JPH0419659B2 - - Google Patents

Info

Publication number
JPH0419659B2
JPH0419659B2 JP2680081A JP2680081A JPH0419659B2 JP H0419659 B2 JPH0419659 B2 JP H0419659B2 JP 2680081 A JP2680081 A JP 2680081A JP 2680081 A JP2680081 A JP 2680081A JP H0419659 B2 JPH0419659 B2 JP H0419659B2
Authority
JP
Japan
Prior art keywords
insulator
filament
sealing body
auxiliary sealing
cup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2680081A
Other languages
Japanese (ja)
Other versions
JPS57143247A (en
Inventor
Masao Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2680081A priority Critical patent/JPS57143247A/en
Publication of JPS57143247A publication Critical patent/JPS57143247A/en
Publication of JPH0419659B2 publication Critical patent/JPH0419659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/14Leading-in arrangements; Seals therefor

Landscapes

  • Microwave Tubes (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Description

【発明の詳細な説明】 本発明はマグネトロンに関するものである。[Detailed description of the invention] The present invention relates to magnetrons.

第1図は従来のマグネトロンの1例を示すもの
で、フイラメント1の両端はエンドシールド2,
3を介してフイラメントサポート4,5に支持さ
れており、フイラメントサポート4,5は真空容
器を形成する絶縁物6を貫通し金属ワツシヤ7を
介して絶縁物6にろう付けされている。またフイ
ラメント1の周囲には放射状に配列された複数個
のベイン8とこれらを保持する陽極円筒9などか
らなる陽極が配設されている。前記ベイン8はス
トラツプリング10,11により1枚おきに電気
的に接続されている。そして、ベイン8の1つに
は出力導体12が接続されており、作用空間に発
生したマイクロ波エネルギーを出力放射窓13を
通して負荷回路に放射させるようになつている。
また陽極円筒9の上下端には作用空間に集束磁界
を供給するための磁極14,15が固着され、更
に磁極14,15はリング16,17を介してそ
れぞれ出力放射窓13、絶縁物6にろう付け封着
され、真空容器を形成している。
Figure 1 shows an example of a conventional magnetron, in which a filament 1 has end shields 2,
The filament supports 4 and 5 are supported by filament supports 4 and 5 via metal washers 7, which pass through an insulator 6 forming a vacuum container and are brazed to the insulator 6 via metal washers 7. Further, an anode consisting of a plurality of radially arranged vanes 8 and an anode cylinder 9 for holding them is disposed around the filament 1. Every other vane 8 is electrically connected by strap rings 10 and 11. An output conductor 12 is connected to one of the vanes 8, and the microwave energy generated in the working space is radiated to the load circuit through the output radiation window 13.
Further, magnetic poles 14 and 15 are fixed to the upper and lower ends of the anode cylinder 9 for supplying a focused magnetic field to the working space, and the magnetic poles 14 and 15 are connected to the output radiation window 13 and the insulator 6 through rings 16 and 17, respectively. It is soldered and sealed to form a vacuum container.

ところで、前記フイラメント1は安定した電子
放射が得られ易いことから表面層が炭化されたト
リウム入りタングステンが使用されており、動作
温度は1700〜1800℃の高温である。従つて、フイ
ラメント1を支持するエンドシールド2,3およ
びフイラメントサポート4,5も高い温度で使用
できる素材からなることが必要であり、一般にモ
リブデン(Mo)が用いられている。またMoよ
りなるフイラメントサポート4,5は高い信頼性
をもつてセラミツクよりなる絶縁物6にろう付け
封着することが困難であるので、前記金属ワツシ
ヤ7にはセラミツク絶縁物に近い膨張係数を有す
るコバール(Fe−Ni−Co合金)が用いられてい
る。
By the way, the filament 1 is made of thorium-containing tungsten with a carbonized surface layer because it is easy to obtain stable electron emission, and its operating temperature is as high as 1700 to 1800°C. Therefore, the end shields 2, 3 and filament supports 4, 5 that support the filament 1 must also be made of a material that can be used at high temperatures, and molybdenum (Mo) is generally used. Furthermore, since it is difficult to reliably braze and seal the filament supports 4 and 5 made of Mo to the insulator 6 made of ceramic, the metal washer 7 has an expansion coefficient close to that of the ceramic insulator. Kovar (Fe-Ni-Co alloy) is used.

