JPH04190830A - Removal of nitrogen oxide - Google Patents

Removal of nitrogen oxide

Info

Publication number
JPH04190830A
JPH04190830A JP2319521A JP31952190A JPH04190830A JP H04190830 A JPH04190830 A JP H04190830A JP 2319521 A JP2319521 A JP 2319521A JP 31952190 A JP31952190 A JP 31952190A JP H04190830 A JPH04190830 A JP H04190830A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
nitrogen oxide
nitrogen oxides
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2319521A
Other languages
Japanese (ja)
Other versions
JP2997033B2 (en
Inventor
Katsuji Abe
阿部 勝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2319521A priority Critical patent/JP2997033B2/en
Publication of JPH04190830A publication Critical patent/JPH04190830A/en
Application granted granted Critical
Publication of JP2997033B2 publication Critical patent/JP2997033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove nitrogen oxide even in an oxidizing atmosphere by generating a hydrogen ion on the anode surface of a solid electrolyte to move the same to the cathode surface thereof and reducing nitrogen oxide in gas to be treated by precipitated hydrogen. CONSTITUTION:Gas to be treated containing water and nitrogen oxide flowing from a nozzle 8 toward a nozzle 9 is brought into contact with a hydrogen ion conductive solid electrolyte 2 (e.g. a sintered body of a BaCeO3 powder or the like) having anode and cathode surfaces 4, 3 to which DC voltage is applied. At the same time, a hydrogen ion is generated on the anode surface 4 by the electrolytic oxidation of water and moved to the cathode surface 3 to be precipitated as hydrogen. Nitrogen oxide in the gas to be treated is reduced by this hydrogen. As a result, nitrogen oxide can be efficiently removed even in an oxidizing atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内燃機関や硝酸製造工場等から排出される排
気ガス中の窒素酸化物を効率良く浄化することかできる
方法に関する。     −(従来の技術) 自動車の内燃機関、硝酸製造工場なとより排出される排
気ガス中には、窒素酸化物の有害成分か含まれ、大気汚
染の要因となっている。そのため、この排気中の窒素酸
化物の除去か種々な方面で検討されている。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method that can efficiently purify nitrogen oxides in exhaust gas discharged from internal combustion engines, nitric acid manufacturing plants, etc. - (Prior Art) Exhaust gas emitted from internal combustion engines of automobiles, nitric acid manufacturing plants, etc. contains harmful components such as nitrogen oxides, which are a cause of air pollution. Therefore, various approaches are being considered to remove nitrogen oxides from the exhaust gas.

従来この窒素酸化物の除去方法として、触媒により行う
触媒除去法かある。この方法においては、触媒表面上で
窒素酸化物を吸着すると同時に還元して窒素と酸素とに
分解し、該酸素は、−酸化炭素、水素、アンモニウムガ
ス等の還元物質と反応することにより、窒素酸化物を除
去するものである。この窒素酸化物を除去する触媒とし
ては、アルミナ等の多孔質体からなる担体にパラジウム
、白金、ロジウムなとの貴金属を担持させた触媒が用い
られている。
As a conventional method for removing nitrogen oxides, there is a catalytic removal method using a catalyst. In this method, nitrogen oxides are adsorbed on the catalyst surface and simultaneously reduced and decomposed into nitrogen and oxygen. It removes oxides. As a catalyst for removing nitrogen oxides, a catalyst is used in which noble metals such as palladium, platinum, and rhodium are supported on a carrier made of a porous material such as alumina.

