JPH04193041A - Power supply circuit - Google Patents

Power supply circuit

Info

Publication number
JPH04193041A
JPH04193041A JP2323767A JP32376790A JPH04193041A JP H04193041 A JPH04193041 A JP H04193041A JP 2323767 A JP2323767 A JP 2323767A JP 32376790 A JP32376790 A JP 32376790A JP H04193041 A JPH04193041 A JP H04193041A
Authority
JP
Japan
Prior art keywords
voltage
load
power supply
switch means
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2323767A
Other languages
Japanese (ja)
Inventor
Yoshitaka Haseba
長谷場 義隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Frontech Ltd
Original Assignee
Fujitsu Frontech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Frontech Ltd filed Critical Fujitsu Frontech Ltd
Priority to JP2323767A priority Critical patent/JPH04193041A/en
Publication of JPH04193041A publication Critical patent/JPH04193041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

PURPOSE:To backup a load by bringing first and second capacitors, connected in parallel with the load, continuously into charged state so long as a voltage is fed from a voltage supply and connecting the first and second capacitors in series and inserting in parallel with the load upon interruption of voltage supply to the load. CONSTITUTION:When a voltage supply is interrupted and voltage Vcc is not fed from the voltage supply to input terminals T1, T2, a voltage detecting circuit 3 turns first switching means 2, 2', second switching means 6, 6' and third switching means 7, 7' 'OFF' while turns a fourth switching means 9 'ON'. Consequently, a series circuit of a first super capacitor 5, fourth switching means 9, 9' and a second super capacitor 8 is inserted in parallel with a load 4 and thereby a total voltage of 10V, which is the sum of 5V voltages across the first and second super capacitors, is applied on the voltage detecting circuit 3 thus charging the voltage detecting circuit 3.

Description

【発明の詳細な説明】 〔概   要〕 コンデンサの放電電流を用いて電源補償を行うようにし
た電源回路に関し、 電圧源遮断時に極めて簡単な構成で電圧検出回路を駆動
するに充分な電圧を供給し、負荷のバックアップを行う
ことのできる電源回路を提供することを目的とし、 ハンディターミナル等の負荷を駆動するための電源回路
において、前記負荷に対し並列に接続された第1及び第
2のコンデンサを有し、通常の状態では電圧源を介して
前記第1及び第2のコンデンサを充電すると共に前記負
荷を駆動し、前記電圧源から前記負荷への電圧遮断時に
は前記第1及び第2コンデンサを直列に切換えて該負荷
に該第1及び第2のコンデンサの放電電圧を供給するよ
うに構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a power supply circuit that performs power supply compensation using the discharge current of a capacitor, and supplies sufficient voltage to drive a voltage detection circuit with an extremely simple configuration when the voltage source is cut off. The purpose of this invention is to provide a power supply circuit capable of backing up a load, and in a power supply circuit for driving a load such as a handy terminal, first and second capacitors are connected in parallel to the load. In a normal state, the first and second capacitors are charged via the voltage source and the load is driven, and when the voltage is cut off from the voltage source to the load, the first and second capacitors are charged. The capacitors are configured to switch in series to supply the discharge voltages of the first and second capacitors to the load.

[産業上の利用分野] 本発明は、負荷をバックアップするための電源回路に係
り、更に詳しくはコンデンサの放電電流を用いて電源補
償を行うようにした電源回路に関する。
[Industrial Application Field] The present invention relates to a power supply circuit for backing up a load, and more particularly to a power supply circuit in which power supply compensation is performed using discharge current of a capacitor.

〔従来の技術〕[Conventional technology]

従来のハンディターミナル等ではこれら電子機器内のメ
モリに格納されているデータを電圧源遮断時にバックア
ップするように電源回路を構成させている。電源遮断状
態は電池を充電するために交換する場合、或いは衝撃等
で電池を落とした場合等があり、通常は数ミリ秒の間バ
ックアップしている。
In conventional handheld terminals and the like, power supply circuits are configured to back up data stored in memory within these electronic devices when the voltage source is cut off. The power is cut off when the battery is replaced to charge it, or when the battery is dropped due to an impact, etc., and normally the backup is for several milliseconds.

