JPH04180569A - Control method for plasma cvd device - Google Patents

Control method for plasma cvd device

Info

Publication number
JPH04180569A
JPH04180569A JP30670190A JP30670190A JPH04180569A JP H04180569 A JPH04180569 A JP H04180569A JP 30670190 A JP30670190 A JP 30670190A JP 30670190 A JP30670190 A JP 30670190A JP H04180569 A JPH04180569 A JP H04180569A
Authority
JP
Japan
Prior art keywords
pulse
voltage
power source
plasma cvd
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30670190A
Other languages
Japanese (ja)
Inventor
Katsumi Takahashi
克巳 高橋
Jujiro Umeda
梅田 十次郎
Satoshi Adachi
聡 足立
Masami Watanabe
渡辺 正実
Yuji Ikegami
雄二 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP30670190A priority Critical patent/JPH04180569A/en
Publication of JPH04180569A publication Critical patent/JPH04180569A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve operability without receiving the influence of a hollow cathode by using a pulse DC power source having a voltage-current characteristic of an either positive or negative square wave as a power source and controlling the pulse width, pulse height and pulse frequency of the square wave according to film forming conditions. CONSTITUTION:Reactive gases are supplied from a gas supply opening 15 of a gas supply system 14 into a reaction chamber 12 and a prescribed pressure is maintained in the reaction chamber 12 by a discharge system 16. A voltage is impressed to an electrode 13 from the power source 11 to activate the reactive gases and a film is formed on the surface of a substrate 17 by a chemical reaction. The pulse DC power source having the voltage-current characteristic of the either positive or negative square wave is used for the power source 11 at this time and is so controlled to a controller 18 that the pulse width(a), pulse height V and pulse frequency (f) of the square wave can be changed according to the film forming conditions. The operability of the plasma CVD is improved without receiving the influence of the hollow cathode in this way and the range where the film forming conditions can be changed is expanded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、プラズマCVD装置の制御方法に関し、電
源としてパルス直流電源を用い、そのパルスの幅、高さ
、周波数を変えることで、操作性を向上し、成膜条件を
変えることで大型部品への適用やホローカソードの影響
低減などができるようにしたものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of controlling a plasma CVD apparatus, using a pulsed DC power source as a power source, and improving operability by changing the width, height, and frequency of the pulse. By improving the film-forming conditions and changing the film-forming conditions, it is possible to apply it to large parts and reduce the effects of hollow cathodes.

[従来の技術] 物理蒸着(P V D : Physical vap
or depositi。
[Prior art] Physical vapor deposition (PVD)
or depositi.

n)に比べ、表面の凹凸や穴などへの成膜が容易な化学
蒸着(CV D : Chemical vapor 
depositino)が用いられるようになっており
、半導体の製造を始めとして工業的な分野への利用も進
められている。
Chemical vapor deposition (CVD), which is easier to form a film on surface irregularities and holes, than
Depositino) has come to be used, and its use in industrial fields including semiconductor manufacturing is progressing.

このCVDの一つにプラズマCVDがあり、化学反応に
必要な活性化された空間を得るために熱エネルギを用い
ず、プラズマを反応空間に導入することにより、低い温
度で成膜ができる特徴がある。 − このようなプラズマCVDの放電用電源としては、これ
まで直流電源(DC電源)が使用されてきており、第6
図に示すように、DC電源1が反応室2内の電極3と接
続されている。この反応室2には、ガス供給系4が接続
され、反応室2内のガス吹出口5から内部に反応ガスな
どが供給されるとともに、排気系6が接続されて反応室
2内を所定の圧力に保持できるようになっている。
One type of CVD is plasma CVD, which can form films at low temperatures by introducing plasma into the reaction space without using thermal energy to obtain the activated space necessary for chemical reactions. be. - Until now, a direct current power supply (DC power supply) has been used as a discharge power supply for such plasma CVD, and the
As shown in the figure, a DC power source 1 is connected to an electrode 3 in a reaction chamber 2. A gas supply system 4 is connected to this reaction chamber 2, and a reaction gas etc. is supplied to the inside from a gas outlet 5 in the reaction chamber 2. An exhaust system 6 is also connected to the reaction chamber 2 so as to circulate the inside of the reaction chamber 2 at a predetermined level. It is designed to hold pressure.