しかし、この触媒除去法において、−酸化炭素、水素、
アンモニアガス等の還元物質か含まれていない状態、あ
るいは過剰な酸素か含まれる状態、即ち、酸化雰囲気で
は、窒素酸化物の除去率は低い。これは、窒素酸化物の
解離により生成した酸素が、還元物質か含まれない状態
においては、還元されず、また、還元物質か含まれてい
ても、過剰の酸素か含まれる状態では、その還元物質と
過剰の酸素とか優先的に反応してしまい、窒素酸化物の
除去か進行しないためである。
However, in this catalyst removal method, -carbon oxide, hydrogen,
The removal rate of nitrogen oxides is low in an oxidizing atmosphere that does not contain reducing substances such as ammonia gas or contains excessive oxygen. This is because the oxygen produced by the dissociation of nitrogen oxides is not reduced in the absence of reducing substances, and even if the reducing substance is present, in the presence of excess oxygen, the oxygen is reduced. This is because the substances react preferentially with excess oxygen, and the removal of nitrogen oxides does not proceed.

例えば、自動車の排気ガス中において、燃料に対する空
気の割合(空燃比)が高くなると、未燃焼成分を完全燃
焼させるに必要な量よりも過剰な酸素か含まれるように
なり、このような酸素の多い状態は、前記のごとき、窒
素酸化物の除去は促進されない。
For example, when the ratio of air to fuel (air-fuel ratio) increases in automobile exhaust gas, it contains more oxygen than is necessary to completely burn unburned components. In the case of a large amount of nitrogen oxides, the removal of nitrogen oxides is not promoted as described above.

(発明の目的) 本発明は、上記従来の問題点を解消し、酸化雰囲気にお
いても、効率良く窒素酸化物を除去する方法を提供しよ
うとするものである。
(Object of the Invention) The present invention aims to solve the above-mentioned conventional problems and provide a method for efficiently removing nitrogen oxides even in an oxidizing atmosphere.

(発明の構成) 本発明の窒素酸化物の除去方法は、表面に直流電圧を印
加した陽極面と陰極面を有する水素イオン伝導性の固体
電解質体に、水および窒素酸化物を含有する被処理ガス
を接触させると同時に、前記陽極面で水の電解酸化によ
り水素イオンを発生させるとともに、該イオンを前記陰
極面に移動させ、水素として析出させるとともに、この
水素により前記被処理ガス中の窒素酸化物の還元を行う
ことを特徴とするものである。
(Structure of the Invention) The method for removing nitrogen oxides of the present invention involves applying a hydrogen ion conductive solid electrolyte body having an anode surface and a cathode surface to which a direct current voltage is applied to the surface of a hydrogen ion conductive solid electrolyte body containing water and nitrogen oxides to be treated. At the same time as the gas is brought into contact, hydrogen ions are generated by electrolytic oxidation of water on the anode surface, and the ions are moved to the cathode surface and precipitated as hydrogen, and the hydrogen oxidizes nitrogen in the gas to be treated. It is characterized by reducing things.

(発明の作用) 本発明の窒素酸化物除去方法は、前記窒素酸化物分解装
置の陽極面上で被処理ガス中の水を分解し、生成した水
素イオンを固体電解質体を介して陰極面へ移動し、水素
に還元する。陰極面上には窒素酸化物か吸着あるいは窒
素と酸素とに解離しているので、上記水素と吸着した窒
素酸化物あるいは解離した酸素とか反応し、窒素酸化物
から酸素が取り去られ、窒素酸化物の分解か進む。
(Operation of the Invention) The nitrogen oxide removal method of the present invention decomposes water in the gas to be treated on the anode surface of the nitrogen oxide decomposition device, and transfers the generated hydrogen ions to the cathode surface via a solid electrolyte body. transferred and reduced to hydrogen. Since nitrogen oxides are adsorbed or dissociated into nitrogen and oxygen on the cathode surface, the hydrogen reacts with the adsorbed nitrogen oxides or dissociated oxygen, and oxygen is removed from the nitrogen oxides, resulting in nitrogen oxidation. The disassembly of things continues.

