JPH04188771A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04188771A
JPH04188771A JP31596690A JP31596690A JPH04188771A JP H04188771 A JPH04188771 A JP H04188771A JP 31596690 A JP31596690 A JP 31596690A JP 31596690 A JP31596690 A JP 31596690A JP H04188771 A JPH04188771 A JP H04188771A
Authority
JP
Japan
Prior art keywords
insulating film
oxidation
film
thermal oxidation
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31596690A
Other languages
Japanese (ja)
Inventor
Hisashi Shindo
進藤 寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31596690A priority Critical patent/JPH04188771A/en
Publication of JPH04188771A publication Critical patent/JPH04188771A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the reduction of breakdown strength resulting from a defect by a crystal grain boundary near the silicon surface of an insulating film by forming the insulating film in specified thickness enough for causing a sufficiently long oxidizing time when the subsequent oxidation of a silicon semiconductor is managed by a diffusion control, and using a thermal oxidation method as oxidation. CONSTITUTION:A semiconductor layer 2 is deposited on the upper layer of an insulating base body 1, a gate insulating film 4 is formed onto the semiconductor layer 2, and an insulating film 5 is deposited on the gate insulating film 4. The insulating film 4 is formed in specified thickness enough for causing a sufficiently long oxidizing time when the subsequent oxidation of a silicon semiconductor is managed by a diffusion control, and a thermal oxidation method is employed as oxidation. Consequently, even when the thermal oxidation method is used, the SiO2 film 4 having small interface level density with an Si crystal can be shaped uniformly in the base body 1. Accordingly, the lowering of breakdown strength resulting from a defect by a crystal grain boundary near the silicon surface of the insulating film can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電界効果トランジスタ、特にS OI (S
ilicon on In5ulator)電界効果ト
ランジスタなどの半導体装置の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to field effect transistors, particularly SOI (S OI)
The present invention relates to a method for manufacturing semiconductor devices such as field effect transistors.

[従来の技術] 従来、電界効果トランジスタのゲート絶縁膜は、石英チ
ューブを外側から電気ヒータで800〜1200°C程
度に加熱するとともに前記チューブ内に0□+H2など
の酸化ガスを導入することにより酸化する熱酸化法、S
iH,、AlCl−1T a CI Rなどの材料ガス
と02.N*O1N、、NH,などの反応ガスとを気相
反応させる化学蒸着(CVD)法、Si、AI、Taな
どの金属またはSiO2,Si、N4.AI= O=、
TazO+tなどの金属化合物をArあるいはA r 
+Ot 、 A r + N 2などのプラズマにより
スパッタリングして、5ift 、A120!、Tag
○、などの絶縁膜を堆積するスパッタリング法などを用
いて形成されている。特に、上記熱酸化法は良質な酸化
シリコン膜を形成でき、また、上記絶縁膜が半導体層と
の界面でのトラップ準位密度(界面準位密度)が他の方
法に比べて小さいなどの特徴がある。なお、これらの方
法以外にも陽極酸化法あるいはプラズマ酸化法などの方
法もある。− しかし、絶縁膜の膜質あるいは半導体層との界面特性な
どの面からシリコン単結晶MOSプロセスでのゲート絶
縁膜の形成には上述の熱酸化法が用いられ、その方法に
よる5iO−膜の単層、それとその他の製法による絶縁
膜の多層構造を採用することが多い。
[Prior Art] Conventionally, the gate insulating film of a field effect transistor is formed by heating a quartz tube from the outside to about 800 to 1200°C with an electric heater and introducing an oxidizing gas such as 0□+H2 into the tube. Thermal oxidation method, S
iH,, material gas such as AlCl-1T a CI R and 02. A chemical vapor deposition (CVD) method in which a reaction gas such as N*O1N, NH, etc. is reacted in a gas phase, a metal such as Si, AI, Ta, or a metal such as SiO2, Si, N4. AI=O=,
Metal compounds such as TazO+t are heated with Ar or Ar
Sputtering with plasma such as +Ot, Ar + N2, 5ift, A120! , Tag
It is formed using a sputtering method to deposit an insulating film such as ○. In particular, the thermal oxidation method described above can form a high-quality silicon oxide film, and the insulating film has a smaller trap level density (interface state density) at the interface with the semiconductor layer than other methods. There is. In addition to these methods, there are also methods such as anodic oxidation and plasma oxidation. - However, due to the film quality of the insulating film or the interface characteristics with the semiconductor layer, the above-mentioned thermal oxidation method is used to form the gate insulating film in the silicon single crystal MOS process, and a single layer of 5iO- film is formed using this method. In many cases, a multilayer structure of insulating films using this and other manufacturing methods is adopted.