そして、反応室2内の電極3に接して成膜すべき基体7
を入れ、DC電源1による放電によって生じるプラズマ
で成膜すべき材料を含む反応ガスを活性化し、基体7の
表面との化学反応で成膜する。
Then, a substrate 7 to be formed into a film in contact with the electrode 3 in the reaction chamber 2
, a reactive gas containing the material to be formed into a film is activated by plasma generated by discharge from the DC power source 1, and a film is formed by a chemical reaction with the surface of the substrate 7.

[発明が解決しようとする課題] このような直流電源を用いるプラズマCVDでは、第7
図にDC電源1の特性を示すように、通常電極側を負に
保ち、例えば500■程度のほぼ一定の電圧を印加して
おり、従来、成膜対象である基体としてはドライバの先
端部やかみそりの刃などの小型部品がほとんどであり、
表面形状も凹凸や穴などの無いものを対象としていた。
[Problem to be solved by the invention] In plasma CVD using such a DC power supply, the seventh
As shown in the figure, the characteristics of the DC power supply 1 are normally kept negative on the electrode side, and a nearly constant voltage of, for example, about 500 μ is applied. Most of the parts are small parts such as razor blades,
The target surface shape was one with no irregularities or holes.

ところが、プラズマCVDの特長を生かし、大型部品へ
の適用が研究されつつあるが、例えばプレス用の金型な
どの大型部品に適用して耐摩耗性の膜で被覆することで
、寿命の延長を図ろうとする場合には、基体である大型
部品に形成された小さな孔部分に生じるホローカソード
の影響にょってその部分たけ成膜出来なくなったり、そ
の部分の基体温度の上昇によって母材強度の低丁を招く
という問題がある。
However, research is underway to take advantage of the characteristics of plasma CVD and apply it to large parts. When attempting to achieve this, film formation may become impossible in that area due to the influence of the hollow cathode that occurs in the small holes formed in the large part that is the substrate, or the strength of the base material may decrease due to an increase in the substrate temperature in that area. There is the problem of inviting Ding.

また、プラズマCVDては、成膜の進行に伴って基体ば
かりでなく反応室の内壁にも成膜され、この反応室内部
の汚れによる異常放電によって、それまでに成膜された
膜表面に傷が生しるなどの問題がある。
In addition, with plasma CVD, as film formation progresses, a film is formed not only on the substrate but also on the inner wall of the reaction chamber, and abnormal discharge due to dirt inside the reaction chamber may cause damage to the surface of the film that has been formed up to that point. There are problems such as the formation of

このため従来は、直流電源からの電圧供給を異常放電発
生直後に停止することが行われているが、成膜表面を十
分に保護することがてきないという問題があった。
For this reason, conventionally, the voltage supply from the DC power supply has been stopped immediately after the occurrence of abnormal discharge, but there has been a problem that the film-forming surface cannot be sufficiently protected.

さらに、従来のプラズマCVDでは、成膜すべき材料に
よって反応ガスが決まると、異常放電が生じないように
反応室内の圧力範囲や直流電源がらの最大供給電圧を決
めなければならず、その操作範囲が非常に狭いという問
題がある。
Furthermore, in conventional plasma CVD, once the reaction gas is determined depending on the material to be deposited, the pressure range within the reaction chamber and the maximum supply voltage of the DC power supply must be determined to prevent abnormal discharge, and the operating range must be determined. The problem is that it is very narrow.