第3図は従来のこのようなバックアップ機能を持った電
源回路1の系統図を示すものである。
FIG. 3 shows a system diagram of a conventional power supply circuit 1 having such a backup function.

第3図で入力端子T1及びT2には図示しない電圧源か
らVcc=5Vの電圧が供給される。入力端子T、はホ
ット側、入力端子T2はグランド側であり、入力端子T
、、T2間ムこ並列にハンディターミナル等のメモリや
各回路等の負荷4が接続されている。更に電気二重層コ
ンデンサ(以下、スーパーコンデンサと記す)5と第2
のスイッチ手段6の直列回路が負荷4に並列に接続され
、入力端子T、、T2と直列に第1のスイッチ手段2と
電圧検出回路3並び乙こ負荷4が直列接続されている。
In FIG. 3, a voltage of Vcc=5V is supplied to input terminals T1 and T2 from a voltage source (not shown). Input terminal T is on the hot side, input terminal T2 is on the ground side, and input terminal T is on the hot side.
A load 4 such as a memory such as a handy terminal or each circuit is connected in parallel between T2. Furthermore, an electric double layer capacitor (hereinafter referred to as super capacitor) 5 and a second
A series circuit of the switch means 6 is connected in parallel to the load 4, and the first switch means 2, the voltage detection circuit 3, and the second load 4 are connected in series with the input terminals T, T2.

上述の構成における動作を第4図と共乙こ説明すると、
入力端子T3.T2間に電圧源からVCC−5■の電圧
が供給されている時には電圧検出回路3は第1及び第2
のスイッチ手段2.6を“オン゛′状態に制御し、更に
負荷4に定電流を供給するように構成されている。
The operation in the above configuration will be explained with reference to Fig. 4.
Input terminal T3. When a voltage of VCC-5■ is supplied from the voltage source between T2, the voltage detection circuit 3
The switch means 2.6 is controlled to be in the "on" state, and further a constant current is supplied to the load 4.

通常の通電期間では、入力端子T1.T2間にVcc=
5の電圧が供給されている(第4図A参照)ために電圧
検出回路3は第1及び第2のスイッチ手段2.6を“′
オン°”状態に保持させる。このためにスーパーコンデ
ンサ5は第1及び第2のスイッチ手段2,6を介して第
4図Bに示すように充電状態にあり負荷4へ定電圧を供
給している。次に何らかの原因で入力端子TI、T2に
VCCの電圧が供給されなくなる電圧源遮断状態になる
と、電圧検出回路3は第1のスイッチ手段2を“オフ″
゛状態にすることでスーパーコンデンサ5は放電を開始
する(第4図B参照)。その結果、スーパーコンデンサ
5の放電電流は電圧検出回路3を介して負荷に供給され
るため、所定期間、負荷のメモリ等をバンクアップする
ことができる。
During the normal energization period, input terminal T1. Vcc= between T2
5 (see FIG. 4A), the voltage detection circuit 3 switches the first and second switch means 2.6 to "'".
To this end, the supercapacitor 5 is in a charged state and supplies a constant voltage to the load 4 via the first and second switch means 2 and 6 as shown in FIG. 4B. Next, when a voltage source cutoff state occurs in which the voltage of VCC is not supplied to the input terminals TI and T2 for some reason, the voltage detection circuit 3 turns the first switch means 2 "off".
The super capacitor 5 starts discharging when the super capacitor 5 is brought into the state (see FIG. 4B). As a result, the discharge current of the supercapacitor 5 is supplied to the load via the voltage detection circuit 3, so that the memory of the load can be banked up for a predetermined period of time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の第3図に示す構成の電源回路によると、スーパー
コンデンサ5を用いて簡単に所定時間、負荷4のメモリ
等をパックアンプさせることができるが、電圧源遮断時
に電圧検出回路3を介して負荷4をスーパーコンデンサ
5の放電電流で駆動する際に電圧検出回路3を駆動でき
なくなる問題があった。
According to the power supply circuit configured as shown in FIG. There was a problem in that when the load 4 was driven by the discharge current of the super capacitor 5, the voltage detection circuit 3 could not be driven.