[発明が解決しようとする課題] しかしながら、上記熱酸化法では、酸化する結晶の面方
位により酸化膜の成長速度に差ができる。これは、熱酸
化のメカニズムにおいて酸化の初期には酸化速度がシリ
コンと酸素の反応速度によって律速される(反応律速)
ので結晶の面方位により単位面積当りのシリコン原子の
数が異なるために酸化速度に差が生じるからである。
[Problems to be Solved by the Invention] However, in the thermal oxidation method described above, the growth rate of the oxide film varies depending on the plane orientation of the crystal to be oxidized. This is because in the thermal oxidation mechanism, the oxidation rate is limited by the reaction rate between silicon and oxygen at the initial stage of oxidation (reaction rate limiting).
This is because the number of silicon atoms per unit area differs depending on the plane orientation of the crystal, resulting in a difference in oxidation rate.

因に、1000°C1酸素分圧(PO2)=1の条件で
1000人の酸化を行った場合、最も酸化速度の差が大
きくなるSiの面方位が< 100>と(1,11)に
おいては20%程度の酸化膜厚の差が出る。このため、
SOI基板において通常の熱酸化法ではSO■基板の中
でも全ての結晶が同一の面方位を持つ単結晶以外では、
ゲート絶縁膜を形成すると面方位により酸化速度が異な
るため部分的に絶縁膜厚が異なり、MOSトランジスタ
の閾値電圧(v th)が基板内で不均一な分布を持つ
。そして、上記熱酸化法ではシリコン基板内に存在する
シリコン表面近傍の結晶粒界による欠陥によって、熱酸
化膜の耐圧分布が影響を受ける。また、絶縁膜段差部分
に電界の集中で絶縁耐圧の劣化をもたらす。
Incidentally, if 1000 people were oxidized at 1000°C and 1 oxygen partial pressure (PO2) = 1, the difference in oxidation rate would be greatest for the Si plane orientations <100> and (1,11). There is a difference in oxide film thickness of about 20%. For this reason,
In the normal thermal oxidation method for SOI substrates, except for single crystals in which all crystals have the same plane orientation,
When a gate insulating film is formed, the oxidation rate differs depending on the plane orientation, so the thickness of the insulating film differs locally, and the threshold voltage (v th) of the MOS transistor has a non-uniform distribution within the substrate. In the thermal oxidation method described above, the breakdown voltage distribution of the thermal oxide film is affected by defects due to crystal grain boundaries near the silicon surface existing in the silicon substrate. Further, the concentration of electric field in the step portion of the insulating film causes deterioration of the dielectric strength voltage.

しかるに、上記熱酸化法においても、酸化反応が進み、
5102腹中を酸素原子が熱拡散するような速度に酸化
速度が律速される時、その領域(拡散律速領域)では面
方位による酸化速度の差は出ない。この点を、以下の熱
酸化の一般式(Deal & Groveの式)に基い
て説明する。
However, even in the above thermal oxidation method, the oxidation reaction progresses,
When the oxidation rate is determined by the rate at which oxygen atoms thermally diffuse through the 5102 antinode, there is no difference in the oxidation rate depending on the plane orientation in that region (diffusion-determined region). This point will be explained based on the following general formula for thermal oxidation (Deal &Grove's formula).