このように、フイラメントサポート4,5は絶
縁物6を貫通して長く形成されているので、Mo
のような高価な高融点金属を多く必要とする。ま
たMoは銀ろうとの濡れ性が悪く、信頼性の高い
ろう付けが困難である。更にMoは脆い材質であ
るので、棒状あるいは線状に加工する際、表面お
よび内部に欠陥が生じ易く、前記の如くフイラメ
ントサポート4,5が真空容器内外に貫通してい
ると、前記欠陥により真空リークを生じ易い。ま
た金属ワツシヤ7はFe−Ni−Coのような高価で
一般性のない金属を使用しなければならない。更
に絶縁物6とワツシヤ7、ワツシヤ7とフイラメ
ントサポート4,5をそれぞれ相互に銀ろう付け
するので、高価な銀ろう材を多量に必要とすると
共に、封着構造が複雑となり、真空リークを生じ
易い、などの種々の欠点を有する。
In this way, since the filament supports 4 and 5 are formed long enough to penetrate the insulator 6,
Requires a large amount of expensive high-melting point metals such as Furthermore, Mo has poor wettability with silver solder, making it difficult to perform reliable brazing. Furthermore, since Mo is a brittle material, defects are likely to occur on the surface and inside when it is processed into rods or wires.If the filament supports 4 and 5 penetrate inside and outside the vacuum vessel as described above, the defects will cause the vacuum to fail. Easy to cause leaks. Furthermore, the metal washer 7 must be made of an expensive and uncommon metal such as Fe--Ni--Co. Furthermore, since the insulator 6 and the washer 7 and the washer 7 and the filament supports 4 and 5 are each soldered with silver, a large amount of expensive silver brazing material is required, the sealing structure is complicated, and vacuum leaks occur. It has various disadvantages such as being easy to use.

本発明は上記従来技術の欠点に鑑みなされたも
ので、経済的で信頼性の高いマグネトロンを提供
することを目的とする。
The present invention was made in view of the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide an economical and highly reliable magnetron.

以下、本発明を図示の実施例により説明する。 Hereinafter, the present invention will be explained with reference to illustrated embodiments.

第2図は本発明になるマグネトロンの一実施例
を示す断面図である。なお、第1図と同じ部材に
は同一符号を付しその説明を省略する。フイラメ
ントサポート20,21はセラミツク絶縁体6を
貫通しない短い長さに形成され、このフイラメン
トサポート20,21の端部に絶縁体6を貫通し
たFe材よりなる補助封着体22がプラズマ溶接、
突当抵抗溶接などにより固着されている。前記補
助封着体22にはフランジ部22aが形成され、
更にこのフランジ部22aには絶縁体6に対応し
た面が約0.4mm程度の薄肉よりなるカツプ状部2
2bが一体塑性加工により形成されている。そし
て、カツプ状部22bの先端はメタライズされた
アルミナセラミツク絶縁物6にろう付けされてい
る。
FIG. 2 is a sectional view showing an embodiment of the magnetron according to the present invention. Note that the same members as in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted. The filament supports 20 and 21 are formed with a short length that does not penetrate the ceramic insulator 6, and an auxiliary sealing body 22 made of Fe material that penetrates the insulator 6 is attached to the end of the filament supports 20 and 21 by plasma welding.
It is fixed by butt resistance welding, etc. A flange portion 22a is formed on the auxiliary sealing body 22,
Further, this flange portion 22a has a cup-shaped portion 2 whose surface corresponding to the insulator 6 has a thin wall of about 0.4 mm.
2b is formed by integral plastic working. The tip of the cup-shaped portion 22b is brazed to the metallized alumina ceramic insulator 6.