即ち、電圧検出回路3は定電流源やスイッチ手段2.6
等を制御する制御回路を含むICで構成されているが、
スーパーコンデンサ5内の内部抵抗等で電圧検出回路3
を駆動するだめの例えばV6.−5±0.5Vと同程度
の電圧を供給することができなくなるために負荷4のハ
ックアップを行うことができなくなる問題があった。
That is, the voltage detection circuit 3 includes a constant current source and switching means 2.6.
It is composed of an IC that includes a control circuit that controls the
Voltage detection circuit 3 with internal resistance etc. in super capacitor 5
For example, V6. There was a problem in that it became impossible to hack up the load 4 because it became impossible to supply a voltage equivalent to -5±0.5V.

勿論スーパーコンデンサ5の容量や耐圧等を適当に選択
してのことである。
Of course, this is done by appropriately selecting the capacity, withstand voltage, etc. of the supercapacitor 5.

本発明は、電圧源遮断時に極めて簡単な構成で電圧検出
回路を駆動するに充分な電圧を供給し、負荷のバックア
ップを行うことのできる電源回路を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a power supply circuit capable of supplying sufficient voltage to drive a voltage detection circuit with an extremely simple configuration and backing up a load when the voltage source is cut off.

[課題を解決するための手段] 本発明の電源回路の課題は、ハンディターミナル等の負
荷4を駆動するための電源回路において、負荷4に対し
並列に接続された第1及び第2のコンデンサ5.8を有
し、通常の状態では電圧源を介して第1及び第2のコン
デンサ5,8を充電すると共に負荷4を駆動し、電圧源
から負荷4への電圧遮断時には第1及び第2のコンデン
サ5,8を直列に切換えて負荷4に第1及び第2のコン
デンサ5,8の放電電圧を供給するようにして成ること
を特徴とする電源回路lによって達成される。
[Means for Solving the Problems] The problem with the power supply circuit of the present invention is that in a power supply circuit for driving a load 4 such as a handy terminal, first and second capacitors 5 connected in parallel to the load 4 .8, which charges the first and second capacitors 5 and 8 through the voltage source and drives the load 4 in a normal state, and when the voltage is cut off from the voltage source to the load 4, the first and second capacitors This is achieved by a power supply circuit l characterized in that the capacitors 5 and 8 are switched in series to supply the discharge voltage of the first and second capacitors 5 and 8 to the load 4.

〔作   用] 本発明の電源回路1は負荷4に電圧源から電圧が供給さ
れている間は負荷に並列に接続された第1及び第2のコ
ンデンサを常時充電状態と成し、負荷4への電圧供給が
遮断された時には第1及び第2のコンデンサを直列に接
続し、負荷4に並列に挿入させるように構成させたので
負荷のメモリ等を所定時間充分二こバックアップさせる
ことが出来る電源回路lが得られる。
[Function] The power supply circuit 1 of the present invention keeps the first and second capacitors connected in parallel to the load in a charged state at all times while the load 4 is supplied with voltage from the voltage source. When the voltage supply is cut off, the first and second capacitors are connected in series and inserted in parallel to the load 4, so the power supply can sufficiently back up the memory, etc. of the load for a predetermined period of time. A circuit l is obtained.

〔実  施  例〕〔Example〕

以下、本発明の電源回路を第1図及び第2図についで詳
記する。
Hereinafter, the power supply circuit of the present invention will be described in detail with reference to FIGS. 1 and 2.

尚、第3図との対応部分には同一符号を付して示しであ
る。
Note that parts corresponding to those in FIG. 3 are designated by the same reference numerals.

