生器を振動させ、
音響発生器を被検出構造物の表面に密着するように一定
の圧力で押圧すると、音響波が被検出構造物を振動させ
る。この振動状態によって音響発生器の可動コイル・イ
ンピーダンスが変化し、このインピーダンス変化を発信
器と同一周波数にて位相検波することにより、検出が困
難な被検出構造物の構造変化を検出することができる。
In the present invention having the above configuration, at least one sound wave signal is applied to the acoustic generator to vibrate the acoustic generator,
When the acoustic generator is pressed with a constant pressure so as to come into close contact with the surface of the detected structure, the acoustic waves cause the detected structure to vibrate. This vibration state changes the impedance of the moving coil of the acoustic generator, and by phase-detecting this impedance change at the same frequency as the transmitter, it is possible to detect structural changes in the target structure that are difficult to detect. .

また、音響発生器の開口縁に設けた弾性体よりなる緩衝
幅は、音響発生器を被検出構造物に押圧したときの気密
性を高めるように作用する。
Further, the buffer width made of the elastic body provided at the edge of the opening of the acoustic generator acts to improve airtightness when the acoustic generator is pressed against the structure to be detected.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。第1
図および第2図に本発明に係る構造物の欠陥検出装置の
一実施例を示す。第1図に示すように、欠陥検出装置は
検出装置本体10と音響発生器(スピーカ)20とから
大略的に構成され、第2図に示す被検出構造物30の剥
離、空洞等の欠陥を検出するものである。
Embodiments of the present invention will be described below based on the drawings. 1st
An embodiment of the structure defect detection apparatus according to the present invention is shown in FIG. As shown in FIG. 1, the defect detection device is roughly composed of a detection device main body 10 and a sound generator (speaker) 20, and detects defects such as peeling and cavities in the detected structure 30 shown in FIG. It is something to detect.

検出装置本体10は少なくとも1つの音波信号を発信す
る発信器11と、発信器11から音響発生器20に送出
した音波信号で被検出構造物30からの音響変化信号を
位相検波する位相検波器12と、位相検波器12で位相
検波した信号を増幅する増幅器13と、上記音響変化信
号以外の雑音による信号を消去するための信号処理器1
4と、音響変化信号を記録・表示する手段としてのX−
Yレコーダ15とを備えている。
The detection device main body 10 includes a transmitter 11 that transmits at least one sound wave signal, and a phase detector 12 that detects the phase of the acoustic change signal from the detected structure 30 using the sound wave signal sent from the transmitter 11 to the sound generator 20. , an amplifier 13 for amplifying the signal phase-detected by the phase detector 12, and a signal processor 1 for eliminating signals due to noise other than the acoustic change signal.
4, and X- as a means for recording and displaying acoustic change signals.
Y recorder 15.

発信器11は30Hz〜20KH2の周波数範囲で発信
し、欠陥を検出するための被検出構造物30の材質、構
造に基づいて周波数が選定される。被検出構造物30が
第2図に示すような複合材のパネルであって、剥lv部
分の欠陥を検出するには約IKH7に周波数を設定する
The transmitter 11 emits in a frequency range of 30 Hz to 20 KH2, and the frequency is selected based on the material and structure of the structure 30 to be detected for detecting defects. When the detected structure 30 is a composite material panel as shown in FIG. 2, the frequency is set to approximately IKH7 to detect defects in the peeled lv portion.

音響発生器20は発信器11の音波信号を得て被検出構
造物30の構造変化による音響インピーダンスの変化を
測定するものであって、第3図(A)、(B)に示すよ
うに被検出構造物30の凹凸による影響を可及的に吸収
するため振動板(コーン)21の開口縁に防振ゴム等の
弾性体よりなる緩衝輪(バッファリング)22を設け、
−定の圧力で被検出構造物30に押圧される。なお、緩
衝輪22としては防振ゴムに限定されることなく、例え
ば合成樹脂からなる弾性体であってもよい。
The acoustic generator 20 obtains a sound wave signal from the transmitter 11 and measures changes in acoustic impedance due to structural changes in the detected structure 30, as shown in FIGS. 3(A) and 3(B). In order to absorb as much as possible the influence of unevenness of the detection structure 30, a buffer ring 22 made of an elastic material such as anti-vibration rubber is provided at the opening edge of the diaphragm (cone) 21.
- Pressed against the detected structure 30 with a constant pressure. Note that the buffer ring 22 is not limited to vibration-proof rubber, and may be an elastic body made of synthetic resin, for example.