さて、フイラメント1の動作温度は高温である
が、フイラメントサポート20,21は管外へ向
つて低下する温度勾配を有しており、絶縁体6の
近傍は十分低い温度であるので、補助封着体22
の材質としてFeなどの低い融点の金属を用いる
ことができる。またセラミツク絶縁体6とFeよ
りなる補助封着体22とでは膨張係数が異なる
が、補助封着体22の封着部を薄肉のカツプ状部
22bとすることにより、塑性による応力緩和が
行なえる。
Now, the operating temperature of the filament 1 is high, but the filament supports 20 and 21 have a temperature gradient that decreases toward the outside of the tube, and the temperature near the insulator 6 is sufficiently low. body 22
A metal with a low melting point such as Fe can be used as the material. Furthermore, although the ceramic insulator 6 and the auxiliary sealing body 22 made of Fe have different expansion coefficients, by forming the sealing portion of the auxiliary sealing body 22 into a thin cup-shaped portion 22b, stress relaxation due to plasticity can be achieved. .

このように、フイラメントサポート20,21
は絶縁体6を貫通しない短い長さよりなるので、
Moのような高価な高融点の金属の使用量を減す
ことができる。また補助封着体22は安価な鉄よ
りなるので、塑性加工が容易で封着し易い形状に
一体加工することができ、第1図における高価で
かつ高融点のワツシヤ7を省略できると共に、延
性、展性などがMOよりも優れており、加工時に
表面および内部に欠陥を生じることがなく、真空
封着の信頼性が向上する。またフイラメントサポ
ート20,21と補助封着体22は溶接などによ
り固着でき、その作業は容易でかつ高価なろう材
を必要としない。さらに本願発明は補助封着体と
してFeなどの加工特性に優れた材料を使用でき
るため、第2図におけるフランジ部22a、カツ
プ状部22bをプレス加工等により補助封着体と
一体に加工出来るという特徴を有す。したがつて
本願発明によれば、カツプ状部を別に製作して補
助封着体に接合する場合に比し、接合部での真空
リークに対する信頼性がはるかに向上する。
In this way, filament supports 20, 21
is a short length that does not penetrate the insulator 6, so
The amount of expensive high-melting point metals such as Mo can be reduced. Further, since the auxiliary sealing body 22 is made of inexpensive iron, it can be integrally processed into a shape that is easy to plastically work and is easy to seal, and the expensive and high melting point washer 7 shown in FIG. , malleability, etc. are superior to MO, and there are no defects on the surface or inside during processing, improving the reliability of vacuum sealing. Furthermore, the filament supports 20, 21 and the auxiliary sealing body 22 can be fixed together by welding or the like, which is an easy operation and does not require an expensive brazing material. Furthermore, since the present invention allows the use of materials with excellent processing properties such as Fe as the auxiliary sealing body, the flange portion 22a and cup-shaped portion 22b in FIG. 2 can be integrally processed with the auxiliary sealing body by press working or the like. It has characteristics. Therefore, according to the present invention, reliability against vacuum leaks at the joint is much improved compared to the case where the cup-shaped part is manufactured separately and joined to the auxiliary sealing body.

第3図は本発明になるマグネトロンの他の実施
例を示す要部断面図である。前記実施例は絶縁体
6の外側で補助封着体22を封着したが、本実施
例は内側で封着したもので、このようにしても前
記実施例と同等の効果を有する。
FIG. 3 is a sectional view of a main part showing another embodiment of the magnetron according to the present invention. In the above embodiment, the auxiliary sealing body 22 was sealed on the outside of the insulator 6, but in this embodiment, the auxiliary sealing body 22 was sealed on the inside, and even in this case, the same effect as in the above embodiment can be obtained.