第1図は本発明の電源回路1の原理的構成図、第2図は
本発明の電源回路1の具体的な回路構成図である。先ず
第1図によって本発明を説明する。
FIG. 1 is a fundamental block diagram of a power supply circuit 1 of the present invention, and FIG. 2 is a concrete circuit diagram of the power supply circuit 1 of the present invention. First, the present invention will be explained with reference to FIG.

同図でT1.T2はそれぞれホット及びグランド側の入
力端子を示すもので、図示しない電圧源からVcc=5
程度の電圧が供給される。
In the same figure, T1. T2 indicates the hot and ground side input terminals, respectively, and is connected to Vcc=5 from a voltage source (not shown).
Approximate voltage is supplied.

入力端子T、、T2間には並列にハンディターミナル等
の負荷が接続されている。この負荷4は第1のスイッチ
手段2と電圧検出回路3の直列回路を介して入力端子T
I、T2に接続され、更に第1のスーパーコンデンサ5
と第2のスイッチ手段6の直列回路が負荷4に並列に接
続されている。
A load such as a handy terminal is connected in parallel between the input terminals T and T2. This load 4 is connected to the input terminal T via a series circuit of the first switch means 2 and the voltage detection circuit 3.
I, connected to T2, and further connected to the first supercapacitor 5
and a second switch means 6 are connected in parallel to the load 4.

即チ、第1のスーパーコンデンサ5の一端は第1のスイ
ッチ手段2と電圧検出回路3の接続中点に接続され、第
2のスイッチ手段6の一端は負荷4と入力端子T2との
接続中点に接続され、第1のスーパーコンデンサ5の他
端と第2のスイ・ンチ手段6の他端は直に接続されてい
る。
That is, one end of the first supercapacitor 5 is connected to the midpoint between the first switch means 2 and the voltage detection circuit 3, and one end of the second switch means 6 is connected between the load 4 and the input terminal T2. The other end of the first supercapacitor 5 and the other end of the second switching means 6 are directly connected.

更に、第3のスイッチ手段7と第2のスーパーコンデン
サ8の直列回路が入力端子T+ 、T2間に並列に接続
されている。即ち、第3のスイッチ手段7の一端は入力
端子T1に接続され、他端は第2のスーパーコンデンサ
8の他端に接続され、スーパーコンデンサ8の一端は入
力端子T2に接続され、結局箱3のスイッチ手段7と第
2のスーパーコンデンサ8の直列回路は負荷4に並列に
接続されている。本実施例では更に、第4のスイッチ手
段9の一端を第1のスーパーコンデンサ5と第2のスイ
ッチ手段6の接続中点に接続し、第4のスイッチ手段9
の他端を第2のスーパーコンデンサ8と第3のスイッチ
手段7の接続中点に接続する。更に第1乃至第3のスイ
ッチ手段2,6゜7.9は電圧検出回路3の制御出力に
よって゛オン°゛゛オフ“′制御が行えるように成され
ている。
Furthermore, a series circuit of a third switch means 7 and a second supercapacitor 8 is connected in parallel between the input terminals T+ and T2. That is, one end of the third switch means 7 is connected to the input terminal T1, the other end is connected to the other end of the second supercapacitor 8, and one end of the supercapacitor 8 is connected to the input terminal T2, so that the box 3 A series circuit of the switch means 7 and the second supercapacitor 8 is connected in parallel to the load 4. Further, in this embodiment, one end of the fourth switch means 9 is connected to the connection midpoint between the first supercapacitor 5 and the second switch means 6, and the fourth switch means 9
The other end is connected to the connection midpoint between the second supercapacitor 8 and the third switch means 7. Further, the first to third switch means 2, 6, 7, and 9 are configured to be turned on, turned off, and controlled by the control output of the voltage detection circuit 3.