また、音響発生器20は被検出構造物30の表面形状に
対応して緩衝輪(バッファリング)22の形状を変化さ
せることが望ましい。すなわち、音響発生器20の振動
板21と被検出構造物30の表面との距離が必要な場合
、緩衝輪22は被検出構造物30が平面であるとき2〜
3龍厚で、数■■幅のリング状でよいが、被検出構造物
30に凹凸部が形成されている場合には、第4図(A)
Further, it is desirable that the sound generator 20 changes the shape of the buffer ring 22 in accordance with the surface shape of the detected structure 30. That is, when the distance between the diaphragm 21 of the acoustic generator 20 and the surface of the detected structure 30 is required, the buffer ring 22 is set at a distance of 2 to 2 when the detected structure 30 is flat.
A ring shape with a thickness of 3 mm and a width of several mm may be sufficient, but if the detected structure 30 has uneven parts, the ring shape shown in Fig. 4 (A) may be used.
.

(B)に示すようにラッパ状の補助部材23に20mm
以上の幅で緩衝輪24を取付けることにより、被検出構
造物30に対して高い気密性を保持できる。
As shown in (B), 20 mm is attached to the trumpet-shaped auxiliary member 23.
By attaching the buffer ring 24 with the above width, high airtightness can be maintained with respect to the detected structure 30.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

発信器11より音響発生器20に音波信号を与え音響発
生器20の振動板21を振動させる。次いで、第2図に
示すように音響発生器20を一定の圧力で被検出構造物
30に押圧してその表面に密着させる。すると、音響波
が被検出構造物30を振動させ、この振動状態によって
音響発生器20の可動コイルφインピーダンスが変化す
る。
A sound wave signal is applied from the transmitter 11 to the sound generator 20 to cause the diaphragm 21 of the sound generator 20 to vibrate. Next, as shown in FIG. 2, the acoustic generator 20 is pressed against the detection target structure 30 with a constant pressure to bring it into close contact with the surface thereof. Then, the acoustic wave causes the detected structure 30 to vibrate, and the moving coil φ impedance of the acoustic generator 20 changes depending on the vibration state.

このとき、被検出構造物30は金属、非金属に関係なく
材質や構造による影響で変化する。ここで、被検出構造
物30と音響発生器20との気密を一定に保持すれば、
同じ被検出構造物では同じ変化が検出される。
At this time, the detected structure 30 changes depending on its material and structure, regardless of whether it is metal or non-metal. Here, if the airtightness between the detected structure 30 and the acoustic generator 20 is maintained constant,
The same change is detected in the same detected structure.

このインピーダンス変化を位相検波器12が発信器11
と同一周波数にて位相検波した後、増幅器13で増幅し
信号処理器14にて音響変化信号以外の雑音による信号
を消去し、さらにx−Yレコーダ15に表示することに
よって、検出が困難な被検出構造物30の空洞部31の
位置と大きさを検出することができる。
The phase detector 12 detects this impedance change from the oscillator 11.
After phase detection is performed at the same frequency as that of The position and size of the cavity 31 of the detection structure 30 can be detected.

さらに、本実施例を適用した具体的な実験例について説
明する。
Furthermore, a specific experimental example to which this embodiment is applied will be explained.

実験例1 第5図(A)、(B)、(C)に示すようにゴルフクラ
ブのカーボンヘッドの製造過程でのカーボン材の空洞部
の検出を以下の条件の下で行った。
Experimental Example 1 As shown in FIGS. 5(A), 5(B), and 5(C), detection of cavities in a carbon material during the manufacturing process of a carbon head for a golf club was carried out under the following conditions.

音響発生器20:開口径5cm、円形スピーカ、インピ
ーダンス8Ω 緩衝輪22:2III11厚、内径33關、外径43m
11周波数: 1.lKH2,相対増幅度: 20dB
同図(A)、(B)、(C)に示す被検出構造物として
のカーボンヘッド32.33.34に音響発生器20を
押圧してその表面に密着させ、X−Yレコーダ15の出
力波形を第6図(A)。
Sound generator 20: Opening diameter 5cm, circular speaker, impedance 8Ω Buffer ring 22: 2III11 thickness, inner diameter 33mm, outer diameter 43m
11 Frequencies: 1. lKH2, relative amplification: 20dB
The acoustic generator 20 is pressed against the carbon head 32, 33, 34 as a structure to be detected shown in FIGS. The waveform is shown in Figure 6 (A).