Xo     j+τ  l/2 □= 1 + −−1(1) A/ 2     A2/ 4B 上記の式において T=  (Xl 2+Ax+  )/BX1 ;初期の
酸化膜厚 xo:M化後の酸化膜厚 t:酸化時間 A : 1inear rate constantB
 : parabolic rate constan
t(1)の式において酸化時間が長いとき、即ち、t>
A”/4Bであり、t)で(拡散律速)の時、(1)の
式は以下のようになる。
Xo j+τ l/2 □= 1 + −1 (1) A/ 2 A2/ 4B In the above formula, T= (Xl 2+Ax+ )/BX1; Initial oxide film thickness xo: Oxide film thickness after M conversion t: Oxidation time A: 1inear rate constantB
: parabolic rate constant
In the equation of t(1), when the oxidation time is long, that is, t>
A''/4B, and when t) is (diffusion limited), equation (1) becomes as follows.

Xo    t   1/2 A/2    A”/4B あるいは xo”=Bt              (2)また
、酸化時間が短いとき、即ち、t<:A”/4・B(反
応律速)の時、(1)式は以下のようになる。
Xo t 1/2 A/2 A”/4B or xo”=Bt (2) Also, when the oxidation time is short, that is, when t<:A”/4・B (reaction rate limiting), equation (1) becomes as follows.

Xo     1    t”” A/2   2   A”/4B あるいは xo =    (を十て)      (3)従って
、例えば、1000°C1酸素100%での熱酸化にお
いては(3)式の反応律速により完全に支配されるのは
300人の厚さの範囲であり、もし、ゲート絶縁膜が5
i02であるとき、その厚さが300Å以上であれば、
その後の熱酸化が完全に拡散律速に支配され、上記反応
律速には支配されないのである。換言すれば、上述のよ
うに絶縁膜の厚さが十分に厚いと、成る厚さを越えた位
置では酸化の進行状態が変わり、面方位による酸化膜厚
の依存性が少な(なるのである。
Xo 1 t”” A/2 2 A”/4B or xo = (plus) (3) Therefore, for example, in thermal oxidation at 1000°C and 100% oxygen, the rate of reaction in equation (3) is completely determined. It is the thickness range of 300 that is controlled, and if the gate insulating film is
i02, if its thickness is 300 Å or more,
The subsequent thermal oxidation is completely controlled by diffusion and not by the reaction rate. In other words, if the thickness of the insulating film is sufficiently thick as described above, the state of progress of oxidation changes at a position exceeding the thickness, and the dependence of the oxide film thickness on the surface orientation becomes small.

[発明の目的] 本発明は上記事情に基いてなされたもので、シリコン半
導体層を有する基体に予め絶縁膜を堆積するとき、次段
での熱酸化による熱酸化膜を形成するときの条件を整え
、Si結晶との界面準位密度の少ないS i O2膜を
上記基体内において均−に形成できるようにした半導体
装置の製法を提供しようとするものである。
[Object of the Invention] The present invention has been made based on the above-mentioned circumstances, and it aims to improve the conditions for forming a thermal oxide film by thermal oxidation in the next step when depositing an insulating film in advance on a substrate having a silicon semiconductor layer. It is an object of the present invention to provide a method for manufacturing a semiconductor device in which a SiO2 film having a low density of interface states with the Si crystal can be uniformly formed within the substrate.

[課題を解決するための手段] このため、本発明ではシリコン半導体層を有する基体に
絶縁膜を堆積したあと、前記シリコン半導体を酸化する
ことでゲート絶縁膜を形成する半導体装置の製造法にお
いて、上記絶縁膜はその後のシリコン半導体の酸化が拡
散律速に支配される十分長い酸化時間をもたらすに足る
所定の厚さに形成され、かつ上記酸化には熱酸化法が用
いられる。
[Means for Solving the Problems] Therefore, in the present invention, in a method for manufacturing a semiconductor device in which a gate insulating film is formed by depositing an insulating film on a substrate having a silicon semiconductor layer and then oxidizing the silicon semiconductor, The insulating film is formed to a predetermined thickness sufficient to provide a sufficiently long oxidation time for subsequent oxidation of the silicon semiconductor to be controlled by diffusion rate, and a thermal oxidation method is used for the oxidation.