なお、上記実施例においては補助封着体22の
材質Feの場合について説明したが、Moよりも低
い融点の金属で絶縁体6の周囲の温度に耐えるも
のであれば特に限定されなく、例えばFe−Ni合
金でもよい。また補助封着体22と絶縁体6との
膨張係数が大きい場合は、前記したように補助封
着体22に薄肉のカツプ状部22bを形成するこ
とにより封着が容易に行なえるが、補助封着体2
2にFe−Ni合金を用いる場合は、特にカツプ状
部22bを設けなく、平らなフランジ部22aの
みを形成し、このフランジ部22aを封着するよ
うにしてもよい。また上記実施例においては、フ
イラメント1をエンドシールド2,3を介してフ
イラメントサポート4,5で支持したがフイラメ
ントサポートの先端部を折曲げ、この折曲げ部で
直接フイラメントを支持するようにしてもよい。
In the above embodiment, the material of the auxiliary sealing body 22 is Fe, but there is no particular limitation as long as it is a metal with a melting point lower than that of Mo and can withstand the temperature around the insulator 6. For example, Fe may be used. -Ni alloy may be used. Further, when the expansion coefficient of the auxiliary sealing body 22 and the insulator 6 is large, sealing can be easily performed by forming the thin cup-shaped portion 22b on the auxiliary sealing body 22 as described above. Sealed body 2
When Fe-Ni alloy is used for 2, the cup-shaped portion 22b may not be provided, only a flat flange portion 22a may be formed, and this flange portion 22a may be sealed. Further, in the above embodiment, the filament 1 is supported by the filament supports 4 and 5 via the end shields 2 and 3, but it is also possible to bend the tip of the filament support and directly support the filament with this bent part. good.

以上の説明から明らかな如く、本発明になるマ
グネトロンによれば、次のような種々の優れた効
果が得られる。
As is clear from the above description, the magnetron according to the present invention provides the following various excellent effects.

(1) Moなどの高価な高融点金属の使用量を減す
ことができる。
(1) The amount of expensive high-melting point metals such as Mo can be reduced.

(2) Mo、Wなどの延性、展性の低い素材におい
て生じい易いわれなど表面および内部の欠陥に
よる真空リークの発生を防止できる。
(2) It is possible to prevent vacuum leaks due to surface and internal defects such as cracks, which tend to occur in materials with low ductility and malleability such as Mo and W.

(3) 高融点金属をセラミツクなどの絶縁物にろう
付け封着する際の高価でかつ一般性のない素材
による金属ワツシヤの使用を省略でき、封着部
分の構造が単純化され、封着の信頼性が増す。
(3) When brazing and sealing high-melting point metals to insulating materials such as ceramics, it is possible to omit the use of metal washers made of expensive and uncommon materials, simplifying the structure of the sealing part, and improving the sealing process. Increases reliability.

(4) 補助封着体には塑性加工容易な材質が選定で
きるので、封着部に薄肉加工を施すことによ
り、絶縁物と膨張係数が異なる例えばFeなど
の安価な金属を使用しても十分に高い封着部の
信頼性が得られる。
(4) Since it is possible to select a material that is easily plastically processed for the auxiliary sealing body, by applying thin wall processing to the sealing part, it is possible to use an inexpensive metal such as Fe, which has a different coefficient of expansion than the insulator. High reliability of the sealing part can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のマグネトロンの断面図、第2図
は本発明になるマグネトロンの一実施例を示す断
面図、第3図は本発明になるマグネトロンの他の
実施例を示す要部断面図である。 1……フイラメント、2,3……エンドシール
ド、6……絶縁体、20,21……フイラメント
サポート、22……補助封着体、22a……フラ
ンジ部、22b……カツプ状部。
Fig. 1 is a sectional view of a conventional magnetron, Fig. 2 is a sectional view showing one embodiment of the magnetron according to the present invention, and Fig. 3 is a sectional view of essential parts showing another embodiment of the magnetron according to the invention. be. DESCRIPTION OF SYMBOLS 1... Filament, 2, 3... End shield, 6... Insulator, 20, 21... Filament support, 22... Auxiliary sealing body, 22a... Flange part, 22b... Cup-shaped part.