この発明は、かかる従来技術の課題に鑑みてなされたも
ので、ホローカソードの影響を受けずにプラズマCVD
の操作性を改善できるとともに、成膜条件を変えること
の出来る範囲を拡大できるプラズマCVD装置の制御方
法を提供しようとするものである。
This invention was made in view of the problems of the prior art, and it is possible to perform plasma CVD without being affected by the hollow cathode.
The present invention aims to provide a control method for a plasma CVD apparatus that can improve the operability of the apparatus and expand the range in which film forming conditions can be changed.

[課題を解決するための手段] 上記従来技術が有する課題を解決するため、この発明の
プラズマCVD装置の制御方法は、プラズマCVD装置
の成膜条件を制御するに際し、電源として正負いずれか
一方の矩形波の電圧・電流特性を持つパルス直流電源を
用い、成膜条件に応じて矩形波のパルス幅、パルス高さ
、パルス周波数を制御するようにしたことを特徴とする
ものである。
[Means for Solving the Problems] In order to solve the problems of the above-mentioned prior art, the method for controlling a plasma CVD apparatus of the present invention uses either positive or negative power as a power source when controlling the film forming conditions of the plasma CVD apparatus. This method is characterized by using a pulsed DC power supply having voltage and current characteristics of a rectangular wave, and controlling the pulse width, pulse height, and pulse frequency of the rectangular wave according to the film forming conditions.

[作 用J このプラズマCVD装置の制御方法によれば、電源とし
て正負いずれかの矩形波の電圧・電流特性を持つパルス
直流電源を用い、このパルス直流電源(以下、パルスD
C電源とする。)の矩形波の形状を定めるパルス幅(デ
ユーティ比)、パルス高さ(電圧)、パルス周波数を成
膜条件に応じて変えるようにしており、従来の直流電源
を用い、常時一定の電圧を印加する場合に比べ、異常放
電による影響を受ける二と無く、パルスDC電源からの
供給条件を変えることができる範囲を拡大するようにし
ている。
[Function J] According to this plasma CVD apparatus control method, a pulsed DC power source having voltage/current characteristics of either positive or negative rectangular waves is used as the power source, and this pulsed DC power source (hereinafter referred to as pulse D) is used as the power source.
Use C power source. ) The pulse width (duty ratio), pulse height (voltage), and pulse frequency that determine the shape of the rectangular wave are changed according to the film forming conditions, and a constant voltage is always applied using a conventional DC power supply. Compared to the case where the power source is not affected by abnormal discharge, the range in which the supply conditions from the pulsed DC power source can be changed is expanded.

[実施例コ 以下、この発明の一実施例を図面を参照しながら詳細に
説明する。
[Example 1] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の制御方法が適用されるプラズマCV
D装置の一実施例にかがる概略構成図である。
Figure 1 shows a plasma CV to which the control method of the present invention is applied.
FIG. 3 is a schematic configuration diagram of an embodiment of the D device.

このプラズマCVD装置1oでは、プラズマ放電用の電
源としてパルスDC電源11が使用される。
In this plasma CVD apparatus 1o, a pulsed DC power supply 11 is used as a power supply for plasma discharge.

このパルスDC電源11が反応室12内の電極13と接
続されている。この反応室12には、ガス供給系14が
接続され、反応室12内のガス吹出口15から内部に反
応ガスなどが供給されるとともに、排気系16が接続さ
れて反応室12内を所定の圧力に保持できるようになっ
ている。
This pulsed DC power source 11 is connected to an electrode 13 in a reaction chamber 12 . A gas supply system 14 is connected to the reaction chamber 12, and a reaction gas and the like are supplied into the reaction chamber 12 from a gas outlet 15.An exhaust system 16 is also connected to the reaction chamber 12 to guide the inside of the reaction chamber 12 in a predetermined direction. It is designed to hold pressure.

