JPH0417977A - Controller for semiautomatic arc welding machine - Google Patents

Controller for semiautomatic arc welding machine

Info

Publication number
JPH0417977A
JPH0417977A JP11878790A JP11878790A JPH0417977A JP H0417977 A JPH0417977 A JP H0417977A JP 11878790 A JP11878790 A JP 11878790A JP 11878790 A JP11878790 A JP 11878790A JP H0417977 A JPH0417977 A JP H0417977A
Authority
JP
Japan
Prior art keywords
voltage
power source
signal
welding
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11878790A
Other languages
Japanese (ja)
Other versions
JP2992307B2 (en
Inventor
Tadashi Aso
正 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP2118787A priority Critical patent/JP2992307B2/en
Publication of JPH0417977A publication Critical patent/JPH0417977A/en
Application granted granted Critical
Publication of JP2992307B2 publication Critical patent/JP2992307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably reduce the number of connection lines between a remote control device and a wire feeder, and a welding power source, to reduce the weight of a trunk cable and to facilitate its handling by adding simple control circuits to the wire feeder side and the welding power source side. CONSTITUTION:The remote control device 13' is incorporated integrally into the wire feeder 17' and the interval between this wire feeder 17' and the welding power source 1' is connected by four connecting lines 25-28 of the trunk cable 22'. The first and second connecting lines 25 and 26 among these are made to feeders to a wire feeding motor 18 from a wire feed control circuit 4 at the welding power source 1' side. A signal from the remote control device 13' to the welding power source 1' is transmitted by the third connecting line 27 and the above-mentioned fourth connecting line 28. The remote control device 13' receives the supply of a power source E3 for control from the welding power source 1' and produces stabilized voltage necessary for operations of circuits. A signal conversion circuit 24 provided on the welding power source 1' side then sends a signal received from the connecting line 27 to the wire feed control circuit 4. The signal conversion circuit 24 can easily discriminate a welding voltage (or current) set signal and a wire feed quantity set signal and synchronous control between the signal conversion circuit 24 and a signal changeover circuit 23 is unnecessary.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半自動アーク溶接機において、溶接電圧(ま
たは電流)、ワイヤ送給量、さらにはアーク起動停止等
の遠隔制御を行うための制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a control system for remotely controlling welding voltage (or current), wire feed rate, and arc starting/stopping in a semi-automatic arc welding machine. Regarding equipment.

〔従来の技術〕[Conventional technology]

最近の半自動アーク溶接機では、溶接用の制御装置−式
を溶接電源に内蔵し、溶接電圧(または電流)、ワイヤ
送給量を調整するためのリモコン装置と溶接電源との間
、およびワイヤ送給装置と溶接電源との間をそれぞれ中
継ケーブルで接続しているものが多い。
In recent semi-automatic arc welding machines, a welding control device is built into the welding power source, and a control device for welding is installed between the welding power source and the remote control device for adjusting the welding voltage (or current) and wire feed amount. In many cases, a relay cable is used to connect the feeder and the welding power source.

このような半自動アーク溶接機におけるリモコン装置お
よびワイヤ送給装置と溶接電源との間の接続構成を第7
図に示す。図示のように、溶接電源1は、溶接トーチ1
0と母材11に溶接用電力を供給する溶接電源主回路2
と、溶接電圧(または電流)を制御する出力制御回路3
、溶接ワイヤ12の送給量を制御するワイヤ送給制御回
路4、アーク起動停止を行うシーケンス制御回路5など
を内蔵し、入力端子6、溶接出力端子7、リモコン装置
用コネクタ8、ワイヤ送給装置用コネクタ9を装備して
いる。
The connection configuration between the remote control device, wire feeding device, and welding power source in such a semi-automatic arc welding machine is described in the seventh example.
As shown in the figure. As shown in the figure, a welding power source 1 includes a welding torch 1
Welding power source main circuit 2 that supplies welding power to 0 and base metal 11
and an output control circuit 3 that controls the welding voltage (or current).
, a wire feed control circuit 4 that controls the feed amount of the welding wire 12, a sequence control circuit 5 that starts and stops the arc, etc., and includes an input terminal 6, a welding output terminal 7, a connector 8 for a remote control device, and a wire feed control circuit 4. Equipped with a device connector 9.