この場合、上記絶縁膜の形成には化学蒸着法あるいはス
パッタリング法を用いてなされるとよい。
In this case, the insulating film is preferably formed using a chemical vapor deposition method or a sputtering method.

[作 用] 従って、熱酸化法を用いても、Si結晶との界面準位密
度の少ないSiO□膜を上記基体内において均一に形成
でき、また、上述のように、CVD法などによる絶縁膜
の形成を予め行うことで、熱酸化法に依る絶縁膜のシリ
コン表面近傍の結晶粒界による欠陥が原因である耐圧の
劣化を避けることができる。
[Function] Therefore, even if a thermal oxidation method is used, an SiO□ film with a low density of interface states with the Si crystal can be uniformly formed within the substrate, and as described above, an insulating film using a CVD method or the like can be formed uniformly. By performing the formation in advance, it is possible to avoid deterioration in breakdown voltage caused by defects due to crystal grain boundaries near the silicon surface of the insulating film caused by thermal oxidation.

[実施例] 以下、本発明を図示の実施例にもとすいて具体的に説明
する。第1図には本発明の一例として、MO3型トラン
ジスタの断面が示されている。ここで、符号1は絶縁基
体であり、その上層に半導体層2が堆積されている。前
記半導体層2上にはゲート絶縁膜として熱酸化法により
形成された5ift膜4及びCVD法により絶縁膜5が
堆積されている。
[Example] Hereinafter, the present invention will be specifically explained based on the illustrated example. FIG. 1 shows a cross section of an MO3 type transistor as an example of the present invention. Here, reference numeral 1 is an insulating substrate, on which a semiconductor layer 2 is deposited. On the semiconductor layer 2, a 5ift film 4 is deposited as a gate insulating film by a thermal oxidation method, and an insulating film 5 is deposited by a CVD method.

CVD法による堆積膜としてはSiO□、Sis N4
 、A120s 、Ta205などの材料が用いられ、
その形成方法としては常圧CVD、減圧CVD、プラズ
マCVD、光CVDなとの方法が用いられる。
As deposited films by CVD method, SiO□, Sis N4
, A120s, Ta205, etc. are used,
As a method for forming it, methods such as normal pressure CVD, low pressure CVD, plasma CVD, and photoCVD are used.

次に、本発明によるSiO□膜の形成方法を、具体的な
例を挙げて説明する。
Next, a method for forming a SiO□ film according to the present invention will be explained using a specific example.

[実施例1] (1)第1図に示すように石英基板11を素子形成領域
のみ4000人の深さでエツチングした後、核形成面と
なるべき5isN<層101を500人の厚さで堆積す
る。次に、非核形成面となるべきSis2層102を5
00人の厚さで常圧CVD法により堆積した後、素子形
成領域の中心部に2μm角でS i Oz層のみをエツ
チングする。
[Example 1] (1) As shown in FIG. 1, after etching the quartz substrate 11 only in the element formation region to a depth of 4000 mm, the layer 101, which should be the nucleation surface, was etched to a thickness of 500 mm. accumulate. Next, the Sis2 layer 102, which should be a non-nucleation surface, is
After depositing the SiOz layer to a thickness of 0.00 mm by atmospheric pressure CVD, only the SiOz layer is etched in a 2 μm square in the center of the element formation region.

(2)この基板をCVD装置に設置し、 150Tor
r、1050°C,5iHa C12/HCI/H。
(2) Install this board in the CVD equipment and heat it to 150 Tor.
r, 1050°C, 5iHa C12/HCI/H.

:  0.53/ 1. 6/ 100 (1/min
 )で結晶形成処理すると第2図に示すように高さ約2
50μm、直径40μmの山形のSi単結晶12が各核
形成面を起点として形成される。
: 0.53/1. 6/ 100 (1/min
), the height is about 2 as shown in Figure 2.
A chevron-shaped Si single crystal 12 of 50 μm and 40 μm in diameter is formed starting from each nucleation surface.