(B)、(C)に示す。したがって、これらの相対的な
出力レベルをみれば、カーボンヘッド32゜34は出力
レベルが高く、良品であることが検出され、カーボンヘ
ッド33は出力レベルがカーボンヘッド32.34より
低いため、不良品であることが検出された。この実験例
において、信号処理器14により良品のときの増幅出力
信号を疑似的にゼロ値化すると、以後増幅出力は良品と
の比較信号となり、良品、不良品の比較検出が正確且つ
容易に行うことができる。
Shown in (B) and (C). Therefore, looking at their relative output levels, carbon heads 32 and 34 have a high output level and are detected to be good products, while carbon heads 33 has a lower output level than carbon heads 32 and 34, so they are detected as defective products. It was detected that In this experimental example, when the amplified output signal of a non-defective product is pseudo-zeroed by the signal processor 14, the amplified output becomes a comparison signal with a non-defective product, and the comparative detection of non-defective products and defective products can be performed accurately and easily. be able to.

実験例2 第7図(A)、(B)に示すような被検出構造物として
の複合材35の空洞部36および剥離部37の検出を以
下の条件の下で行った。
Experimental Example 2 Detection of a cavity 36 and a peeled part 37 of a composite material 35 as a structure to be detected as shown in FIGS. 7(A) and 7(B) was performed under the following conditions.

音響発生器20:開口径5cm、円形スピーカ、インピ
ーダンス8Ω 周波数: 1.4KIIZ、相対増幅度+ 26dB複
合材35の表面に音響発生器20を押圧して密着しつつ
、81〜S5の順に走査したX、Y出力の内、SlとS
5のX、Y出力波形を第8図(A)、(B)にそれぞれ
示す。同図(A)と比較して同図(B)の出力波形では
、出力レベルが大幅に低下している部分と、やや低下し
ている部分を見出だした。この出力レベルが大幅に低下
している部分が空洞部36の存在を、やや低下している
部分が剥離部37の存在をそれぞれ表していることで、
それらを充分に検出できた。
Sound generator 20: Opening diameter 5 cm, circular speaker, impedance 8Ω Frequency: 1.4 KIIZ, relative amplification +26 dB While pressing the sound generator 20 into close contact with the surface of the composite material 35, scanning was performed in the order of 81 to S5. Of the X and Y outputs, Sl and S
The X and Y output waveforms of No. 5 are shown in FIGS. 8(A) and 8(B), respectively. In the output waveform of FIG. 10(B) compared to FIG. 10(A), we found parts where the output level is significantly lower and parts where the output level is slightly lower. The part where the output level is significantly reduced indicates the presence of the cavity 36, and the part where the output level is slightly reduced indicates the presence of the peeled part 37.
We were able to fully detect them.

ここで、実験例2においては発信器11から上記周波数
と異なる第2の信号周波数を同時に送出することによっ
て、音響発生器20の接触面で生じる雑音(ドリフト雑
音)や気密の漏れ等による信号出力変化を相殺し、測定
精度を一段と高めることができる。これは、渦電流探傷
方式で使用される多重周波数方式と同様である。
Here, in Experimental Example 2, by simultaneously transmitting a second signal frequency different from the above frequency from the transmitter 11, signal output due to noise (drift noise) generated at the contact surface of the acoustic generator 20, airtight leakage, etc. It is possible to offset the changes and further improve measurement accuracy. This is similar to the multi-frequency method used in eddy current testing.

なお、上記実施例では被検出構造物としてゴルフクラブ
のカーボンヘッドや或いは新建材の複合材50を適用し
たか、本発明はこれに限定されることなく、その他いか
なる構造物にも適用可能である。
In the above embodiments, the carbon head of a golf club or the composite material 50 of a new building material was used as the structure to be detected, but the present invention is not limited thereto and can be applied to any other structure. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る構造物の欠陥検出方
法によれば、以下の効果を奏する。
As explained above, the method for detecting defects in structures according to the present invention provides the following effects.

(a)音響発生器を被検出構造物に密着させて欠陥を検
出するので、オイル等の流体を介在させることなく、被
検出構造物を汚損させることがない。
(a) Since defects are detected by bringing the acoustic generator into close contact with the structure to be detected, the structure to be detected is not contaminated without intervening fluid such as oil.

(b)音波周波数を使用することにより、被検出構造物
の深層まで、−点の測定面を広くして欠陥の検出が可能
である。
(b) By using the sonic frequency, it is possible to widen the measurement surface at the negative point and detect defects deep within the structure to be detected.