(発明の効果) 本発明によれば、高能率で窒素酸化物を浄化することが
てきる。また、還元物質か含まれない、あるいは酸素か
過剰に存在する酸化雰囲気においても窒素酸化物を高能
率で浄化することができる。
(Effects of the Invention) According to the present invention, nitrogen oxides can be purified with high efficiency. In addition, nitrogen oxides can be purified with high efficiency even in an oxidizing atmosphere that does not contain reducing substances or in which oxygen is present in excess.

なお、本発明に係る窒素酸化物除去方法は、自動車等の
内燃機関、硝酸製造工場等からの排気ガス中の窒素酸化
物の浄化に利用することかできる。
The method for removing nitrogen oxides according to the present invention can be used to purify nitrogen oxides in exhaust gas from internal combustion engines such as automobiles, nitric acid manufacturing plants, etc.

(その他の発明) 本その他の発明において、固体電解質体は、被処理ガス
中に含まれる水の電気分解により陽極面で生じた水素イ
オンを透過させ、陰極面において窒素酸化物を還元除去
するものである。この固体電解質体としては、酸化バリ
ウム、セリア(B a Ce Os )、酸化ストロン
チウム・セリア(SrCeOs)、酸化ストロンチウム
・ジルコニア(S r Z r 03)、酸化カルシウ
ム・ジルコニア(Ca Z r 03 )、酸化ストロ
ンチウム・チタニア(SrTiCh)なとの酸化物粉末
の焼結体を用いる。また、好ましくは、これらの酸化物
にイツトリウム(Y)、ネオジウム(Nd)、イッテル
ビウム(Yb)、スカンジウム(Sc)等の酸化物を添
加したものを使用する。
(Other inventions) In this and other inventions, the solid electrolyte body transmits hydrogen ions generated at the anode surface by electrolysis of water contained in the gas to be treated, and reduces and removes nitrogen oxides at the cathode surface. It is. This solid electrolyte body includes barium oxide, ceria (B a Ce Os ), strontium ceria oxide (SrCeOs), strontium zirconia oxide (S r Z r 03), calcium oxide zirconia (Ca Z r 03 ), and strontium oxide. A sintered body of oxide powder such as strontium titania (SrTiCh) is used. Preferably, oxides such as yttrium (Y), neodymium (Nd), ytterbium (Yb), and scandium (Sc) are added to these oxides.

該固体電解質体の厚さは、1μm〜0.5 cmの範囲
内か望ましい。該厚さが1μm未満の場合、緻密な構造
体を作ることができない。他方、厚さか0.5cmを越
える場合、水素イオン透過の抵抗か増大し、窒素酸化物
の除去率か低下する恐れかある。
The thickness of the solid electrolyte body is preferably within the range of 1 μm to 0.5 cm. If the thickness is less than 1 μm, a dense structure cannot be created. On the other hand, if the thickness exceeds 0.5 cm, the resistance to hydrogen ion permeation may increase and the removal rate of nitrogen oxides may decrease.

この固体電解質体の表面に陽極面と陰極面となる一対の
電極面を形成して、窒素酸化物分解装置を形成する。な
お、この一対の電極面は、直接接触しないように配置す
る。陽極材料としては、白金、ロジウム、イリジウム等
酸素過電圧の小さい金属か望ましく、これらの金属のう
ち1種もしくは2種以上の混合物で使用しても良い。
A pair of electrode surfaces serving as an anode surface and a cathode surface are formed on the surface of this solid electrolyte body to form a nitrogen oxide decomposition device. Note that this pair of electrode surfaces are arranged so as not to be in direct contact with each other. The anode material is preferably a metal with a small oxygen overvoltage such as platinum, rhodium, or iridium, and one or a mixture of two or more of these metals may be used.