(3)その後、SiO□のコロイダルシリカ(平均粒径
0,01μm)を含んだ加工液を用いて通常用いられる
シリコンウェハの表面研磨装置にて圧力220 g /
 Cm”、温度30〜40°Cの範囲で研磨する。この
結果、第3図に示すようにシリコン単結晶の研磨はシリ
コン単結晶が素子形成領域の外のSi0g膜と同じ高さ
になったところで研磨が停止され、膜厚4000人±2
00人の平坦なSi単結晶層が得られる。
(3) After that, using a processing liquid containing colloidal silica of SiO□ (average particle size 0.01 μm), the surface of the silicon wafer was polished at a pressure of 220 g /
Cm'' and a temperature in the range of 30 to 40°C.As a result, as shown in Figure 3, the silicon single crystal was polished to the same height as the Si0g film outside the element formation area. By the way, the polishing was stopped and the film thickness was 4000 ± 2.
A flat Si single crystal layer of 0.00 mm is obtained.

(4)次に第4図に示すように、半導体層】2の上層に
減圧CVD装置を用いて5iH−CI□/ N 、 O
= 70/ 400 (scc+n)、 850°Cで
40分堆積させることによりCVD法でSiO□膜15
を400人の厚さで堆積する。
(4) Next, as shown in FIG. 4, 5iH-CI□/N, O
= 70/400 (scc+n), SiO□ film 15 was deposited by CVD method at 850°C for 40 minutes.
Deposit to a thickness of 400 people.

(5)そして、第5図に示すように前記基体を石英管内
で02雰囲気、1000°C,15分の熱酸化を行うこ
とにより半導体層12とCVD法によるS i O2膜
15の間に100人のS i Oを膜14を形成する。
(5) Then, as shown in FIG. 5, the substrate is thermally oxidized in a quartz tube at 1000°C for 15 minutes in a 02 atmosphere to form a 100% A film 14 is formed using human SiO.

(6)この後は第6図に示すように、通常のMO3製造
プロセスと同じに、減圧CVD法によってpoly−3
iを堆積させた後、slP゛ (リン)を加速電圧70
keVで8X 10111c m−”注入し、パターニ
ングすることによりゲート電極16を形成し、その後、
前記ゲート電極をマスクとして”P”  (リン)を加
速電圧95keVで2X 10”cm−”注入し、更に
950°C230分の熱処理を行い、ソース、ドレイン
領域13.13−を形成する。
(6) After this, as shown in Figure 6, the poly-3
After depositing slP゛ (phosphorus) at an accelerating voltage of 70
Form the gate electrode 16 by implanting and patterning 8X 10111cm m-'' at keV, then
Using the gate electrode as a mask, "P" (phosphorus) is implanted at an acceleration voltage of 95 keV to a depth of 2.times.10 "cm", and further heat treatment is performed at 950 DEG C. for 230 minutes to form source and drain regions 13.13.

(7)次に第7図のように、層間絶縁膜17として常圧
CVD法によりPSG膜6000人を堆積した後、コン
タクトホールな形成し、スパッタリング法によりAl−
5i(1%)をμm堆積し、その後、バターニングする
ことにより配線18を形成する。そして、最後に保護膜
19として、常圧CVD法によりPSG膜6000人を
堆積するのである。
(7) Next, as shown in FIG. 7, after depositing 6,000 PSG films as the interlayer insulating film 17 by atmospheric pressure CVD, contact holes were formed, and Al-
The wiring 18 is formed by depositing 5i (1%) to a thickness of .mu.m and then patterning. Finally, as a protective film 19, 6000 PSG films are deposited by atmospheric pressure CVD.

以上の工程で形成したMOS)ランジスタのゲート絶縁
膜は4インチウェハ内での膜厚分布は500人±20人
と良好な均一性を示し、閾値電圧の分布ま150m V
以内であり、界面準位密度は105X 10”c m−
2eVであった。また、絶縁耐圧に関しても1.0MV
/cm2以上と良好な結果を示した。
The gate insulating film of the MOS transistor formed by the above process showed good uniformity in film thickness distribution within a 4-inch wafer of 500 ± 20 mm, and the threshold voltage distribution was 150 mV.
and the interface state density is 105×10”cm−
It was 2 eV. Also, the dielectric strength is 1.0MV.
/cm2 or more, which showed good results.