第2図は第1図で示した第1乃至第4のスイッチ手段2
,6.7.9をトランジスタに置き換えて電気的スイッ
チング手段に構成させた具体的回路例であり、スイッチ
手段であるトランジスタには第1図と同一符号を付し、
この符号にダンシュを付して示している。他の構成は第
1図と同様なので詳細な説明は省略する。第1乃至第4
のスイッチ手段、即ちトランジスタ2’、6’、7’、
9’の各ベースに電圧検出回路3からのベース電圧を供
給することでトランジスタ2’、6’、7’。
FIG. 2 shows the first to fourth switch means 2 shown in FIG.
, 6.7.9 is replaced with a transistor to constitute an electrical switching means, and the transistor serving as the switching means is given the same reference numeral as in FIG.
This symbol is shown with a dash added. The other configurations are the same as those in FIG. 1, so detailed explanations will be omitted. 1st to 4th
switch means, namely transistors 2', 6', 7',
By supplying the base voltage from the voltage detection circuit 3 to each base of the transistors 2', 6', and 7'.

9′を“オン゛“オフパ制御する。9' is controlled "on" and "off".

上述の構成の動作を説明するに、入力端子TI。To explain the operation of the above configuration, input terminal TI.

T2に電圧源からVCC電圧が供給されているときは第
1のスイッチ手段2.2’、第2のスイッチ手段6.6
′並びに第3のスイッチ手段7.7′は“′オン°゛状
態に、第4のスイッチ手段9.9′は°“オフ”になる
ように電圧検出回路3は各スイッチ手段2.2’、6.
6’ 7.7’とコントロールする。よって■。C電圧
の例えば、5■の電圧は第1のスイッチ手段2.2′を
通して電圧検出回路3に供給され、電圧検出回路3は定
電圧を負荷4に供給する。同時に第1のスイッチ手段2
.2′と第1のスーパーコンデンサ5並びに第2のスイ
ッチ手段6.6′を介して第1のスーパーコンデンサ5
には電圧源からV cc ’= 5の電圧が充電される
。同様に第3のスイッチ手段7.7′と第2のスーパー
コンデンサ8の直列回路を介して入力端子T、、T2か
ら■。Cの電圧が供給されて、第2のスーパーコンデン
サ8にはVcc=5Vの電圧が充電される。
When the VCC voltage is supplied to T2 from the voltage source, the first switch means 2.2' and the second switch means 6.6
The voltage detection circuit 3 switches each switch means 2.2' so that the third switch means 7.7' and the third switch means 7.7' are turned on and the fourth switch means 9.9' is turned off. ,6.
6'7.7' and control. Therefore■. A voltage of, for example, 5cm of the C voltage is supplied to the voltage detection circuit 3 through the first switch means 2.2', and the voltage detection circuit 3 supplies a constant voltage to the load 4. At the same time the first switch means 2
.. 2' and the first supercapacitor 5 as well as the first supercapacitor 5 via the second switch means 6.6'.
is charged with a voltage of Vcc'=5 from a voltage source. Similarly, from the input terminals T, , T2 via a series circuit of a third switch means 7, 7' and a second supercapacitor 8; C is supplied, and the second supercapacitor 8 is charged with a voltage of Vcc=5V.