陰極材料としては、白金、パラジウム、ロジウム、ルテ
ニウム、イリジウム等が望ましく、これら金属のうちの
1種若しくは2種以上の混合物で使用しても良い。さら
に、陰極材料として、酸化銅(Cub)、酸化コバルト
(Coo)、銅イオン交換ゼオライト等の窒素酸化物選
択還元触媒を用いることかできる。特にこれらと白金、
パラジウム等の水素過電圧の小さい金属との混合物は好
適である。この電極面上で、窒素酸化物か吸着し、解離
される。
The cathode material is preferably platinum, palladium, rhodium, ruthenium, iridium, etc., and one or a mixture of two or more of these metals may be used. Further, as a cathode material, a nitrogen oxide selective reduction catalyst such as copper oxide (Cub), cobalt oxide (Coo), copper ion exchange zeolite, etc. can be used. Especially these and platinum,
A mixture with a metal having a small hydrogen overvoltage such as palladium is suitable. On this electrode surface, nitrogen oxides are adsorbed and dissociated.

この電極面の形成は、電極形成用化合物のペーストを固
体電解質体の表面に塗布ないし印刷し焼成する。あるい
は、スパッタリング、蒸着、メツキ等の方法により行う
This electrode surface is formed by coating or printing a paste of an electrode-forming compound on the surface of the solid electrolyte body and baking it. Alternatively, it may be performed by sputtering, vapor deposition, plating, or the like.

電極面の厚さは、0.2〜1000μmの範囲内か望ま
しい。
The thickness of the electrode surface is preferably within the range of 0.2 to 1000 μm.

上記の如くして、窒素酸化物分解装置を形成する。A nitrogen oxide decomposition device is formed as described above.

また、被処理ガスとの接触率を高めるために、電極面の
表面積を大きくするのかよい。表面積を大きくするため
には、窒素酸化物分解装置自体を大きくする、あるいは
該装置を多数、被処理ガス流通路に配設する等の方法か
ある。
Also, in order to increase the contact rate with the gas to be treated, it is recommended to increase the surface area of the electrode surface. In order to increase the surface area, there are methods such as increasing the size of the nitrogen oxide decomposition device itself, or arranging a large number of such devices in the flow path of the gas to be treated.

次に、上記窒素酸化物分解装置を、窒素酸化物含有の被
処理ガスと接触するように配置する。
Next, the nitrogen oxide decomposition device is placed in contact with the nitrogen oxide-containing gas to be treated.

その後、上記電極面間に直流電圧を印加する。Thereafter, a DC voltage is applied between the electrode surfaces.

これにより、陽極面上で被処理ガス中の水が分解し、水
素イオン(H゛)と酸素(02)か生成し、水素イオン
は電気的に固体電解質体を透過して、陰極面に移動し、
水素に還元される。陰極面上ては窒素酸化物(NOx)
か吸着、あるいは窒素と酸素に解離しているので、上記
水素により吸着窒素酸化物あるいは解離酸素が還元され
、窒素と水になる。このようにして窒素酸化物の除去か
促進される。
As a result, the water in the gas to be treated is decomposed on the anode surface, producing hydrogen ions (H゛) and oxygen (02), and the hydrogen ions electrically pass through the solid electrolyte body and move to the cathode surface. death,
Reduced to hydrogen. Nitrogen oxides (NOx) on the cathode surface
Since nitrogen is adsorbed or dissociated into nitrogen and oxygen, the adsorbed nitrogen oxides or dissociated oxygen are reduced by the hydrogen to become nitrogen and water. In this way the removal of nitrogen oxides is facilitated.

本その他の発明において、直流電圧は、陽および陰電極
面の単位面積当たり5〜300 mA/cnfの電流密
度の電流か流れるように印加するのか望ましい。該電流
密度か5mA/ad未満の場合、陰極面への水素の供給
力か小さくなり、他方、300mA/cflを越える場
合、固体電解質体の劣化か促進される。
In this and other inventions, it is preferable that the DC voltage be applied so that a current having a current density of 5 to 300 mA/cnf flows per unit area of the positive and negative electrode surfaces. If the current density is less than 5 mA/ad, the power to supply hydrogen to the cathode surface will be small, while if it exceeds 300 mA/cfl, the solid electrolyte will deteriorate.