リモコン装置13は、溶接電圧(または電流)設定用の
第1の設定器14、ワイヤ送給量設定用の第2の設定器
15およびワイヤ空送り用のインチングスイッチ16を
内蔵し、溶接電源1とは中継ケーブル21の6本の接続
線で接続されている。前記第1の設定器14と第2の設
定器15は、溶接電源側から制御用電源E3の供給を受
けて出力制御回路3に対する溶接電圧(または電流)設
定信号■とワイヤ送給制御回路4に対するワイヤ送給量
設定信号■を個々に接続線へ送り出し、またインチング
スイッチ16をオンにしたときは、その信号が別の接続
線によりシーケンス制御回路5へ送られる。
The remote control device 13 includes a first setting device 14 for setting the welding voltage (or current), a second setting device 15 for setting the wire feed amount, and an inching switch 16 for wire feeding, and the welding power source 1 and are connected to each other by six connecting wires of a relay cable 21. The first setting device 14 and the second setting device 15 receive a control power source E3 from the welding power source side and send a welding voltage (or current) setting signal to the output control circuit 3 and a wire feed control circuit 4. The wire feed amount setting signal (2) for each wire is sent to the connection line individually, and when the inching switch 16 is turned on, the signal is sent to the sequence control circuit 5 via another connection line.

ワイヤ送給装置17は溶接電源1と中継ケーブル22の
4木の接続線で接続されており、その内の2線はワイヤ
送給制御回路4からワイヤ送給用モータ18への給電線
として使用され、他の2線は溶接トーチ10に内蔵され
たトリガスイッチ19からシーケンスIIT?111回
路5へのオン、オフ信号の伝送に使用される。
The wire feeding device 17 is connected to the welding power source 1 and the relay cable 22 by four connecting wires, two of which are used as power feeding lines from the wire feeding control circuit 4 to the wire feeding motor 18. The other two wires are connected to the sequence IIT? from the trigger switch 19 built into the welding torch 10. It is used to transmit on/off signals to the 111 circuit 5.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように従来の半自動アーク溶接機では、リモコン
装置およびワイヤ送給装置と溶接電源との間で制御信号
を個々の接続線により伝送していたため、接続線の本数
が多くなり、図示例の場合、合計10本の接続線を必要
とする。このため、中継ケーブルを30〜50m延長し
た場合接に、溶接通電用パワーケーブル20.20’ 
、ガスホース(図示省略)を含めると、中継用のケーブ
ル、ホース類だけで数+−の重量となり、取扱が非常に
困難になる。
As mentioned above, in the conventional semi-automatic arc welding machine, control signals were transmitted between the remote control device, wire feeding device, and welding power source through individual connection lines, which resulted in a large number of connection lines. In this case, a total of 10 connection lines are required. For this reason, when extending the relay cable by 30 to 50 m, the welding power cable 20.20'
If gas hoses (not shown) are included, the weight of the relay cables and hoses alone will be several plus or minus, making handling extremely difficult.

そこで本発明の目的は、上記従来技術と同等の制御機能
を満足しながら、リモコン装置およびワイヤ送給装置と
溶接電源との間の接続線の本数を大幅に削減でき、取扱
が容易で、かつ信号伝送の信幀性が高い半自動アーク溶
接機の制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to significantly reduce the number of connection wires between a remote control device, a wire feeding device, and a welding power source, and to be easy to handle while satisfying control functions equivalent to those of the prior art. An object of the present invention is to provide a control device for a semi-automatic arc welding machine with high reliability of signal transmission.