次に電圧源の電池を交換したり、充電させる際、或いは
電池を落として電圧源が遮断されて、電圧源から入力端
子T、、T2にVCC電圧が供給されなくなると、電圧
検出回路3は第1のスイッチ手段2.2’、第2のスイ
ッチ手段6.6′並びに第3のスイッチ手段7.7′を
°゛オフ状態にすると共に第4のスイッチ手段9を゛オ
ン”状態に切換える。よって、第1のスーパーコンデン
サ5と第4のスイッチ手段9.9′並びに第2のスーパ
ーコンデンサ8の直列回路が負荷4に並列に挿入され、
第1及び第2のスーパーコンデンサ5゜8に充電されて
いた各々5■の計10Vの電圧が電圧検出回路3に放電
されて供給される。勿論この場合、第1及び第2のスー
パーコンデンサ5.8の内部抵抗によるによる電圧鋒下
があるので実際には8〜9■の電圧が電圧検出回路3の
入力に供給されるので、電圧検出回路3を充分に駆動さ
せることが可能となる電圧検出回路3は8〜9■の電圧
を5■の定電圧(又は定電流)として負荷4に供給する
ことになる。尚、第2図で電圧検出回路3と入力端子T
3間を結ぶ破線で示すライン10は電圧源遮断後に電圧
源が復帰したことを電圧検出回路3が検知するために必
要なラインである。
Next, when replacing or charging the battery of the voltage source, or when the voltage source is cut off by dropping the battery and the VCC voltage is no longer supplied from the voltage source to the input terminals T, T2, the voltage detection circuit 3 The first switch means 2.2', the second switch means 6.6' and the third switch means 7.7' are turned off and the fourth switch means 9 is turned on. Therefore, a series circuit of the first supercapacitor 5, the fourth switch means 9,9' and the second supercapacitor 8 is inserted in parallel to the load 4,
The voltage of 10V in total, which is 5cm each, which had been charged in the first and second supercapacitors 5°8 is discharged and supplied to the voltage detection circuit 3. Of course, in this case, since there is a voltage drop due to the internal resistance of the first and second supercapacitors 5.8, a voltage of 8 to 9 cm is actually supplied to the input of the voltage detection circuit 3, so the voltage detection The voltage detection circuit 3, which can sufficiently drive the circuit 3, supplies a voltage of 8 to 9 square meters to the load 4 as a constant voltage (or constant current) of 5 square meters. In addition, in Fig. 2, the voltage detection circuit 3 and the input terminal T
A line 10 shown by a broken line connecting the three is a line necessary for the voltage detection circuit 3 to detect that the voltage source has been restored after the voltage source has been cut off.

以上説明したように、本発明の電源回路によればメモリ
のハックアンプを電圧源遮断時シこ有効に行い得ると共
に、電圧検出回路3を動作させて、負荷4を定電流駆動
することのできる電源回路を提供し得る。
As explained above, according to the power supply circuit of the present invention, memory hack amplification can be effectively performed when the voltage source is cut off, and the voltage detection circuit 3 can be operated to drive the load 4 at a constant current. A power circuit may be provided.

〔発明の効果〕〔Effect of the invention〕

本発明の電源回路によればリチウム電池等の高価なハッ
クアップ手段を必要とせず、且つ負荷に電圧検出回路3
を介して安定化電圧を供給できるのでバンクアップ時間
を長期化することも可能となり、電圧源遮断時に電圧検
出回路が動作しないことのない電源回路が得られる。
According to the power supply circuit of the present invention, there is no need for expensive hack-up means such as a lithium battery, and the voltage detection circuit 3 is connected to the load.
Since a stabilized voltage can be supplied via the voltage source, it is also possible to lengthen the bank-up time, and a power supply circuit that does not cause the voltage detection circuit to operate when the voltage source is cut off can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電源回路の一実施例を示す系統図、 第2図は本発明の電源回路の一実施例を示す回路図、 第3図は従来の電源回路の系統図、 第4図は第3図の動作波形図である。 l ・・・ 電源回路、 2.6,7.9  ・・・ スイッチ手段、3 ・・・
 電圧検出回路、 4 ・・・ 負荷、 5.8 ・・・ スーパーコンデンサ。 特許出願人   富士通機電株式会社 第3図 ヲ皮影図 第4図 /C:)
Fig. 1 is a system diagram showing an embodiment of the power supply circuit of the present invention; Fig. 2 is a circuit diagram showing an embodiment of the power supply circuit of the invention; Fig. 3 is a system diagram of a conventional power supply circuit; The figure is an operation waveform diagram of FIG. 3. l... Power supply circuit, 2.6, 7.9... Switch means, 3...
Voltage detection circuit, 4... Load, 5.8... Super capacitor. Patent applicant: Fujitsu Kiden Ltd. Figure 3 Sketch diagram Figure 4/C:)