(C)振動による音響インピーダンスの変化を測定する
ため、被検出構造物は金属、非金属を問わず良品、不良
品の比較が容易に行うことができ、汎用性が著しく向上
する。
(C) Since the change in acoustic impedance due to vibration is measured, it is possible to easily compare good and defective structures regardless of whether the structure to be detected is metal or non-metal, and the versatility is significantly improved.

また、本発明に係る構造物の欠陥検出装置によれば、以
下の効果を奏する。
Moreover, according to the structure defect detection apparatus according to the present invention, the following effects are achieved.

■音響発生器に送出した音波信号で、被検出構造物から
の音響変化信号を位相検波することにより、雑音等の影
響を低減し検出精度を高めることができる。
(2) By phase-detecting the acoustic change signal from the detected structure using the sound wave signal sent to the acoustic generator, it is possible to reduce the effects of noise and improve detection accuracy.

■広い面の欠陥検出に際して、正確なスキャンニング機
構は不要となり、構造を簡略化させることができる。
■When detecting defects on a wide surface, an accurate scanning mechanism is not required, and the structure can be simplified.

さらに、音響発生器の開口縁に弾性体よりなる緩衝輪を
設けたので、音響発生器を一定の圧力で押圧したとき、
被検出構造物との気密性が高く保持され、測定条件が一
定となり検出精度を一段と向上させることができる。
Furthermore, since a buffer ring made of an elastic material is provided at the opening edge of the sound generator, when the sound generator is pressed with a constant pressure,
High airtightness with the structure to be detected is maintained, measurement conditions are kept constant, and detection accuracy can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る欠陥検出装置の一実施例を示すブ
ロック図、 第2図は第1図の装置による被検出構造物の欠陥検出状
態を示す説明図、 第3図(A)、(B)は第1図の音響発生器を示す斜視
図9分解斜視図、 第4図(A)、(B)は音響発生器の変更例を示す斜視
図9分解斜視図、 第5図(A)、(B)、(C)は実験例1で使用したゴ
ルフクラブのカーボンヘッドを示す斜視図、 第6図(A)、(B)、(C)は実験例1による実験結
果を示す出力波形図、 第7図(A)、(B)は実験例2において被検出構造物
としての複合材を示す正面図、断面図、第8図(A)、
(B)は実験例2による実験結果を示す出力波形図であ
る。 10・・・検出装置本体、11・・・発信器、12・・
・位相検波器、13・・・増幅器、14・・・信号処理
器、 15・・・X−Yレコーダ(記録・表示する手段)、2
0・・・音響発生器、21・・・振動板、22・・・緩
衝幅、30・・・被検出構造物。 出願人代理人  藤  本  博  光(A)(B) 第3図 第4図 36     (A)   3.7
FIG. 1 is a block diagram showing an embodiment of a defect detection device according to the present invention, FIG. 2 is an explanatory diagram showing a defect detection state of a structure to be detected by the device of FIG. 1, FIG. 3(A), (B) is a perspective view 9 an exploded perspective view showing the sound generator of FIG. A), (B), and (C) are perspective views showing the carbon head of the golf club used in Experimental Example 1. Figure 6 (A), (B), and (C) show the experimental results of Experimental Example 1. Output waveform diagram, Figures 7 (A) and (B) are front views and cross-sectional views showing the composite material as the detected structure in Experimental Example 2, Figure 8 (A),
(B) is an output waveform diagram showing experimental results according to Experimental Example 2. 10...Detection device main body, 11...Transmitter, 12...
・Phase detector, 13...Amplifier, 14...Signal processor, 15...X-Y recorder (recording/displaying means), 2
0: Sound generator, 21: Vibration plate, 22: Buffer width, 30: Detected structure. Applicant's agent Hiromitsu Fujimoto (A) (B) Figure 3 Figure 4 36 (A) 3.7

Claims (1)