〔課題を解決するための手段〕 上記目的を達成するために請求項1記載の発明は、リモ
コン装置をワイヤ送給装置に内蔵し、このワイヤ送給装
置と溶接電源との間を接続する複数の接続線の内の2線
を溶接電源からリモコン装置への制御用電源の給電線と
し、該給電線の内の1線と該給電線に含まれない第3の
接続線とで溶接電圧(または電流)設定信号およびワイ
ヤ送給量設定信号をリモコン装置から溶接電源へ伝送す
にように構成するとともに、前記リモコン装置側に互に
異なる電圧範囲を調整範囲として溶接電圧(または電流
)設定信号に相当する電圧とワイヤ送給量設定信号に相
当する電圧をそれぞれ出力する第1および第2の設定器
と、前記2つの設定器から出力される電圧を所定の周期
を交互に切り換えて前記第3の接続線へ送り出す信号切
換回路を設け、溶接電源側には前記第3の接続線から受
けた前記2つの電圧をそれぞれの属する電圧範囲により
判別し、溶接電圧(または電流)設定信号とワイヤ送給
量設定信号とに分離して取り出す信号変換回路を設けた
ことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the invention according to claim 1 incorporates a remote control device in a wire feeding device, and a plurality of remote control devices connected between the wire feeding device and a welding power source. Two of the connection wires are used as power supply lines for the control power source from the welding power source to the remote control device, and one of the power supply lines and a third connection line that is not included in the power supply line are connected to the welding voltage ( or current) setting signal and wire feed rate setting signal from the remote control device to the welding power source, and the welding voltage (or current) setting signal is sent to the remote control device side with mutually different voltage ranges as adjustment ranges. and a first and second setter that respectively output a voltage corresponding to a voltage corresponding to the wire feed amount setting signal, and a first and second setter that respectively output a voltage corresponding to A signal switching circuit is provided to send the signal to the third connection line, and the welding power source side discriminates the two voltages received from the third connection line according to the voltage range to which they belong, and outputs the welding voltage (or current) setting signal and wire. The present invention is characterized by the provision of a signal conversion circuit that separates and extracts the feed amount setting signal.

同様の目的で請求項2記載の発明は、前記溶接電源から
前記リモコン装置への制御用電源の給電線の1線を溶接
電源からワイヤ送給用モータへの給電線の1線と共用し
たもの、請求項3記載の発明は、前記リモコン装置側に
前記信号切換回路の切換周期をアーク起動用トリガスイ
ッチのオン状態とオフ状態にそれぞれ対応して2つの異
なる周期に設定する切換周期変更手段を設け、溶接電源
側には伝送信号の前記2つの周期を判別して、それぞれ
前記トリガスイッチのオン状態をオフ状態に対応した信
号を出力する切換周期判別手段を設けたもの、また請求
項4記載の発明は、前記リモコン装置側にワイヤ空送り
用のインチングスイッチのオン状態に対応して前記信号
切換回路から送り出す溶接電圧(または電流)設定信号
を電圧ゼロとする信号レベル制御手段を設け、溶接電源
側にはこの溶接電圧(または電流)設定信号の電圧ゼロ
の状態を判別して、前記インチングスイッチのオン状態
に対応した信号を出力する信号レベル判別手段を設けた
ものである。
For the same purpose, the invention according to claim 2 is such that one line of the power supply line of the control power source from the welding power source to the remote control device is shared with one line of the power supply line from the welding power source to the wire feeding motor. The invention as set forth in claim 3 is characterized in that the remote control device includes switching cycle changing means for setting the switching cycle of the signal switching circuit to two different cycles corresponding to the on state and off state of the arc starting trigger switch, respectively. 5. The welding power source is provided with a switching period determining means for determining the two periods of the transmission signal and outputting signals corresponding to the on state and off state of the trigger switch, respectively, The invention provides a signal level control means for setting a welding voltage (or current) setting signal sent from the signal switching circuit to zero voltage in response to an on state of an inching switch for wire feeding on the remote control device side, and The power supply side is provided with signal level determining means for determining whether the welding voltage (or current) setting signal is in a zero voltage state and outputting a signal corresponding to the on state of the inching switch.

〔作用〕[Effect]