なお、電流密度か300 mA/cffl以下であって
も、電圧の大きさによっては固体電解質体か劣化するこ
とかあり、印加する電圧は5.0V以下にするのが望ま
しい。
Note that even if the current density is 300 mA/cffl or less, the solid electrolyte may deteriorate depending on the magnitude of the voltage, so it is desirable that the applied voltage be 5.0 V or less.

なお、被処理ガスか低温の場合には、固体電解質体を透
過する水素イオンの速度か小さく、NOxの除去効率が
低下することもある。この場合、前記窒素酸化物分解装
置を加熱してもよい。この加熱温度は400°C〜10
00°Cの範囲内が望ましい。
Note that when the temperature of the gas to be treated is low, the rate of hydrogen ions passing through the solid electrolyte body is low, and the NOx removal efficiency may be reduced. In this case, the nitrogen oxide decomposition device may be heated. This heating temperature is 400°C ~ 10
It is desirable that the temperature be within the range of 00°C.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.

(実施例1) 本例における全体の装置の断面図を添付図面に示す。即
ち、全体装置としては、窒素酸化物分解装置1を被処理
ガス流通函6内に突設したものである。
(Example 1) A sectional view of the entire device in this example is shown in the attached drawing. That is, as a whole apparatus, a nitrogen oxide decomposition apparatus 1 is installed protrudingly within a gas distribution box 6 to be treated.

該窒素酸化物分解装置1は、有底円筒状の固体電解質体
2と、該固体電解質体2の両表面に設けた白金−ロジウ
ム電極3および白金電極4とからなる。しかして、固体
電解質体1の排ガス経路の上流面から引き込まれた排ガ
スに接する電解質体2の表面の電極面4は陽極とし、排
ガス経路の中の排ガスに接する電解質体2の表面の電極
面3は陰極として、銅リード線1o、11により直流電
源5に接続しである。また、固体電解質体2の筒内には
、加熱用ヒーター12が挿入しである。固体電解質体2
は、酸化カルシウム・ジルコニア(Ca Z r○3)
に6 mob%のイツトリウム(Y3っをドープしたC
 a Z r 0.94Y0.0603−pの粉末を焼
結して厚さ0.2cmに成形したものである。また、白
金−ロジウム電極3および白金電極4は、メツキ法によ
りそれぞれ厚さ10μmに形成した。
The nitrogen oxide decomposition device 1 includes a solid electrolyte body 2 having a cylindrical shape with a bottom, and platinum-rhodium electrodes 3 and platinum electrodes 4 provided on both surfaces of the solid electrolyte body 2. Therefore, the electrode surface 4 on the surface of the electrolyte body 2 that is in contact with the exhaust gas drawn from the upstream surface of the exhaust gas path of the solid electrolyte body 1 is an anode, and the electrode surface 3 on the surface of the electrolyte body 2 that is in contact with the exhaust gas in the exhaust gas path is an anode. is connected as a cathode to a DC power source 5 through copper lead wires 1o and 11. Further, a heating heater 12 is inserted into the cylinder of the solid electrolyte body 2 . Solid electrolyte body 2
is calcium oxide zirconia (Ca Z r○3)
C doped with 6 mob% yttrium (Y3)
A Zr 0.94Y0.0603-p powder was sintered and molded to a thickness of 0.2 cm. Further, the platinum-rhodium electrode 3 and the platinum electrode 4 were each formed to a thickness of 10 μm by a plating method.

被処理ガス流通函6は、ノズル8.9、排気ガス導入管
7を有する箱体である。被処理ガスは、吸気ノズル8よ
り入り、上記分解装置1と接触して、排気ノズル9より
排出されるようになっている。
The to-be-treated gas distribution box 6 is a box having a nozzle 8.9 and an exhaust gas introduction pipe 7. The gas to be treated enters through an intake nozzle 8, comes into contact with the decomposition device 1, and is discharged through an exhaust nozzle 9.