そして、反応室12内の電極13に接して成膜す−ζき
基体17を入れ、パルスDC電源11によるh′i電に
よって生しるプラズマて成膜すべき材料を含む反応ガス
を活性化し、基体17の表面における化学反応で成膜す
るようになっている。
Then, the substrate 17 on which a film is to be formed is placed in contact with the electrode 13 in the reaction chamber 12, and the reaction gas containing the material to be formed into a film is activated by the plasma generated by the h'i current from the pulsed DC power source 11. , the film is formed by a chemical reaction on the surface of the base 17.

このようなプラズマCVD装置10で使用されるパルス
DC電源11とは、第2図(a)に示すように、負の電
圧・電流特性を持つ矩形波あるいは、第2図(b)に示
すように、正の電圧・電流特性を持つ矩形波のいわゆる
パルス電源が用いられるだけてなく、第3図や第4図に
負の電圧・電流特性を持つ電源の特性の場合で示すよう
に、パルス電圧、またはパルス電流の値が0にならず、
ある値を持った状態で矩形波と同様に変化する特性の電
源を含むものである。また、矩形波の立上り、または立
下がり部分についても、瞬時に変化を完了するものたけ
てなく、ある程度の時間をかけて変化すものまでを矩形
波としている。
The pulsed DC power supply 11 used in such a plasma CVD apparatus 10 is a rectangular wave with negative voltage/current characteristics as shown in FIG. 2(a), or a rectangular wave with negative voltage/current characteristics as shown in FIG. In addition to using a so-called pulse power source with a rectangular wave with positive voltage and current characteristics, as shown in Figures 3 and 4 for the characteristics of a power source with negative voltage and current characteristics, pulse power sources are used. The voltage or pulse current value does not become 0,
It includes a power source whose characteristics change in the same way as a square wave with a certain value. Furthermore, regarding the rising or falling portion of a rectangular wave, a wave that changes completely instantaneously is not limited to a wave that changes over a certain amount of time.

このパルスDC電源11には、制御装置18か設けられ
ており、この制御装置18によって、第2図に示すよう
な、矩形波のパルス幅:a1パルス高さ:■、周波数・
fを変えることかできるようになっている。
This pulsed DC power supply 11 is provided with a control device 18, and the control device 18 controls the rectangular wave pulse width: a1, pulse height: ■, frequency, etc. as shown in FIG.
It is now possible to change f.

そして、この制御装置18による実際の制御では、■パ
ルス高さである電圧■と■波長すをかえた周波数f及び
■電圧のかかっている割合(デユーティ比):a/bを
変えるように制御する。
In the actual control by this control device 18, control is performed to change the voltage (which is the pulse height), (the frequency f with the wavelength changed), and (the ratio at which the voltage is applied (duty ratio): a/b). do.

このようなパルスDC電源11により、第2図(a)に
示すような負の電圧の完全な矩形波の特性を持つパルス
DC電圧Vを電極13に印加する場合であっても、プラ
ズマCVD装置W10の時定数との関係から電極13側
では、電圧特性の測定結果として、第3図に示すように
、残留電圧vlがある場合もある。
With such a pulsed DC power supply 11, even when applying a pulsed DC voltage V having a negative voltage complete rectangular wave characteristic to the electrode 13 as shown in FIG. 2(a), the plasma CVD apparatus Due to the relationship with the time constant of W10, there may be a residual voltage vl on the electrode 13 side as shown in FIG. 3 as a result of voltage characteristic measurement.

この制御装置18によるパルスDCi[11の制御範囲
としては、成膜すべき材料や基体17の形状、プラズマ
CVD装置10の大きさや構造などの諸条件によって変
えるようにすれば良く、例えば周波数fを1〜50 k
z、デユーティ比a / bを0.2〜0,8、残留電
圧の割合Vl /Vを0〜0.9の範囲で変化できるよ
うにして成膜を行う。
The control range of the pulse DCi[11 by the control device 18 may be changed depending on various conditions such as the material to be deposited, the shape of the substrate 17, and the size and structure of the plasma CVD device 10. 1~50k
Film formation is performed while changing the duty ratio a/b in the range of 0.2 to 0.8 and the residual voltage ratio Vl/V in the range of 0 to 0.9.