本発明の基本的思想は、溶接電圧(または電流)設定信
号とワイヤ送給量設定信号を個々に溶接電源側へ伝送す
るのではなく、溶接電源側から供給される制御用電源の
電圧を上下2分割し、その−方を溶接電圧(または電流
)設定信号の電圧範囲に、他方をワイヤ送給量設定信号
の電圧範囲にそれぞれ割り当てるとともに、これら2つ
の信号電圧をそれぞれに割り当てられた時間に時分割し
て所定の周期で交互に溶接電源側へ伝送し、溶接電源側
で受信した2つの信号電圧をそれぞれの属する電圧範囲
により判別し、分割して取り出すことにある。このよう
にすることで、受信側では送信側との同期をとらなくて
も2つの信号を判別でき、かつノイズの影響を受けにく
いアナログ式信号伝送の長所を生かしつつ接続線の本数
を削減できる。
The basic idea of the present invention is that the welding voltage (or current) setting signal and wire feed amount setting signal are not individually transmitted to the welding power source, but the voltage of the control power source supplied from the welding power source is increased or decreased. Divide into two, assign one to the voltage range of the welding voltage (or current) setting signal, and the other to the voltage range of the wire feed rate setting signal, and apply these two signal voltages to the respective assigned times. The two signal voltages are time-divided and transmitted alternately to the welding power source at a predetermined period, and the two signal voltages received at the welding power source are discriminated based on the voltage ranges to which they belong, and the two signal voltages are divided and extracted. By doing this, the receiving side can distinguish between two signals without synchronizing with the transmitting side, and the number of connection lines can be reduced while taking advantage of the advantages of analog signal transmission, which is less susceptible to noise. .

また、この時分割の切換周期をトリガスイッチのオン状
態とオフ状態に対応して変化させたり、ワイヤ空送り時
には溶接電圧(または電流)設定信号が不要なことを利
用して、インチングスイッチのオン状態に対応して溶接
電圧(または電流)設定信号を電圧ゼロとすることで、
前記設定信号と共にトリガスイッチまたはインチングス
イッチからの複数の制御情報をも伝送することができ、
その分接続線本数を削減できることになる。
In addition, this time-division switching cycle can be changed in response to the on and off states of the trigger switch, and the inching switch can be turned on or off by taking advantage of the fact that no welding voltage (or current) setting signal is required during wire feeding. By setting the welding voltage (or current) setting signal to zero according to the state,
A plurality of pieces of control information from a trigger switch or an inching switch can also be transmitted together with the setting signal,
The number of connection lines can be reduced accordingly.

また、リモコン装置をワイヤ送給装置に組み込み、溶接
電源からリモコン装置への制御用電源の給電線の1線を
溶接電源からワイヤ送給用モータへの給電線の1線と共
用することで、接続線の本数をさらに削減でき、かつ中
継ケーブルの1本化が可能となる。
In addition, by incorporating the remote control device into the wire feeding device and sharing one line of the control power supply line from the welding power source to the remote control device with one line of the power feeding line from the welding power source to the wire feeding motor, The number of connection lines can be further reduced, and the number of relay cables can be reduced to one.

[実施例] 以下、本発明の実施例を第1図〜第6図により説明する
。第1図は本発明の一実施例の接続構成を示す図、第2
図は第1図の実施例における信号波形の説明図であり、
第1図中の第7図と同等または対応する部分には同一符
号を付して示す。
[Example] Examples of the present invention will be described below with reference to FIGS. 1 to 6. FIG. 1 is a diagram showing the connection configuration of one embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the signal waveform in the embodiment of FIG. 1,
Portions in FIG. 1 that are equivalent or corresponding to those in FIG. 7 are designated by the same reference numerals.

第1図において、溶接電源1′は溶接電源主回路2、出
力制御回路3、ワイヤ送給制御回路4、シーケンス制御
回路5および後述する信号変換回路24を内蔵し、入力
端子6、溶接出力端子7およびワイヤ送給装置用コネク
タ9を装備している。
In FIG. 1, a welding power source 1' includes a welding power source main circuit 2, an output control circuit 3, a wire feeding control circuit 4, a sequence control circuit 5, and a signal conversion circuit 24 to be described later, and has an input terminal 6, a welding output terminal 7 and a connector 9 for wire feeding device.