次に、本装置lを用いて窒素酸化物の浄化を行った具体
例を示す。
Next, a specific example in which nitrogen oxides were purified using this apparatus 1 will be shown.

すなわち、加熱ヒーター12により分解装置1を700
°Cに加熱し、吸気ノズル8より850 ppmの一酸
化窒素(No)および水蒸気3.9%を含む窒素(N2
)ガスを固体電解質体2の両面に6.OA/mmで流入
させるとともに、第1表に示すような電流密度(正と負
の電極単位面積当り)で直流電圧を印加した。排気ノズ
ル9より排出される被処理ガス中のNOの量を測定して
、本例によるNOの分解量を調へた。その結果を同表に
示す(なお、表中のNo分解量は、陰極面3の単位面積
当りの分解量を表す)。
That is, the heating heater 12 heats the decomposition device 1 at 700°C.
°C, and from the intake nozzle 8, nitrogen (N2
6.) Gas is applied to both sides of the solid electrolyte body 2. While flowing at OA/mm, a DC voltage was applied at a current density (per unit area of positive and negative electrodes) as shown in Table 1. The amount of NO in the gas to be treated discharged from the exhaust nozzle 9 was measured to determine the amount of NO decomposed according to this example. The results are shown in the same table (the amount of No decomposed in the table represents the amount of decomposed per unit area of the cathode surface 3).

また、比較例として、電圧を印加しない場合についても
同様に測定し、同表に示した(NαC1)。
Furthermore, as a comparative example, measurements were made in the same manner when no voltage was applied, and the results are shown in the same table (NαC1).

第1表より明らかなように、本実施例によれば、還元物
質が存在しない酸化雰囲気においても、窒素酸化物を効
率良く除去できることかわかる。
As is clear from Table 1, according to this example, nitrogen oxides can be efficiently removed even in an oxidizing atmosphere in which no reducing substance is present.

第  1  表 (実施例2) 本例においては、酸化雰囲気における浄化の例を示す。Table 1 (Example 2) In this example, an example of purification in an oxidizing atmosphere is shown.

実施例1に示した窒素酸化物分解装置1の固体電解質体
2は、S r Ce o、 ssY b o、 o50
s−p 、陰極面3として、酸化銅(CaO)と白金と
の混合物を30μm形成し、被処理ガスとしてNOを1
1000pp 、酸素(02)ガスを1%(N2ガスに
対する)、水蒸気を3.9%含むN2ガスを使用した以
外は、実施例1と同様にして、NOの分解量を測定した
。なお、第2表に示すような電流密度で直流電圧を印加
した。
The solid electrolyte body 2 of the nitrogen oxide decomposition device 1 shown in Example 1 has S r Ce o, ssY bo, o50
sp, a mixture of copper oxide (CaO) and platinum was formed to a thickness of 30 μm as the cathode surface 3, and NO was added as the gas to be treated.
The amount of decomposed NO was measured in the same manner as in Example 1, except that N2 gas containing 1000 pp, 1% oxygen (02) gas (based on N2 gas), and 3.9% water vapor was used. Note that a DC voltage was applied at a current density as shown in Table 2.

その結果を同表に示す(No分解量は、陰極面3の単位
面積当りの分解量を表す)。また、比較例として電圧を
印加しない場合についても同表のNαC2に示した。
The results are shown in the same table (the amount of No decomposition represents the amount of decomposition per unit area of the cathode surface 3). Further, as a comparative example, a case in which no voltage was applied is also shown in NαC2 in the same table.

第2表 よれば、酸化雰囲気においても、窒素酸化物を効率良く
除去できることか分る。
According to Table 2, it can be seen that nitrogen oxides can be efficiently removed even in an oxidizing atmosphere.