[実施例2] (1)石英基板上に減圧CVD法により 800人のp
oly−Siを堆糧させた後、Siをイオン打ち込みす
ることにより、非晶質化させる。
[Example 2] (1) 800 ps on a quartz substrate by low pressure CVD method
After depositing oly-Si, Si is ion-implanted to make it amorphous.

(2)次に前記非晶質シリコン層を4%mピッチで1μ
mX  1μmの大きさにパターニングした後N2雰囲
気で6008C,100時間のアニールを行うことによ
り固相成長させる。
(2) Next, the amorphous silicon layer is formed with a pitch of 4% m and a pitch of 1 μm.
After patterning to a size of m×1 μm, solid phase growth is performed by annealing at 6008 C for 100 hours in an N2 atmosphere.

(3)次に選択エピタキシャル成長を用いて、Siを2
μm堆積させる。
(3) Next, using selective epitaxial growth, Si
Deposit μm.

(4)その後前記の単結晶をミラーポリッシュ法により
3000人まで研磨した。これにより石英基板上に4μ
mピッチで厚さ3000人のメツシュ状の単結晶層が形
成される。
(4) Thereafter, the single crystal was polished by a mirror polishing method to a depth of 3,000. This allows 4 μm to be placed on the quartz substrate.
A mesh-like single crystal layer with a thickness of 3000 m pitches is formed.

(5)次に上記半導体層上にRF(高周波)スパッタリ
ングを用いてターゲットとして5iOi、スパッタリン
グガスとしてA r + 02(10%)、スパッタリ
ング圧力0.67Pa、RFパワー 250Wで、S 
i 02を400人堆積させる。
(5) Next, RF (radio frequency) sputtering was performed on the semiconductor layer with 5iOi as a target, A r + 02 (10%) as a sputtering gas, a sputtering pressure of 0.67 Pa, and an RF power of 250 W.
Deposit 400 i02.

(6)その後、実施例1と同じように、石英管内で02
雰囲気1000°C115分の熱酸化を行うことにより
半導体とCVD法のSiO□膜の間に100人のSiO
2膜を形成する。
(6) Then, as in Example 1, 02
By performing thermal oxidation at 1000°C for 115 minutes in an atmosphere, 100 SiO
2 films are formed.

(7)その後、実施例1と同様に通常のMO8製造プロ
セスを用いてゲート電極を形成した後、”P”  (リ
ン)をイオン注入することによりソース/ドレイン領域
を形成する。次に層間絶縁膜としてPSG膜を5000
人堆積させ、コンタクトホールを形成する。その後Al
−5i(1%)により配線を形成し、最後に保護膜とし
てプラズマCVD法によりSiN膜8000人を堆積す
る。
(7) Thereafter, as in Example 1, a gate electrode is formed using the usual MO8 manufacturing process, and then source/drain regions are formed by ion-implanting "P" (phosphorus). Next, a PSG film with a thickness of 5,000 mm was added as an interlayer insulating film.
Deposit and form contact holes. Then Al
Wiring is formed using -5i (1%), and finally a SiN film of 8,000 layers is deposited as a protective film by plasma CVD.

以上の工程で形成したMOSトランジスタのゲート絶縁
膜は実施例1と同様の膜圧分布、閾値電圧分布、界面準
位密度、絶縁耐圧を示している。
The gate insulating film of the MOS transistor formed through the above steps exhibits the same film pressure distribution, threshold voltage distribution, interface state density, and dielectric strength voltage as in Example 1.

[実施例3] (1)石英基板上に減圧CV、D法を用いてpOl、Y
−Siを3D00人堆積させる。
[Example 3] (1) pOl and Y were deposited on a quartz substrate using low pressure CV and D method.
- Deposit 3D00 Si.

(2)次に実施例1と同様に半導体層の上層にCVD装
置を用いて5iH2C1□/H20=70/ 400 
(s c cm)、 850°Cで40分堆積させるこ
とによりCVD法の5in2膜を400人堆積する。
(2) Next, as in Example 1, the upper layer of the semiconductor layer was coated with 5iH2C1□/H20=70/400 using a CVD device.
(sc cm), deposited at 850°C for 40 minutes to deposit 400 5in2 films using the CVD method.