なお、これらの制御範囲に限らす、さらに広い範囲や狭
い範囲で周波数f、デユーティ比a/−b、残留電圧V
1の割合Vl/Vを制御するようにしても良い。
In addition, the frequency f, duty ratio a/-b, and residual voltage V can be controlled not only within these control ranges but also within a wider or narrower range.
The ratio Vl/V of 1 may be controlled.

次に、このようなパルスDC電源11を制御装置18で
制御しながら行うプラズマCVDによる成膜について説
明する。
Next, a description will be given of film formation by plasma CVD, which is performed while controlling such a pulsed DC power supply 11 with the control device 18.

■ プラズマCVDの開始直後では、基体17の温度が
低く異常放電が起きやすい。
(2) Immediately after the start of plasma CVD, the temperature of the base 17 is low and abnormal discharge is likely to occur.

そこで、パルス高さである電圧Vを小さくしたり、電圧
のかかっている割合であるデユーティ比a / bを小
さくして電圧Vをかけない時間を長くするようにする。
Therefore, the time during which the voltage V is not applied is increased by decreasing the voltage V, which is the pulse height, or by decreasing the duty ratio a/b, which is the ratio at which the voltage is applied.

■ 基体17の温度が上昇すると、異常放電が起こり難
くなるので、電圧Vを高めたり、電圧Vを掛ける時間を
長くするためデユーティ比a / bを大きくするよう
にし、成膜の成長を図る。
(2) When the temperature of the substrate 17 rises, abnormal discharge becomes less likely to occur, so the duty ratio a/b is increased in order to increase the voltage V or increase the time during which the voltage V is applied, thereby increasing the growth of the film.

■ 基体17への成膜の成長が進むと、同時に、反応室
12の内壁にも成膜され汚れた状態になってくるため、
異常放電か起こりやくず、異常放電によって成膜された
表面に傷が発生する恐れかある。
- As the growth of the film on the substrate 17 progresses, the film also forms on the inner wall of the reaction chamber 12 and becomes dirty.
Abnormal discharge is likely to occur, and there is a risk that debris and abnormal discharge may cause scratches on the surface of the deposited film.

そこで、電圧Vを小さくしたり、または周波数fを下げ
たり、または電圧のかかっている割合であるデユーティ
比a / bを小さくして電圧Vをかけない時間を長く
し、膜の傷を防止するようにする。
Therefore, damage to the membrane can be prevented by reducing the voltage V, lowering the frequency f, or decreasing the duty ratio a/b, which is the ratio at which the voltage is applied, to increase the time during which the voltage V is not applied. do it like this.

■ 基体17に小さな穴がある場合には、大部分がホロ
ーカソードになったり、プラズマ密度が不均一になって
均−質な膜かできなくなるが、パルスDC電源11によ
ってパルスの周波数fを変えることでこれらを防止でき
る。
■ If there is a small hole in the base 17, most of the cathode becomes a hollow cathode or the plasma density becomes non-uniform, making it impossible to form a homogeneous film, but the pulse frequency f can be changed using the pulsed DC power supply 11. These can be prevented by doing this.

このパルスDC電源11の周波数fは、第5図に1例を
示すように、ホローカソードの影響を受けずに成膜する
には、小さい穴はど周波数fを高めることが有効であり
、穴の大きさによってホローカソードの影響を受けない
最低周波数fが定めることができる。
As for the frequency f of this pulsed DC power supply 11, as shown in an example in FIG. The lowest frequency f that is not affected by the hollow cathode can be determined by the size of f.

また、基体17に小さな穴かある場合には、成膜の進行
にともなって穴の大きさが次第に小さくなっていくこと
から、パルスDC電源11の周波数fを変えるほか、電
圧Vやデユーティ比a / bを変えるようにすること
も有効である。
In addition, if there is a small hole in the base 17, the size of the hole will gradually become smaller as the film formation progresses, so in addition to changing the frequency f of the pulsed DC power source 11, the voltage V and the duty ratio a It is also effective to change /b.

以上のように、このプラズマCVD装置の制御方法によ
れば、パルスDC電源11を用い制御装置18てパルス
幅a1パルス高さV1パルス周波数fを制御できるよう
にしているので、従来のDC電源の場合に比べ、電源で
の制御範囲が大巾に拡大し、基体17に小さな穴がある
場合に起こるホローカソードやプラズマ密度が不均一に
なることを防止できるとともに、異常放電を防止し、膜
表面への傷をつき難くすることができる。
As described above, according to this plasma CVD apparatus control method, the pulse width a1 pulse height V1 pulse frequency f can be controlled by the control device 18 using the pulsed DC power supply 11. Compared to the conventional case, the control range of the power supply is greatly expanded, and it is possible to prevent hollow cathodes and non-uniform plasma density that occur when there are small holes in the base 17, as well as prevent abnormal discharge and improve the film surface. can be made more difficult to damage.

また、異常放電などをパルスDC電源11の制御で防止
できるので、成膜の操作範囲を大巾に拡大できるように
なり、例えば第1表にTiNの成膜の場合の操作条件を
従来のDC電源の場合と比較して示すように、反応室1
2の圧力範囲や最大電圧を広い範囲で変えることができ
る。
In addition, since abnormal discharges can be prevented by controlling the pulsed DC power supply 11, the operating range for film formation can be greatly expanded. As shown in comparison with the case of power supply, reaction chamber 1
The pressure range and maximum voltage of 2 can be changed over a wide range.

これによって、成膜されるTiNの硬さや密度などを調
整することも可能となる。
This also makes it possible to adjust the hardness, density, etc. of TiN to be formed.

第1表  TiN成膜の操作条r’+(実験例)なお、
上記実施例では、主としてパルスDC電源が負の電圧特
性を有する場合で説明したが、これに限らず、正の電圧
特性を有する場合でも良く、パルスの矩形波の形状も厳
密な矩形に限るものでない。
Table 1 Operating conditions for TiN film formation r'+ (experimental example)
In the above embodiments, the case where the pulsed DC power supply mainly has negative voltage characteristics has been explained, but it is not limited to this, and may have positive voltage characteristics, and the shape of the pulse rectangular wave is also limited to a strictly rectangular shape. Not.

また、パルスDC電源の操作範囲も実施例に限定するも
のでなく、装置や成膜条件などに応じて定めれば良い。
Further, the operating range of the pulsed DC power source is not limited to the embodiment, and may be determined depending on the apparatus, film forming conditions, etc.

さらに、この発明の要旨を逸脱しない範囲て各構成要素
を変更しても良いことは言うまでもない。
Furthermore, it goes without saying that each component may be changed without departing from the gist of the invention.

[発明の効果] 以上、一実施例とともに具体的に説明したように、この
発明のプラズマCVD装置の制御方法によれば、電源と
して正負いずれかの矩形波の電圧・電流特性を持つパル
ス直流電源を用い、このパルス直流電源の矩形波の形状
を定めるパルス幅、パルス高さ、パルス周波数を成膜条
件に応じて変えるようにしたので、従来の直流電源を用
い、常時一定の電圧を印加する場合に比べ、基体の小さ
な穴がホローカソードになったり、プラズマ密度が不均
一にならないように制御できるとともに、異常放電によ
る傷の発生を防止することができる。
[Effects of the Invention] As described above in detail with one embodiment, according to the control method for a plasma CVD apparatus of the present invention, a pulsed DC power supply having voltage/current characteristics of either positive or negative rectangular waves is used as a power supply. The pulse width, pulse height, and pulse frequency, which determine the shape of the rectangular wave of this pulsed DC power supply, are changed according to the film forming conditions, so a constant voltage can be constantly applied using a conventional DC power supply. Compared to the conventional case, it is possible to control the small hole in the substrate so that it does not become a hollow cathode and the plasma density does not become non-uniform, and it is also possible to prevent the occurrence of scratches due to abnormal discharge.

また、パルスDCQ源を用いるため、異常放電が生じな
いように選択できる給電条件の範囲が大巾に拡大でき、
電源や成膜条件の操作性が向上する。
In addition, since a pulsed DCQ source is used, the range of power supply conditions that can be selected to prevent abnormal discharge can be greatly expanded.
Improves operability of power supply and film forming conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の制御方法が適用されるプラズマCV
D装置の一実施例にかかる概略構成図である。 第2図(a)、(b)はこの発明の一実施例にかかるパ
ルス直流電源の電圧特性図である。 第3図はこの発明のパルス直流電源を印加した場合の電
極での電圧特性図である。 第4図はこの発明の他の一実施例にかかるパルス直流電
源の電圧特性図である。 第5図はこの発明の一実施例によるホローカソードの影
響を防ぐパルス周波数の効果の説明図である。 第6図は従来のプラズマCVD装置にかかる概略構成図
である。 第7図は従来の直流電源の電圧特性図である。 10:プラズマCVD装置、11:パルスDC電源、1
2:反応室、13:電極、14:ガス供給系、15:ガ
ス吹出口、16:排気系、17:基体、18:制御装置
、 a:パルス幅、b:パルス波長、a/b:デュ−テ、イ
比、f・パルス周波数、vlクルス高さ(′・ルス電圧
)、vl ・残留電圧。 出願人  石川島播磨重工業株式会社 代理人  坂   本      徹 (ほか 1 名) 第3図 第5図
Figure 1 shows a plasma CV to which the control method of the present invention is applied.
It is a schematic block diagram concerning one Example of D apparatus. FIGS. 2(a) and 2(b) are voltage characteristic diagrams of a pulsed DC power supply according to an embodiment of the present invention. FIG. 3 is a voltage characteristic diagram at the electrode when the pulsed DC power supply of the present invention is applied. FIG. 4 is a voltage characteristic diagram of a pulsed DC power supply according to another embodiment of the present invention. FIG. 5 is an explanatory diagram of the effect of pulse frequency to prevent the influence of a hollow cathode according to an embodiment of the present invention. FIG. 6 is a schematic diagram of a conventional plasma CVD apparatus. FIG. 7 is a voltage characteristic diagram of a conventional DC power supply. 10: Plasma CVD device, 11: Pulse DC power supply, 1
2: reaction chamber, 13: electrode, 14: gas supply system, 15: gas outlet, 16: exhaust system, 17: substrate, 18: control device, a: pulse width, b: pulse wavelength, a/b: duplex -Te, A ratio, f・Pulse frequency, vl Cruz height ('・Russ voltage), vl・Residual voltage. Applicant Ishikawajima-Harima Heavy Industries Co., Ltd. Agent Toru Sakamoto (and 1 other person) Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims]  プラズマCVD装置の成膜条件を制御するに際し、電
源として正負いずれか一方の矩形波の電圧・電流特性を
持つパルス直流電源を用い、成膜条件に応じて矩形波の
パルス幅、パルス高さ、パルス周波数を制御するように
したことを特徴とするプラズマCVD装置の制御方法。
When controlling the film-forming conditions of a plasma CVD apparatus, a pulsed DC power supply with voltage and current characteristics of either positive or negative rectangular waves is used as the power supply, and the pulse width, pulse height, and pulse width of the rectangular wave are adjusted according to the film-forming conditions. A method for controlling a plasma CVD apparatus, characterized in that the pulse frequency is controlled.
JP30670190A 1990-11-13 1990-11-13 Control method for plasma cvd device Pending JPH04180569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30670190A JPH04180569A (en) 1990-11-13 1990-11-13 Control method for plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30670190A JPH04180569A (en) 1990-11-13 1990-11-13 Control method for plasma cvd device