本発明は、その要旨を越えない限り、これら実施例に何
ら限定されるものではない。
The present invention is not limited to these examples in any way unless it exceeds the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本実施例における窒素酸化物分解装置及びガス流通
函からなる全体装置の断面図を示す。
The figure shows a cross-sectional view of the entire device consisting of a nitrogen oxide decomposition device and a gas distribution box in this embodiment.

Claims (1)

【特許請求の範囲】[Claims] 表面に直流電圧を印加した陽極面と陰極面を有する水素
イオン伝導性の固体電解質体に、水および窒素酸化物を
含有する被処理ガスを接触させると同時に、前記陽極面
で水の電解酸化により水素イオンを発生させるとともに
、該イオンを前記陰極面に移動させ、水素として析出さ
せるとともに、この水素により前記被処理ガス中の窒素
酸化物の還元を行うことを特徴とする窒素酸化物の除去
方法。
A hydrogen ion conductive solid electrolyte body having an anode surface and a cathode surface to which a DC voltage is applied is brought into contact with a gas to be treated containing water and nitrogen oxides, and at the same time, water is electrolytically oxidized on the anode surface. A method for removing nitrogen oxides, which comprises generating hydrogen ions, moving the ions to the cathode surface, precipitating them as hydrogen, and reducing nitrogen oxides in the gas to be treated using the hydrogen. .
JP2319521A 1990-11-22 1990-11-22 How to remove nitrogen oxides Expired - Fee Related JP2997033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2319521A JP2997033B2 (en) 1990-11-22 1990-11-22 How to remove nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2319521A JP2997033B2 (en) 1990-11-22 1990-11-22 How to remove nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH04190830A true JPH04190830A (en) 1992-07-09
JP2997033B2 JP2997033B2 (en) 2000-01-11

Family

ID=18111158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2319521A Expired - Fee Related JP2997033B2 (en) 1990-11-22 1990-11-22 How to remove nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2997033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352337A (en) * 1992-04-14 1994-10-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for reducing nitrogen oxides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352337A (en) * 1992-04-14 1994-10-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for reducing nitrogen oxides

Also Published As

Publication number Publication date
JP2997033B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
EP2120254A2 (en) Plasma processing apparatus
EP2272586A1 (en) Plasma reactor
JPH0866621A (en) Method for removing nitrogen oxide
JP3626971B2 (en) Chemical reactor
JP4395567B2 (en) Electrochemical element and exhaust gas purification method
JP4057823B2 (en) Nitrogen oxide purification chemical reactor and nitrogen oxide purification method
JP3657542B2 (en) Chemical reactor
JP2006291779A (en) Method and device for exhaust emission control
EP1479431A2 (en) An exhaust gas purifying apparatus and method of using the same
JPH04190830A (en) Removal of nitrogen oxide
JP6575924B2 (en) NOx purification device and NOx purification method using the same
JP3389631B2 (en) Nitrogen oxide removal method
JP2000516678A (en) Apparatus and method for reduction of nitrogen oxides
JP2003047827A (en) Waste gas cleaning element
JP4201319B2 (en) Electrochemical cell type chemical reaction system
WO2003078031A1 (en) Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
JP4193929B2 (en) Energy saving electrochemical reaction system and activation method thereof
US3950944A (en) Exhaust gas cleaning system for the internal combustion engine
JPS6178421A (en) Removal of nitrogen oxide
JPH09299749A (en) Exhaust gas purifying element, production thereof and method for purifying nitrogen oxides
JPH0564724A (en) Method and apparatus for treating exhaust gas using solid electrolyte
JP3924347B2 (en) Exhaust gas purification device
JPH04131429U (en) Nitrogen oxide removal equipment
JPH09299748A (en) Exhaust gas purifying element, production thereof and method for purifying nitrogen oxides
JP4317683B2 (en) Nitrogen oxide purification chemical reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees