JPH04182397A - Method for growing crystal of znse - Google Patents

Method for growing crystal of znse

Info

Publication number
JPH04182397A
JPH04182397A JP30657990A JP30657990A JPH04182397A JP H04182397 A JPH04182397 A JP H04182397A JP 30657990 A JP30657990 A JP 30657990A JP 30657990 A JP30657990 A JP 30657990A JP H04182397 A JPH04182397 A JP H04182397A
Authority
JP
Japan
Prior art keywords
crystal
temperature
temp
znse
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30657990A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kato
裕幸 加藤
Yasuo Okuno
奥野 保男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP30657990A priority Critical patent/JPH04182397A/en
Publication of JPH04182397A publication Critical patent/JPH04182397A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce the ZnSe crystal having high quality by growing the crystal of ZnSe in a liquid phase onto a heat sink, then pulsatively applying temp. changes to the crystal growth part in a specific mode. CONSTITUTION:A source crystal 12 existing in a high-temp. part (temp. Ts=Ts1) is first dissolved into a solvent 13 until satd. solubility is attained, then this crystal is diffused and transported in a temp. gradient to make the low-temp. part (temp. Tg=Tg1) as a supersatd. soln. in a 1st process. The ZnSe crystal is epitaxially grown on the heat sink 11 at the specified temp. under this temp. condition. The temp. Ts of the source crystal part is lowered to Ts2 (<Ts1) of the source crystal part and the temp. gradient is specified lower than T=5 deg.C/cm in a 2nd process. The temp. Tg of the crystal growth part is pulsatively changed between Tg2 and Tg1 simultaneously therewith. The small nuclei grown in the heat sink 11 are dissolved and annihilated at the temp. Tg2 and the largely grown nuclei are partly dissolved and the greater part thereof remains if the temp. is changed in such a manner. Only the large nuclei keep growing on.

Description

【発明の詳細な説明】 〔産業−にの利用分野〕 本発明は、半導体村、品の成長方法に関し、特に高品質
なZnSe結晶を安定して製造するのに好適な結晶成長
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing semiconductor products, and particularly to a crystal growth method suitable for stably producing high-quality ZnSe crystals.

〔従来の技術〕[Conventional technology]

第3図に半導体結晶の液相成長装置を示す。適当な径を
有する石英製の結晶成長用容器10の底部に、カーボン
等の熱伝導性のよい何科で作成したヒートシンク11を
収納し固定する。成長容器10の上部は図示のように下
部よりも径が大きく作られており、その−1〕部にはソ
ース結晶となるZnSeの多結晶12を配置し、11部
と下部の段差を利用し、で固定する。さらに、Zn5c
多結晶12とヒートシンク11がS e−Te溶媒13
で満たされている。
FIG. 3 shows a liquid phase growth apparatus for semiconductor crystals. A heat sink 11 made of a material having good thermal conductivity such as carbon is housed and fixed at the bottom of a crystal growth container 10 made of quartz having an appropriate diameter. As shown in the figure, the upper part of the growth chamber 10 is made to have a larger diameter than the lower part, and the ZnSe polycrystal 12 which will become the source crystal is placed in the -1 part, and the step between the part 11 and the lower part is used. , fix it with . Furthermore, Zn5c
Polycrystal 12 and heat sink 11 are S e-Te solvent 13
filled with.

このような構成からなる結晶成長装置の容器10内を所
定圧力に真空1ル気して封11−する。従来の技術にお
いては、第3図の結晶成長装置を図に示すような温度勾
配中に配置し、第4図のようにソース結晶部温度1゛s
と結晶成長部/IIM度Tgとを一定に保つ。高温部分
(温度Ts)にあるソース多結晶12を飽和溶解度にな
るまで溶媒13中に溶解させ、温度勾配中を拡散輸送さ
せて低温部(温度Tg)のヒートシンク11」−にエピ
タキシャル成長させ、バルク状の結晶を成長させる。
The inside of the container 10 of the crystal growth apparatus having such a structure is evacuated to a predetermined pressure and sealed 11-. In the conventional technology, the crystal growth apparatus shown in FIG. 3 is placed in a temperature gradient as shown in the figure, and the source crystal part temperature is set at 1 s as shown in FIG.
and crystal growth part/IIM degree Tg are kept constant. The source polycrystal 12 in the high temperature part (temperature Ts) is dissolved in the solvent 13 until it reaches saturated solubility, and is diffused and transported through the temperature gradient to epitaxially grow on the heat sink 11'' in the low temperature part (temperature Tg). grow crystals.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明した方法では、ヒートシンク11上に成長する
結晶の核が自然発生的で、制御できないため、口径の大
きな結晶バルクを形成しようとすると、小さな核か多く
発生し、結晶粒界を多く含んだ品質の悪い結晶となる。
In the method described above, the crystal nuclei that grow on the heat sink 11 are generated spontaneously and cannot be controlled, so when trying to form a crystal bulk with a large diameter, many small nuclei are generated and many crystal grain boundaries are included. The result is poor quality crystals.

さらに、所定品質の結晶が常時安定して冑られないとい
う問題があった。
Furthermore, there is a problem that crystals of a predetermined quality cannot be stably removed at all times.

本発明の目的は、小さな核の発生を抑え、人きな核のみ
から結晶を成長させて高品質のZnSe単結晶を安定し
て製造する方法を提供することにある。
An object of the present invention is to provide a method for stably producing high-quality ZnSe single crystals by suppressing the generation of small nuclei and growing crystals only from small nuclei.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、第1の工程において溶媒中に置かれ
たZnSeのソース結晶とヒートシンクとを温度勾配中
に配置し、前記ソース結晶を溶解して前記ヒートシンク
−ヒにZnSeの結晶を液相成長させ、次に、第2の工
程で、第1の工程の温度勾配よりも小さな温度勾配を!
、−5え、かつヒートシンク」−の結晶成長部にパルス
状に温度変化を与えるようにした。
In the present invention, in the first step, a ZnSe source crystal placed in a solvent and a heat sink are placed in a temperature gradient, the source crystal is dissolved, and a ZnSe crystal is grown on the heat sink in a liquid phase. Then, in the second step, a temperature gradient smaller than that in the first step is applied!
, 5, and the heat sink were designed to apply temperature changes in a pulsed manner to the crystal growth area.

一5= 〔作用〕 第1の工程では、結晶の核発生に必要なZnSe溶質の
拡散輸送を行い、第2の工程では溶質の輸送を減じた(
あるいはなくす)状態で、ヒートシンク」二の結晶成長
部の温度をパルス状に変化させる温度制御を施して、小
さな成長核は溶解させ、大きな核だけが残って成長する
ようにして単結晶を成長させる。
-5 = [Action] In the first step, the diffusion transport of ZnSe solute necessary for crystal nucleation was carried out, and in the second step, the transport of solute was reduced (
In this state, a single crystal is grown by controlling the temperature of the crystal growth part of the heat sink 2 in a pulse-like manner to dissolve small growth nuclei and leave only large nuclei to grow. .

〔実施例〕〔Example〕

以下、第1図と第2図を参照して、本発明の実施例の方
法を説明する。なお、結晶成長装置としては第3図に示
した第14造と同様なものが使用できるので、最初に、
第3図を参照して、結晶成長が装置について説明する。
Hereinafter, a method according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. Incidentally, as a crystal growth apparatus, one similar to the 14th structure shown in Fig. 3 can be used, so first,
The crystal growth apparatus will be described with reference to FIG.

第3図において、適当な径を有する石英製の結晶成長用
容器10の底部に、カーボン等の熱伝導性のよい何科で
作成したヒートシンク11を収納し、成長容器10の所
定位置に刻みをいれてへこますことによりヒートシンク
11を固定する。ヒ−1〜シンク1]のし11品を11
1出さぜる而は下用かつ鏡面に仕上げである。ヒートシ
ンク11の桐材は、直径8〜20 m +nで、1くさ
5〜200 m nlの円柱状の高純度カーボンか好ま
しい。石英の成長容器10の上部は図示のように下部よ
りも径が大きく作られている。これは、少[−1径の石
英管と大口径の石英管とを接続したものである。石英の
成長容器10の−に部にはソース結晶となるZnSeの
インゴット状多結晶12を配置し、ZnSe多結品12
の径は成長容器10の少径より大きく、大径よりも小さ
く作られ、成長容器10の上部と下部の段差を利用して
支jj丁する。さらに、ZnSe多結晶12とヒートシ
ンク11かS e −′Fe溶媒13で浸されている。
In FIG. 3, a heat sink 11 made of a material with good thermal conductivity such as carbon is housed in the bottom of a crystal growth container 10 made of quartz having an appropriate diameter, and a notch is made at a predetermined position of the growth container 10. The heat sink 11 is fixed by inserting it and making a dent. H-1 ~ Sink 1] 11 Noshi items 11
1.It is used for lower purposes and has a mirror finish. The paulownia wood material of the heat sink 11 is preferably cylindrical high-purity carbon with a diameter of 8 to 20 m + n and a length of 5 to 200 m nl. As shown in the figure, the diameter of the upper part of the quartz growth container 10 is larger than that of the lower part. This is a connection between a small [-1 diameter quartz tube and a large diameter quartz tube. A ZnSe ingot-like polycrystalline 12 serving as a source crystal is placed in the negative part of the quartz growth container 10, and a ZnSe polycrystalline product 12 is formed.
The diameter of the growth container 10 is larger than the small diameter and smaller than the large diameter of the growth container 10, and the height difference between the upper and lower parts of the growth container 10 is used to support the growth container 10. Further, the ZnSe polycrystal 12 and the heat sink 11 are soaked in S e -'Fe solvent 13 .

このような構成からなる結晶成長装置の容器10内を2
X10−6To+〜1゛以下の高真空に真空排気して封
止する。以上、の結晶成長装置を第3同右に示すような
ソース結晶部温度T sと結晶成長装置度1゛gの温度
勾配雰囲気の炉中に配置する。
The inside of the container 10 of the crystal growth apparatus having such a configuration is
It is evacuated to a high vacuum of X10-6To+~1゛ or less and sealed. The above-mentioned crystal growth apparatus is placed in a furnace having a temperature gradient atmosphere with a source crystal part temperature Ts and a crystal growth apparatus temperature of 1.degree. g as shown in the third figure on the right.

以上の構成のもとて、第1図の温度制御を行う。Based on the above configuration, the temperature control shown in FIG. 1 is performed.

まず第1のプロセスでは、高温部分(温度Ts−”I゛
s 1 )にあるソース結晶コ2を飽和溶解度になるま
で溶媒13中に溶解させ、1VIj度勾配中を拡散輸送
させて低温部(活、1度Tg−Tgl)を過飽和溶液と
する。結晶成長部711.1度としてはTgl=950
〜1000°C111′、11度勾配としてはΔT=1
0〜25°C/ c mか適当である。以上の温度条件
で、第1図の第1のプロセスで示すように温度一定のま
まZnSe結晶をヒートシンク11」二にエピタキシャ
ル成長させる。この第1のプロセスの時間t1は5〜3
011.1」間である。
In the first process, the source crystal 2 in the high temperature part (temperature Ts - "I゛s 1 ) is dissolved in the solvent 13 until it reaches saturation solubility, and is diffused and transported through a 1 VIj degree gradient to the low temperature part ( 1 degree Tg-Tgl) is used as a supersaturated solution.As the crystal growth part is 711.1 degrees, Tgl=950
~1000°C111', ΔT=1 for 11 degree slope
0 to 25°C/cm is appropriate. Under the above temperature conditions, ZnSe crystal is epitaxially grown on the heat sink 11'' while keeping the temperature constant, as shown in the first process in FIG. The time t1 of this first process is 5 to 3
011.1''.

次に、第2のプロセスにおいて、ソース結晶部の温度T
sを1s2  (<Tsl)に下げて、温度勾配をΔT
=5°C/ c m以下とする。それと同時に、結晶成
長部の温度Tgを図示のようなTglとTglの間でパ
ルス状に変化させる。この第2のプロセスのflijl
!il t 2は5〜15時間である。
Next, in the second process, the temperature T of the source crystal part
Lower s to 1s2 (<Tsl) and reduce the temperature gradient to ΔT
= 5°C/cm or less. At the same time, the temperature Tg of the crystal growth area is changed in a pulsed manner between Tgl and Tgl as shown. flijl of this second process
! il t 2 is 5-15 hours.

この第2のプロセスにおける結晶成長部の温度変化のパ
ルスは例えば第2図(a)に示すような矩形波状パルス
が使用できる。
For example, a rectangular wave pulse as shown in FIG. 2(a) can be used as the pulse for temperature change in the crystal growth area in this second process.

二のように、第2のプロセスにおいては、温度勾配を少
なくして、ソース多結晶12からの溶質の輸送を抑えて
(あるいはなくして)おき、同時に結晶成長部の温度′
1゛gをパルス状に変化することにより、414度′F
g2ではヒートシンク11上に成長した小さな4には溶
解されて消失し、大きく成長した核については一部が溶
解されるか大部分残るようにされる。これは11111
1度1’ g 2とパルス幅の時間ならびにパルス波形
を適当に選択することにより 可能となる。従って、大きな核のみが成長していくこと
になる。なお、結晶成長部の温度変化は第2図(a)の
矩形波パルスのみならす、第2図(b)、  (c)、
  (d)、  (c)に示すような種々の波形の中か
らip結晶を帽るのに最適な波形を選択すればよい。
2, in the second process, the temperature gradient is reduced to suppress (or eliminate) solute transport from the source polycrystal 12, and at the same time the temperature of the crystal growth region '
By changing 1゛g in a pulsed manner, 414 degrees F
In g2, the small 4 grown on the heat sink 11 are dissolved and disappear, and the large grown nuclei are partially dissolved or most remain. This is 11111
This is possible by appropriately selecting the time of 1 degree 1' g 2 and the pulse width as well as the pulse waveform. Therefore, only large nuclei will grow. The temperature change in the crystal growth area is based on the rectangular wave pulse shown in Fig. 2(a), Fig. 2(b), (c),
The optimum waveform for covering the IP crystal can be selected from among the various waveforms shown in (d) and (c).

次に、第3のプロセスにおいて、結晶成長部の温度をT
 glのまま一定とし、ソース結晶部の温度Tsを」1
昇させ”I’s3(>i″52)一定とし、定常的な結
晶成長をするのに適した温度勾配とする。そして、図示
のように一定温度、一定温度勾配のもとて結晶成長を行
う。このときの温度条件として、Tgl=950〜10
00°C1温度勾配として△T=10−158C/cm
、プロセス時間t3か1000時間で、たとえば10m
mφ×10mmのZnSe単結晶が得られた。
Next, in the third process, the temperature of the crystal growth part is set to T
gl remains constant, and the temperature Ts of the source crystal part is set to 1.
The temperature gradient is kept constant at "I's3 (>i"52), which is suitable for steady crystal growth. Then, as shown in the figure, crystal growth is performed at a constant temperature and a constant temperature gradient. The temperature conditions at this time are Tgl=950~10
00°C1 temperature gradient △T=10-158C/cm
, for example, 10 m at process time t3 or 1000 hours.
A ZnSe single crystal of mφ×10 mm was obtained.