Claims (1)

【特許請求の範囲】[Claims] 1 フイラメントの両端部をエンドシールドを介
してまたは直接フイラメントサポートにより支持
したマグネトロンにおいて、前記フイラメントサ
ポートよりも低い融点の材質で、その一端が真空
容器内において前記フイラメントサポートと接合
し、かつ真空容器を形成する絶縁体に封着される
補助封着体を有し、前記補助封着体は前記絶縁物
との封着部において前記補助封着体と一体に形成
されたフランジ部を有し、前記フランジ部には、
前記絶縁物との対応した面は、0.4mm以下の肉厚
よりなるカツプ状部が形成されていることを特徴
とするマグネトロン。
1. In a magnetron in which both ends of a filament are supported via an end shield or directly by a filament support, one end of the material is made of a material with a lower melting point than the filament support, and one end thereof is joined to the filament support in a vacuum vessel, and the vacuum vessel is an auxiliary sealing body that is sealed to the insulator to be formed; the auxiliary sealing body has a flange portion integrally formed with the auxiliary sealing body at a sealing portion with the insulator; In the flange part,
A magnetron characterized in that a cup-shaped portion having a wall thickness of 0.4 mm or less is formed on a surface corresponding to the insulator.
JP2680081A 1981-02-27 1981-02-27 Magnetron Granted JPS57143247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2680081A JPS57143247A (en) 1981-02-27 1981-02-27 Magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2680081A JPS57143247A (en) 1981-02-27 1981-02-27 Magnetron

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2060941A Division JPH0610959B2 (en) 1990-03-14 1990-03-14 Magnetron

Publications (2)

Publication Number Publication Date
JPS57143247A JPS57143247A (en) 1982-09-04
JPH0419659B2 true JPH0419659B2 (en) 1992-03-31

Family

ID=12203380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2680081A Granted JPS57143247A (en) 1981-02-27 1981-02-27 Magnetron

Country Status (1)

Country Link
JP (1) JPS57143247A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673275B2 (en) * 1985-09-03 1994-09-14 株式会社東芝 Magnetron for microwave oven
JPH0752626B2 (en) * 1985-10-25 1995-06-05 株式会社東芝 Magnetron for microwave oven
JPS62191052U (en) * 1986-05-26 1987-12-04

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132075A (en) * 1975-05-13 1976-11-16 Toshiba Corp Magnetron
JPS5360159A (en) * 1976-11-10 1978-05-30 Matsushita Electronics Corp Magnetron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120660U (en) * 1975-03-27 1976-09-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132075A (en) * 1975-05-13 1976-11-16 Toshiba Corp Magnetron
JPS5360159A (en) * 1976-11-10 1978-05-30 Matsushita Electronics Corp Magnetron

Also Published As

Publication number Publication date
JPS57143247A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
KR900001742B1 (en) Magnetron
US4746054A (en) Method of joining concentric cylinders
JP2690901B2 (en) Magnetron
US4019080A (en) Vacuum-tight seals between ceramic and aluminium components, evacuated envelopes incorporating the components sealed by said method, and vacuum tubes incorporating said envelopes
US2212556A (en) Method of manufacturing electric discharge tubes
JPH0419659B2 (en)
JPH02276136A (en) Magnetron
JP2761348B2 (en) Magnetron
US3204140A (en) Hot cathode electron tube
JPS58910Y2 (en) magnetron
JPS5842141A (en) Pierce type electron gun
JPS5810810B2 (en) electron tube
JPS59688Y2 (en) mcnetron
JPS6298537A (en) Magnetron for microwave oven
JPH0446362Y2 (en)
US3524098A (en) Aluminum anode power tube
JPS6129156Y2 (en)
US3211939A (en) Electron tube having close spaced electrodes and a bimetallic cathode
JP2708534B2 (en) Magnetron assembly method
JPH065197A (en) Magnetron
JP3039956B2 (en) Magnetron cathode assembly
JPH0432133A (en) Cathode support body structure of magnetron
JPH0423371B2 (en)
JPH0636691A (en) Magnetron for microwave oven
JP3353303B2 (en) Impregnated cathode structure