Publications (1)

Publication Number Publication Date
JPH04180569A true JPH04180569A (en) 1992-06-26

Family

ID=17960268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30670190A Pending JPH04180569A (en) 1990-11-13 1990-11-13 Control method for plasma cvd device

Country Status (1)

Country Link
JP (1) JPH04180569A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997687A (en) * 1996-08-23 1999-12-07 Tokyo Electron Limited Plasma processing apparatus
US6054063A (en) * 1997-06-24 2000-04-25 Nec Corporation Method for plasma treatment and apparatus for plasma treatment
US6231777B1 (en) * 1994-11-01 2001-05-15 Hitachi, Ltd. Surface treatment method and system
US8549232B2 (en) 2009-12-25 2013-10-01 Fujitsu Limited Information processing device and cache memory control device
JP2014025114A (en) * 2012-07-27 2014-02-06 Yuutekku:Kk Plasma cvd apparatus, method of manufacturing magnetic recording medium and film deposition method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231777B1 (en) * 1994-11-01 2001-05-15 Hitachi, Ltd. Surface treatment method and system
US5997687A (en) * 1996-08-23 1999-12-07 Tokyo Electron Limited Plasma processing apparatus
US6054063A (en) * 1997-06-24 2000-04-25 Nec Corporation Method for plasma treatment and apparatus for plasma treatment
US8549232B2 (en) 2009-12-25 2013-10-01 Fujitsu Limited Information processing device and cache memory control device
JP2014025114A (en) * 2012-07-27 2014-02-06 Yuutekku:Kk Plasma cvd apparatus, method of manufacturing magnetic recording medium and film deposition method

Similar Documents

Publication Publication Date Title
US5637237A (en) Method for hot wall reactive ion etching using a dielectric or metallic liner with temperature control to achieve process stability
US5158644A (en) Reactor chamber self-cleaning process
JP3540129B2 (en) Method of surface treatment of semiconductor substrate
KR100276093B1 (en) Plasma etching system
US4962049A (en) Process for the plasma treatment of the backside of a semiconductor wafer
TW201624589A (en) Methods and systems to enhance process uniformity
US20060060300A1 (en) Plasma treatment method
EP0607415A1 (en) Hollow-anode glow discharge apparatus
KR20080111627A (en) Plasma processing apparatus and method thereof
US5955383A (en) Method for controlling etch rate when using consumable electrodes during plasma etching
US20040166597A1 (en) Directed gas injection apparatus for semiconductor processing
EP0464696B1 (en) Two-step reactor chamber self cleaning process
TWI429782B (en) Plasma film-forming method and plasma cvd device
US6046116A (en) Method for minimizing the critical dimension growth of a feature on a semiconductor wafer
US20240112890A1 (en) Showerhead Faceplate Having Flow Apertures Configured for Hollow Cathode Discharge Suppression
JPH04180569A (en) Control method for plasma cvd device
US4810322A (en) Anode plate for a parallel-plate reactive ion etching reactor
US20230245863A1 (en) Process chamber process kit with protective coating
EP0795893A1 (en) Method of etching a III-V semiconductor by means of a plasma generated in SiC14
JP2000200771A (en) Plasma processing method
Schramm et al. Fabrication of high-aspect-ratio InP-based vertical-cavity laser mirrors using CH 4/H 2/O 2/Ar reactive ion etching
JPH08330278A (en) Surface processing method and surface processing device
JPH04211115A (en) Rf plasma cvd apparatus and thin film forming method
US20210162469A1 (en) Cleaning recipe creation method and cleaning method
US20220044930A1 (en) Pulsed-plasma deposition of thin film layers