以上、実施例にlQって本発明を説明したが、本発明は
これらに制限されるものではない。たとえば、種々の変
更、改良、組合せ等が可能なことは当業者に自明であろ
う。
Although the present invention has been described above with reference to Examples, the present invention is not limited thereto. For example, it will be obvious to those skilled in the art that various changes, improvements, combinations, etc. are possible.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように、本発明によれば、第2のプロセ
スにおいては、ソース結晶部と結晶成長部との温度勾配
を少なくして、ソース結晶からの溶質の輸送を抑えて(
あるいはなくして)おき、同時に結晶成長部の温度をパ
ルス状に変化することにより、成長した小さな核は溶解
されて消失し、大きく成長した核については一部が溶解
されるが大部分残るようにされるので、結果的に大きな
核−10= のみか成長し、高品質のZ n S e i15結晶か
安定して製造できる。
As explained above, according to the present invention, in the second process, the temperature gradient between the source crystal part and the crystal growth part is reduced to suppress the transport of solute from the source crystal (
At the same time, by changing the temperature of the crystal growth area in a pulsed manner, the small nuclei that have grown are dissolved and disappear, and the large nuclei that have grown are partially dissolved, but most of them remain. As a result, only large nuclei -10= can be grown, and high-quality Z n S e i15 crystals can be stably produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の結晶成長方法の実施例における11
111度制御ダイヤグラム、 第2図は、本発明のlW+!度制御パルス波形の実施例
、 第3図は、液相結晶成長装置の概念図、第4図は、従来
のX111品成長方法における温度制御ダイヤグラムで
ある。 図において、 10     精品成長容器 11      ヒートンンク 12      Z n S c多結晶(ソース結晶)
13      S e−Te M合溶媒特許出願人 
スタンレー電気株式会社
FIG. 1 shows 11 in an embodiment of the crystal growth method of the present invention.
111 degree control diagram, Figure 2 shows the lW+! Examples of Temperature Control Pulse Waveforms FIG. 3 is a conceptual diagram of a liquid phase crystal growth apparatus, and FIG. 4 is a temperature control diagram in a conventional X111 product growth method. In the figure: 10 Fine product growth container 11 Heat tank 12 ZnSc polycrystal (source crystal)
13 S e-Te M combined solvent patent applicant
Stanley Electric Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] (1)、溶媒中に置かれたZnSeのソース結晶とヒー
トシンクとを温度勾配中に配置し、前記ソース結晶を溶
解して前記ヒートシンク上にZnSeの結晶を液相成長
させる方法において、前記ソース結晶部を高温部とし、
前記ヒートシンク上の結晶成長部を低温部とする温度勾
配を与えて前記ソース結晶を溶解させ、前記ヒートシン
ク上にZnSeの結晶を成長させる第1の工程と、 前記第1の工程の前記温度勾配よりも小さな温度勾配を
与え、かつ前記ヒートシンク上の結晶成長部にパルス状
に温度変化を与える第2の工程とを含むZnSe結晶の
成長方法。
(1) A method in which a ZnSe source crystal placed in a solvent and a heat sink are placed in a temperature gradient, and the source crystal is dissolved to grow the ZnSe crystal on the heat sink in a liquid phase. section as the high temperature section,
a first step of growing a ZnSe crystal on the heat sink by applying a temperature gradient in which the crystal growth area on the heat sink is a low temperature part to melt the source crystal; and from the temperature gradient of the first step. and a second step of applying a small temperature gradient to the crystal growth area on the heat sink in a pulsed manner.
(2)、前記第2の工程において、前記ソース結晶部の
温度を前記第1の工程のときの温度よりも低くして前記
小さな温度勾配を与え、前記結晶成長部は前記成長結晶
の核が溶解可能な第1の温度と該第1の温度よりも低い
第2の温度との間で交互に所定時間温度変化を与えるよ
うにした請求項1記載のZnSe結晶の成長方法。
(2) In the second step, the temperature of the source crystal part is lowered than the temperature in the first step to provide the small temperature gradient, and the crystal growth part is arranged so that the nucleus of the grown crystal is 2. The method of growing a ZnSe crystal according to claim 1, wherein the temperature is alternately changed for a predetermined period of time between a first meltable temperature and a second temperature lower than the first temperature.
(3)、前記結晶成長部の前記温度変化は前記第1と前
記第2の温度との差を振幅とする矩形波状の温度変化で
ある請求項2記載のZnSe結晶の成長方法。
(3) The method for growing a ZnSe crystal according to claim 2, wherein the temperature change in the crystal growth section is a rectangular wave temperature change whose amplitude is the difference between the first and second temperatures.
(4)、前記結晶成長部の前記温度変化は前記第1と前
記第2の温度との差を振幅とする三角波状の温度変化で
ある請求項2記載のZnSe結晶の成長方法。
(4) The method for growing a ZnSe crystal according to claim 2, wherein the temperature change in the crystal growth section is a triangular wave-like temperature change whose amplitude is the difference between the first and second temperatures.
(5)、前記結晶成長部の前記温度変化は前記第1と前
記第2の温度との差を振幅とする鋸波状の温度変化であ
る請求項2記載のZnSe結晶の成長方法。
(5) The method for growing a ZnSe crystal according to claim 2, wherein the temperature change in the crystal growth section is a sawtooth temperature change whose amplitude is the difference between the first and second temperatures.
(6)、さらに前記ソース結晶部と前記結晶成長部との
温度勾配を所定値とし、かつ前記結晶成長部の温度を一
定として結晶成長させる第3の工程とを含む請求項1か
ら5のいずれか記載のZnSe結晶の成長方法。
(6), further comprising a third step of growing the crystal by setting a temperature gradient between the source crystal part and the crystal growth part to a predetermined value and keeping the temperature of the crystal growth part constant. The method for growing ZnSe crystals described in .
(7)、前記第3の工程において、前記ソース結晶部の
温度を前記第2の工程のときの温度よりも高くし、前記
結晶成長部の温度を前記第1の工程の際の温度に保持す
ることにより、前記温度勾配を前記所定値に保持する請
求項6記載のZnSe結晶の成長方法。
(7) In the third step, the temperature of the source crystal part is made higher than the temperature in the second step, and the temperature of the crystal growth part is maintained at the temperature in the first step. 7. The method for growing a ZnSe crystal according to claim 6, wherein the temperature gradient is maintained at the predetermined value.
JP30657990A 1990-11-13 1990-11-13 Method for growing crystal of znse Pending JPH04182397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30657990A JPH04182397A (en) 1990-11-13 1990-11-13 Method for growing crystal of znse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30657990A JPH04182397A (en) 1990-11-13 1990-11-13 Method for growing crystal of znse