第7図の従来例と異なり、リモコン装置13′はワイヤ
送給装置17′に一体に組み込み、このワイヤ送給装置
17′と溶接電源1′の間を中継ケーブル22′の4本
の接続線25〜28で接続している。その内、第1と第
2の接続線25.26を溶接電源1′側のワイヤ送給制
御装置4からワイヤ送給用モータ18への給電線とし、
その第2の接続線26と第4の接続線28を溶接電源1
′からリモコン装置13′への制御用電源E3の給電線
として、該給電線の1線26をモータ給電線と共用し、
残る第3の接続線27と前記第4の接続線28によりリ
モコン装置13′から溶接電源1′へ信号を伝送する。
Unlike the conventional example shown in FIG. 7, the remote control device 13' is integrated into the wire feeding device 17', and the four connection lines of the relay cable 22' are connected between the wire feeding device 17' and the welding power source 1'. 25 to 28 are connected. Among them, the first and second connection lines 25 and 26 are used as power supply lines from the wire feed control device 4 on the welding power source 1' side to the wire feed motor 18,
The second connection line 26 and the fourth connection line 28 are connected to the welding power source 1.
As a power supply line of the control power source E3 from ' to the remote control device 13', one wire 26 of the power supply line is shared with the motor power supply line,
Signals are transmitted from the remote control device 13' to the welding power source 1' through the remaining third connection line 27 and the fourth connection line 28.

リモコン装置13′では、溶接型a!1′から制御用電
源E3の供給を受けて回路の動作に必要な安定化電圧+
Eをつくる。この場合、接続線26にはモータ電流が流
れることによる電圧降下が生じるので、何らかの方法で
この電圧安定化が必要である。
In the remote control device 13', the welding type a! Stabilized voltage + necessary for circuit operation is supplied from control power supply E3 from 1'.
Create E. In this case, since a voltage drop occurs in the connection line 26 due to the motor current flowing, it is necessary to stabilize this voltage by some method.

金板りに、リモコン装置13′の第1の設定器14′を
溶接電圧(または電流)設定用とし、第2の設定器15
′をワイヤ送給量設定用として、以下説明する。前記2
つの設定器14’ 、 15’はポテンショメータであ
り、その第1の設定器14′は溶接電圧(または電流)
設定信号に相当する電圧■1を出力し、第2の設定器1
5′はワイヤ送給量設定信号に相当する電圧■2を出力
するように構成されている。El、E2は前記2つの設
定器14’ 、 15’に対し安定化電圧+Eとは逆方
向に加えられた一定電圧で、この一定電圧E、、E2は
+E/2またはそれより少し大きい電圧に定め、例えば
十Eが15■ならば、7.5〜8■とする。これにより
、第1の設定器14′は安定化電圧十Eの上半分の電圧
範囲(7,5〜8■から15Vまで)を調整範囲とし、
第2の設定器15′は安定化電圧十Eの下半分の電圧範
囲(OVから7〜7.5■まで)を調整範囲として、双
方の電圧範囲が重ならないようにしている。一定電圧E
、、E2はツェナーダイオードを用いてつくることがで
きる。
The first setting device 14' of the remote control device 13' is used for setting the welding voltage (or current), and the second setting device 15 is attached to the metal plate.
′ is used to set the wire feed rate, and will be explained below. Said 2
The two setting devices 14' and 15' are potentiometers, and the first setting device 14' controls the welding voltage (or current).
Outputs the voltage ■1 corresponding to the setting signal, and outputs the voltage ■1 corresponding to the setting signal, and
5' is configured to output a voltage 2 corresponding to a wire feed amount setting signal. El and E2 are constant voltages applied to the two setting devices 14' and 15' in the opposite direction to the stabilizing voltage +E, and these constant voltages E, E2 are set to +E/2 or a little larger than that. For example, if 10E is 15■, it should be 7.5 to 8■. As a result, the first setter 14' sets the voltage range of the upper half of the stabilized voltage 1E (from 7.5~8■ to 15V) as the adjustment range,
The second setter 15' sets the voltage range of the lower half of the stabilized voltage 1E (from OV to 7 to 7.5 square meters) as an adjustment range, so that the two voltage ranges do not overlap. Constant voltage E
, , E2 can be made using Zener diodes.