(3)その後、前記基体を石英管内で02雰囲気100
0°C115分の熱酸化を行うことによりpoly−S
i半半導体上CVD法の5iO−膜の間に100人の5
iO−膜を形成する。
(3) After that, the substrate was placed in a quartz tube under an atmosphere of 100
By performing thermal oxidation at 0°C for 115 minutes, poly-S
5 of 100 between 5iO- films of CVD method on i semi-semiconductor
Form an iO- film.

(4)その後、実施例1と同様に通常のMO8製造プロ
セスを用いてゲート電極を形成した後、”P”  (リ
ン)をイオン注入することによりソース/ドレイン領域
を形成する。次に層間絶縁膜としてPSG膜を6000
人堆積させ、コンタクトホールを形成する。その後Al
−5i(1%)により配線を形成し、最後に保護膜とし
てプラズマCVD法によりSiN膜8000人を堆積す
る。
(4) Thereafter, as in Example 1, a gate electrode is formed using the usual MO8 manufacturing process, and then source/drain regions are formed by ion-implanting "P" (phosphorus). Next, a PSG film with a thickness of 6000 mm was used as an interlayer insulating film.
Deposit and form contact holes. Then Al
Wiring is formed using -5i (1%), and finally a SiN film of 8,000 layers is deposited as a protective film by plasma CVD.

以上の工程で形成したMOSトランジスタ、のゲート絶
縁膜は4インチウェハ内での膜圧分布が500人±20
人と良好な均一性を示し、閾値電圧の分布も150m 
V以内である。また、絶縁耐圧に関してもIOM V 
/ c m ”以上と良好な結果を示している。
The gate insulating film of the MOS transistor formed by the above process has a film thickness distribution of 500 ± 20 within a 4-inch wafer.
Shows good uniformity with humans, and threshold voltage distribution is also 150m
It is within V. Also, with regard to dielectric strength, IOM V
/cm'' or more, indicating a good result.

[発明の効果] 本発明は以上詳述したようになり、ウェハ全面において
半導体結晶の面方位が単一でないようなSOI基板にて
も、初めにその後の熱酸化が拡散律速になるような厚さ
の絶縁膜を予め堆積してから、熱酸化法でシリコン結晶
層を形成するようにしたので、MOSデバイスの閾値電
圧の変化が小さく、シリコン結晶との界面準位密度も小
さい、絶縁耐圧に優れたゲート絶縁膜を得ることができ
る。
[Effects of the Invention] The present invention has been described in detail above, and even in the case of an SOI substrate in which the plane orientation of the semiconductor crystal is not uniform over the entire wafer surface, it is possible to obtain a thickness such that the subsequent thermal oxidation becomes diffusion-limited. Since we deposited an insulating film in advance and then formed a silicon crystal layer using a thermal oxidation method, changes in the threshold voltage of the MOS device were small, the interface state density with the silicon crystal was small, and the dielectric breakdown voltage was low. An excellent gate insulating film can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するためのMOS型ト
ランジスタの縦断側面図、第2図乃至第7図はその製造
工程を示す断面図である。 1・・・絶縁基体 11・・・石英基板 2.12・・・半導体層 3.13・・・ソース、ドレイン領域 4.14・・・熱酸化法によるS i Oz膜5・・・
CVD法による絶縁膜 15・・・CVD法によるSiO□膜 6.16・・・ゲート電極 7.17・・・層間絶縁膜 8.18・・・A1配線 9.19・・・保護膜 101・ ・ ・ si*  N4 102・ ・ ・ S  i Oz 代理人  弁理士  山 下 穣 子 弟1図 第2図 第3図 第4図 第5図 第6図 Sip令 第7図
FIG. 1 is a vertical side view of a MOS transistor for explaining an embodiment of the present invention, and FIGS. 2 to 7 are cross-sectional views showing the manufacturing process thereof. 1... Insulating base 11... Quartz substrate 2.12... Semiconductor layer 3.13... Source, drain region 4.14... SiOz film 5 by thermal oxidation method...
Insulating film 15 by CVD method...SiO□ film 6.16 by CVD method...Gate electrode 7.17...Interlayer insulating film 8.18...A1 wiring 9.19...Protective film 101...・ ・ si* N4 102・ ・ ・ S i Oz Agent Patent Attorney Minoru Yamashita Children 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Sip Ordinance Figure 7