【特許請求の範囲】 1、音響発生器に少なくとも1つの音波信号を与え、上
記音響発生器を被検出構造物の表面に密着するように一
定の圧力で押圧したとき、上記被検出構造物の構造変化
による音響インピーダンスの変化を測定し、被検出構造
物の構造変化を検出することを特徴とする構造物の欠陥
検出方法。 2、少なくとも1つの音波信号を発信する発信器と、被
検出構造物の表面に密着し上記発信器の音波信号を得て
被検出構造物の構造変化による音響インピーダンスの変
化を測定する音響発生器と、この音響発生器のインピー
ダンス変化信号を上記発信器と同一周波数にて位相検波
する手段と、上記音響インピーダンスの変化を記録・表
示する手段とを備えたことを特徴とする構造物の欠陥検
出装置。 3、音響発生器の開口縁に弾性体よりなる緩衝輪を設け
た請求項2記載の構造物の欠陥検出装置。
[Claims] 1. When at least one sound wave signal is applied to the acoustic generator and the acoustic generator is pressed with a constant pressure so as to come into close contact with the surface of the detected structure, the A method for detecting defects in a structure, characterized in that a structural change in a structure to be detected is detected by measuring a change in acoustic impedance due to a structural change. 2. A transmitter that emits at least one sound wave signal, and an acoustic generator that is in close contact with the surface of the structure to be detected and obtains the sound wave signal from the transmitter to measure changes in acoustic impedance due to structural changes of the structure to be detected. Detecting defects in a structure, comprising: a means for phase-detecting the impedance change signal of the acoustic generator at the same frequency as the transmitter; and a means for recording and displaying the change in acoustic impedance. Device. 3. A defect detection device for a structure according to claim 2, wherein a buffer ring made of an elastic body is provided at the edge of the opening of the acoustic generator.
JP32530490A 1990-11-29 1990-11-29 Detecting method for structure defect and detecting device thereof Pending JPH04198736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32530490A JPH04198736A (en) 1990-11-29 1990-11-29 Detecting method for structure defect and detecting device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32530490A JPH04198736A (en) 1990-11-29 1990-11-29 Detecting method for structure defect and detecting device thereof

Publications (1)

Publication Number Publication Date
JPH04198736A true JPH04198736A (en) 1992-07-20

Family

ID=18175324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32530490A Pending JPH04198736A (en) 1990-11-29 1990-11-29 Detecting method for structure defect and detecting device thereof

Country Status (1)

Country Link
JP (1) JPH04198736A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038781A1 (en) * 2006-09-29 2008-04-03 Tokyo Electron Limited Probe card and inspection device of minute structure
JP5005128B2 (en) * 1999-05-18 2012-08-22 メディガイド リミテッド Medical positioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005128B2 (en) * 1999-05-18 2012-08-22 メディガイド リミテッド Medical positioning system
WO2008038781A1 (en) * 2006-09-29 2008-04-03 Tokyo Electron Limited Probe card and inspection device of minute structure
JP2008089350A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Probe card and inspection device of microstructure
KR101013594B1 (en) * 2006-09-29 2011-02-14 도쿄엘렉트론가부시키가이샤 Probe card and microstructure inspecting apparatus

Similar Documents

Publication Publication Date Title
US5824908A (en) Non-contact characterization and inspection of materials using wideband air coupled ultrasound
JPH04265853A (en) Method and apparatus for identifying flaw depth in checking of tubular product
WO2006110089A1 (en) Method and apparatus for assessing quality of rivets using ultrasound
JP3725515B2 (en) Nondestructive inspection equipment
CN112432998B (en) Ultrasonic nondestructive testing method for bonding defect of rubber plate with acoustic cavity structure
US3550435A (en) Process and apparatus for the ultrasonic inspection of materials
JP2000241397A (en) Method and apparatus for detecting surface defect
JPH04198736A (en) Detecting method for structure defect and detecting device thereof
JP3709559B2 (en) Dry contact high frequency ultrasonic transmission method and apparatus therefor, and dry contact high frequency ultrasonic inspection method and apparatus therefor
JPH11118771A (en) Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
JPH06118068A (en) Nondestructive inspection device and method for material
JPS5821558A (en) Supersonic wave flaw detector for nonmetal
JPH08278293A (en) Method and device for nondestructive test for characteristicof processed material made of metal
JP2002544480A (en) Method and apparatus for checking adhesion between metal roll and elastic cover
JP4646012B2 (en) Nondestructive inspection equipment for concrete structures
KR20000060806A (en) Ultrasonic system for evaluating quality of fruits and vegetables
JPH07248317A (en) Ultrasonic flaw detecting method
JP2001255310A (en) Method and apparatus for ultrasonic flaw detection using burst wave
US20240125742A1 (en) Defect sizing combining fixed wavelength and variable wavelength guided waves
KR20180027274A (en) Non-destruction testing apparatus having effective detection distance measurement function
Lehmann et al. Contribution to the qualification of air-coupled ultrasound as non-destructive, automated test method for spot welds in the car body shop
KR20240006258A (en) acoustic resonance sensor apparatus for detecting crack defects in ground switch busing
JP2006084305A (en) Material defect detecting method and device
RU2613567C1 (en) Method for ultrasonic nondestructive inspection
CN115754000A (en) Method and device for detecting bonding quality of dual-track composite material