リモコン装W13′側には前記2つの設定器14′15
′ と共に信号切換回路23を設け、この信号切換回路
23を所定周期(数分の1〜数十分の1秒)、デユーテ
ィ50%で切換動作させることにより、前記2つの設定
器14’ 、 15’からの設定信号に相当する電圧V
、、V2を交互に前記第3の接続線27へ送り出す。そ
して、溶接電源1′側に設けた信号変換回路24で、接
続線27から受けた信号を第7図の回路で受信した信号
と同一の信号■と■に戻し、信号のは出力制御回路3へ
、信号■はワイヤ送給制御回路4へ送る。
The two setting devices 14' and 15 are located on the remote controller W13' side.
A signal switching circuit 23 is provided together with the signal switching circuit 23, and the signal switching circuit 23 is operated at a duty cycle of 50% at a predetermined period (a fraction of a second to a few tenths of a second), thereby controlling the two setting devices 14' and 15. Voltage V corresponding to the setting signal from '
, , V2 are alternately sent to the third connection line 27. Then, the signal conversion circuit 24 provided on the welding power source 1' side converts the signal received from the connection line 27 into the same signals ■ and ■ as the signal received by the circuit in FIG. 7, and the signal is transferred to the output control circuit 3. , and the signal ■ is sent to the wire feed control circuit 4.

接続線27で伝送される信号波形を第2図(a)に示す
。ここで、信号電圧■1は+e〜十Eの範囲、信号電圧
■2はOV〜+eの範囲でそれぞれ設定器14’ 、 
15’の調整に応じて変化する。信号電圧Vl、V2の
それぞれに割り当てられた時間をT。
The signal waveform transmitted through the connection line 27 is shown in FIG. 2(a). Here, the signal voltage ■1 is in the range of +e to 10E, and the signal voltage ■2 is in the range of OV to +e.
15' changes according to the adjustment. T is the time allocated to each of the signal voltages Vl and V2.

T2とすると、T、時間の信号電圧V、はT2時間の信
号電圧■2より必ず大きいので、信号変換回路24では
、+e (+E/2)より大きい電圧は溶接電圧(また
は電流)設定信号、+e(+E/2)より小さい電圧は
ワイヤ送給量設定信号として容易に判別でき、信号切換
回路23との間の同期制御は不要である。受信した信号
を2つの信号のと■に戻すには、交互に送られてきた信
号電圧V、、V2を別々のサンプル・ホールド回路に取
り込み、■2は2倍増幅、■、は一定電圧E1分を差し
引いてから2倍増幅すればよい。
Assuming T2, the signal voltage V of time T is always larger than the signal voltage ■2 of time T2, so in the signal conversion circuit 24, a voltage larger than +e (+E/2) is used as a welding voltage (or current) setting signal, A voltage smaller than +e (+E/2) can be easily identified as a wire feed amount setting signal, and synchronous control with the signal switching circuit 23 is not required. In order to return the received signal to the two signals (and), the alternately sent signal voltages V, , V2 are taken into separate sample-and-hold circuits, where (2) is amplified twice, and (2) is amplified by a constant voltage E1. All you have to do is subtract the amount and then amplify it twice.

次に、トリガスイッチ19、インチングスイッチ16の
オン、オフ信号を溶接電源ビ側に伝送する手段について
述べる。トリガスイッチI9をオンにしたときは、オフ
のときに比べて信号切換回路23の切換周期を短く、あ
るいは長く変える。第2図(b)は切換周期を短く変え
た例を示す。信号変換回路24でこの周期を判別するこ
とにより、トリガスイッチ19のオン状態とオフ状態に
それぞれ対応した信号Oをつくり出すことができる。ま
た、インチングスイッチ16をオンにしたときは、上記
説明と同様に、信号切換回路23の切換周期をもう一つ
の別の第3の周期に変え、信号変換回路24でこの第3
の周期を判別する方法もあるが、本実施例では、ワイヤ
インチング(空送り)時に溶接電圧(または電流)設定
信号は不要なことを利用して、第2図(e)に示すよう
にワイヤ送給量設定信号に相当する電圧vzのみを残し
、溶接電圧(または電流)設定信号に相当する電圧■1
をゼロとし、信号変換回路24でこの電圧ゼロの状態を
判別することにより、インチングスイッチ16のオン状
態に対応した信号[F]をつくり出す方法をとっている
Next, a means for transmitting on/off signals of the trigger switch 19 and the inching switch 16 to the welding power supply side will be described. When the trigger switch I9 is turned on, the switching period of the signal switching circuit 23 is changed to be shorter or longer than when it is turned off. FIG. 2(b) shows an example in which the switching period is shortened. By determining this period using the signal conversion circuit 24, it is possible to generate signals O corresponding to the on state and off state of the trigger switch 19, respectively. When the inching switch 16 is turned on, the switching period of the signal switching circuit 23 is changed to another third period, and the signal converting circuit 24
There is also a method of determining the cycle of Leaving only the voltage vz corresponding to the feed rate setting signal, the voltage corresponding to the welding voltage (or current) setting signal■1
is set to zero, and the signal conversion circuit 24 determines this voltage zero state to generate a signal [F] corresponding to the on state of the inching switch 16.