Publications (1)

Publication Number Publication Date
JPH04182397A true JPH04182397A (en) 1992-06-29

Family

ID=17958761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30657990A Pending JPH04182397A (en) 1990-11-13 1990-11-13 Method for growing crystal of znse

Country Status (1)

Country Link
JP (1) JPH04182397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499600A (en) * 1993-12-24 1996-03-19 Stanley Electric Co., Ltd. Methods for compound semiconductor crystal growth from solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499600A (en) * 1993-12-24 1996-03-19 Stanley Electric Co., Ltd. Methods for compound semiconductor crystal growth from solution

Similar Documents

Publication Publication Date Title
JP3109659B2 (en) Crystal growth method and apparatus
JPH04182397A (en) Method for growing crystal of znse
JPH09194289A (en) Apparatus for pulling up single crystal
JP2979770B2 (en) Single crystal manufacturing equipment
US4869776A (en) Method for the growth of a compound semiconductor crystal
US4853066A (en) Method for growing compound semiconductor crystal
JPS6111914B2 (en)
JPH02167883A (en) Production of single crystal of compound semiconductor and device therefor
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
Moravec et al. Horizontal bridgman growth of gaas single crystals
JPH03183682A (en) Method and device for growing single crystal
JPS6330396A (en) Method for growing crystal
JPS58176194A (en) Vessel for growing single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
Gektin et al. Continuous growth of large halide scintillation crystals
JPS60204700A (en) Preparation of single crystal
JPH0367995B2 (en)
RU2046162C1 (en) Method and apparatus for growing monocrystals from vapor phase
JPH0426593A (en) Apparatus for producing compound single crystal and production thereof
JPS62153192A (en) Method for growing crystal of compound semiconductor
JP2003238287A (en) Method of manufacturing solid solution single crystal
JPS63112487A (en) Crystal growth method for compound semiconductor and apparatus
JPH05178684A (en) Production of semiconductor single crystal
JPH038800A (en) Method for growing compound semiconductor single crystal of group iii and v