Claims (1)

【特許請求の範囲】 ハンディターミナル等の負荷(4)を駆動するための電
源回路において、 前記負荷(4)に対し並列に接続された第1及び第2の
コンデンサ(5、8)を有し、 通常の状態では電圧源を介して前記第1及び第2のコン
デンサ(5、8)を充電すると共に前記負荷(4)を駆
動し、 前記電圧源から前記負荷(4)への電圧遮断時には前記
第1及び第2コンデンサ(5、8)を直列に切換えて該
負荷(4)に該第1及び第2のコンデンサ(5、8)の
放電電圧を供給するようにして成ることを特徴とする電
源回路。
[Claims] A power supply circuit for driving a load (4) such as a handy terminal, comprising first and second capacitors (5, 8) connected in parallel to the load (4). , Under normal conditions, the first and second capacitors (5, 8) are charged via the voltage source and the load (4) is driven, and when the voltage is cut off from the voltage source to the load (4), The first and second capacitors (5, 8) are switched in series to supply the discharge voltage of the first and second capacitors (5, 8) to the load (4). power supply circuit.
JP2323767A 1990-11-27 1990-11-27 Power supply circuit Pending JPH04193041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323767A JPH04193041A (en) 1990-11-27 1990-11-27 Power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323767A JPH04193041A (en) 1990-11-27 1990-11-27 Power supply circuit

Publications (1)

Publication Number Publication Date
JPH04193041A true JPH04193041A (en) 1992-07-13

Family

ID=18158401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323767A Pending JPH04193041A (en) 1990-11-27 1990-11-27 Power supply circuit

Country Status (1)

Country Link
JP (1) JPH04193041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851736A (en) * 1994-08-09 1996-02-20 Fujitsu Ten Ltd Power supply backup circuit
JP2009188862A (en) * 2008-02-08 2009-08-20 Ricoh Co Ltd Backup power supply circuit for real-time clock circuit, and semiconductor device
JP2010161840A (en) * 2009-01-06 2010-07-22 Hitachi Ltd Switching power supply device, power supply system, and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851736A (en) * 1994-08-09 1996-02-20 Fujitsu Ten Ltd Power supply backup circuit
JP2009188862A (en) * 2008-02-08 2009-08-20 Ricoh Co Ltd Backup power supply circuit for real-time clock circuit, and semiconductor device
JP2010161840A (en) * 2009-01-06 2010-07-22 Hitachi Ltd Switching power supply device, power supply system, and electronic device

Similar Documents

Publication Publication Date Title
US6969972B2 (en) Architecture for switching between an external and internal power source
EP0542365A1 (en) Over-discharge protection for rechargeable batteries
KR970031144A (en) SECONDARY BATTERY PACK
JPH0632231B2 (en) Improved low power dual mode CMOS bias voltage generator
KR20100032378A (en) Relay driving circuit and battery pack using same
JP3195555B2 (en) Charge / discharge control circuit
JP4491917B2 (en) Battery pack
JPH04193041A (en) Power supply circuit
US5825099A (en) Uninterruptible power supply circuit
JP2001169468A (en) Information processing device
JPS63151110A (en) Improved electric source for totem pole power switch
US6111365A (en) Fast starting, surge limited, electronic ballast
JP2799261B2 (en) Battery charge control device
JP2003079058A (en) Battery pack
JPH10247073A (en) Method of driving plasma display
KR910007226A (en) Driving circuit
JP2701266B2 (en) Electronics
JPH053634A (en) Battery charging and discharging circuit
CN219372086U (en) Power supply control circuit and terminal
JPH035040Y2 (en)
JPH0991046A (en) Rush current preventing circuit
JPH10320081A (en) Power supply switching circuit
JP2023017517A (en) Backup power supply device
JPH0919086A (en) Battery backup apparatus
JPH0588161U (en) Backup circuit