以上述べた本実施例の接続構成によれば、溶接電源1′
のワイヤ送給装置用コネクタ9に接続する4本の接続線
25〜28のみで全ての制御信号の伝送が可能となり、
第7図のリモコン装置用コネクタ8に接続されていた接
続線は全て廃止できる。
According to the connection configuration of this embodiment described above, the welding power source 1'
All control signals can be transmitted using only the four connecting wires 25 to 28 connected to the wire feeding device connector 9.
All the connection lines connected to the remote control device connector 8 in FIG. 7 can be abolished.

また、ワイヤ送給装置用コネクタ9および中継ケーブル
22′に従来品を共用できるという利点もある。
Another advantage is that conventional products can be used in common for the wire feeding device connector 9 and the relay cable 22'.

次に、信号切換回路23、信号変換回路24の具体的回
路例について説明する。
Next, specific circuit examples of the signal switching circuit 23 and the signal conversion circuit 24 will be explained.

第3図に信号切換回路23の具体的回路例を示す。FIG. 3 shows a specific circuit example of the signal switching circuit 23.

図中、29はコンパレータ、30は反転回路、31〜3
3はアナログスイッチ、01〜C1はコンデンサ、R。
In the figure, 29 is a comparator, 30 is an inversion circuit, and 31 to 3
3 is an analog switch, 01 to C1 are capacitors, and R.

〜R7は抵抗であり、コンパレータ29、コンデンサC
Iおよび抵抗R1〜R2は無安定マルチバイブレータ3
4を構成している。トリガスイッチ19は安定化電源の
+E側と0■側の2線間に抵抗R6と直列に、かつコン
デンサC2と並列に接続されているので、トリガスイッ
チ19がオフのときには、C2とR6の接続点aからア
ナログスイッチ31に加わる制御電圧はロウレベル(0
■)で、アナログスイッチ31をオフにしており、この
状態ではコンパレータ29の負帰還回路に抵抗R1のみ
が接続される。したがって、無安定マルチバイブレータ
34はR,とC+で定まる周期で発振動作し、コンパレ
ータ29の出力電圧をハイレベルとロウレベルに交互に
変化させる。アナログスイッチ32にはコンパレータ2
9の出力電圧が制御電圧として加わり、アナログスイッ
チ33にはコンパレータ29の出力電圧を反転回路30
で反転した信号が制御電圧として加わるので、コンパレ
ータ29の出力電圧がハイレベルの期間(’r +時間
)には、第1の設定器14′の出力電圧■1がアナログ
スイッチ32により接続線27へ送り出され、またコン
パレータ29の出力電圧がロウレベルの期間(T2時間
)には第2の設定器15′の出力電圧■2がアナログス
イッチ33により接続線27へ送り出されることにより
、接続線27の信号波形は第2図(a)のようになる。
~R7 is a resistor, comparator 29, capacitor C
I and resistors R1 to R2 are astable multivibrator 3
4. The trigger switch 19 is connected in series with the resistor R6 and in parallel with the capacitor C2 between the two wires on the +E side and the 0■ side of the stabilized power supply, so when the trigger switch 19 is off, the connection between C2 and R6 is The control voltage applied to the analog switch 31 from point a is low level (0
In (2), the analog switch 31 is turned off, and in this state, only the resistor R1 is connected to the negative feedback circuit of the comparator 29. Therefore, the astable multivibrator 34 oscillates at a period determined by R and C+, and changes the output voltage of the comparator 29 alternately between high and low levels. The analog switch 32 has a comparator 2
The output voltage of the comparator 29 is applied to the analog switch 33 as a control voltage, and the output voltage of the comparator 29 is applied to the inverting circuit 30.
Since the inverted signal is applied as a control voltage, during the period ('r + time) when the output voltage of the comparator 29 is at a high level, the output voltage 1 of the first setter 14' is applied to the connection line 27 by the analog switch 32. Also, during the period when the output voltage of the comparator 29 is at a low level (time T2), the output voltage 2 of the second setter 15' is sent to the connection line 27 by the analog switch 33, so that the output voltage of the connection line 27 is The signal waveform is as shown in FIG. 2(a).