Claims (1)

【特許請求の範囲】 1)シリコン半導体層を有する基体に絶縁膜を堆積した
あと、前記シリコン半導体を酸化することでゲート絶縁
膜を形成する半導体装置の製造法において、上記絶縁膜
はその後のシリコン半導体の酸化が拡散律速に支配され
る十分長い酸化時間をもたらすに足る所定の厚さに形成
され、かつ上記酸化には熱酸化法が用いられることを特
徴とする半導体装置の製造法 2)上記絶縁膜の形成には化学蒸着法あるいはスパッタ
リング法を用いてなされることを特徴とする請求項1に
記載の半導体装置の製造法
[Claims] 1) In a method for manufacturing a semiconductor device in which a gate insulating film is formed by depositing an insulating film on a substrate having a silicon semiconductor layer and then oxidizing the silicon semiconductor, the insulating film is formed by depositing a gate insulating film on a substrate having a silicon semiconductor layer. 2) A method for manufacturing a semiconductor device, characterized in that the semiconductor device is formed to a predetermined thickness sufficient to provide a sufficiently long oxidation time in which the oxidation of the semiconductor is governed by diffusion-limited oxidation, and a thermal oxidation method is used for the oxidation. 2) The above-mentioned method 2. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is formed using a chemical vapor deposition method or a sputtering method.
JP31596690A 1990-11-22 1990-11-22 Manufacture of semiconductor device Pending JPH04188771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31596690A JPH04188771A (en) 1990-11-22 1990-11-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31596690A JPH04188771A (en) 1990-11-22 1990-11-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04188771A true JPH04188771A (en) 1992-07-07

Family

ID=18071731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31596690A Pending JPH04188771A (en) 1990-11-22 1990-11-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04188771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766426A (en) * 1993-08-27 1995-03-10 Semiconductor Energy Lab Co Ltd Semiconductor device and its forming method
US5966594A (en) * 1993-07-27 1999-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966594A (en) * 1993-07-27 1999-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6210997B1 (en) 1993-07-27 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6465284B2 (en) 1993-07-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JPH0766426A (en) * 1993-08-27 1995-03-10 Semiconductor Energy Lab Co Ltd Semiconductor device and its forming method

Similar Documents

Publication Publication Date Title
KR100236668B1 (en) Method for forming low resistance and low defect density tungsten contacts to silicon semiconductor wafer
JPS63301548A (en) Manufacture of semiconductor device
JPH01199456A (en) Manufacture of semiconductor integrated circuit
US5683946A (en) Method for manufacturing fluorinated gate oxide layer
JPH04188771A (en) Manufacture of semiconductor device
JPH0562967A (en) Manufacture of semiconductor device
US7329589B2 (en) Method for manufacturing silicon-on-insulator wafer
JPS5994829A (en) Manufacture of semiconductor device
JPH04188772A (en) Manufacture of semiconductor device
JPH04111362A (en) Thin-film transistor and its manufacture
JP3032244B2 (en) Method for manufacturing semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH0528501B2 (en)
JPH0677250A (en) Manufacture of thin film transistor
JPH022633A (en) Manufacture of mis field effect semiconductor device
JPH0778991A (en) Semiconductor device and fabrication thereof
JPH05308057A (en) Manufacture of semiconductor device
JP2000277438A (en) Formation method for polycrystal semiconductor film
JPS61203682A (en) Semiconductor device and manufacture thereof
JPH01319943A (en) Forming method for semiconductor oxide thin film
KR0179826B1 (en) Method of forming metal interconnector in semiconductor device
JPS63181434A (en) Manufacture of semiconductor device
JPH03237744A (en) Manufacture of semiconductor device
JPS6138852B2 (en)
JPH0845838A (en) Production process of soi structure