トリガスイッチ19をオンにすると、接続点aからアナ
ログスイッチ31に加わる制御電圧がハイレベル(十E
)になるので、アナログスイッチ31はオンになり、コ
ンパレータ29の負帰還回路に抵抗R,,1!:R,が
並列に接続される。これにより、トリガスイッチ19が
オフのときに比べて無安定マルチバイブレータ34の発
振周期が短くなり、これに伴い接続線27へ送り出され
る信号の切換周期も第2図(b)のように短くなる。こ
こで、トリガスイッチ19、アナログスイッチ31、抵
抗RZ、R6およびコンデンサC2は前記切換周期変更
手段を構成する。
When the trigger switch 19 is turned on, the control voltage applied from the connection point a to the analog switch 31 reaches a high level (10E
), the analog switch 31 is turned on and the negative feedback circuit of the comparator 29 is connected to the resistor R,,1! :R, are connected in parallel. As a result, the oscillation period of the astable multivibrator 34 becomes shorter than when the trigger switch 19 is off, and accordingly, the switching period of the signal sent to the connection line 27 also becomes shorter, as shown in FIG. 2(b). . Here, the trigger switch 19, analog switch 31, resistors RZ, R6, and capacitor C2 constitute the switching cycle changing means.

一方、インチングスイッチ16は前記アナログスイッチ
32の制御入力端す点と安定化電源の0Vi41Aとの
間にコンデンサC3と並列に接続されているので、イン
チングスイッチ16をオンにすると、アナログスイッチ
32がオフ状態に保持され、したがって、第2図(C)
のように第1の設定器14’から接続線27へ送り出さ
れる電圧はゼロとなり、第2の設定器15′からの出力
電圧■2のみが接続線27へ送り出されることになる。
On the other hand, the inching switch 16 is connected in parallel with the capacitor C3 between the control input terminal of the analog switch 32 and the stabilized power supply 0Vi41A, so when the inching switch 16 is turned on, the analog switch 32 is turned off. 2 (C).
As shown in the figure, the voltage sent from the first setter 14' to the connection line 27 becomes zero, and only the output voltage (2) from the second setter 15' is sent to the connection line 27.

ここで、インチングスイッチ16とコンデンサC3は前
記信号レベル制御手段を構成する。
Here, the inching switch 16 and the capacitor C3 constitute the signal level control means.

第4図〜第6図は信号変換回路24の具体的回路例を示
す。図中、35.36.37はコンパレータ、38は反
転回路、39〜41はアナログスイッチ、42〜44は
電圧ホロワ、45.46は差動増幅回路、04〜C7は
コンデンサ、R8〜R2□は抵抗である。第4図のアナ
ログスイッチ39、電圧ホロワ42、コンデンサC4、
抵抗R11は第1のサンプル・ホールド回路47を構成
し、アナログスイッチ40、電圧ホロワ43、コンデン
サC5、抵抗R3bは第2のサンプル・ホールド回路4
8を構成しており、この2つのサンプル・ホールド回路
47.48の入力側は接続1IA27に接続されている
4 to 6 show specific circuit examples of the signal conversion circuit 24. In the figure, 35, 36, 37 are comparators, 38 is an inverting circuit, 39 to 41 are analog switches, 42 to 44 are voltage followers, 45.46 is a differential amplifier circuit, 04 to C7 are capacitors, and R8 to R2□ are It is resistance. Analog switch 39, voltage follower 42, capacitor C4 in FIG.
Resistor R11 constitutes the first sample-and-hold circuit 47, and analog switch 40, voltage follower 43, capacitor C5, and resistor R3b constitute the second sample-and-hold circuit 4.
The input sides of these two sample and hold circuits 47 and 48 are connected to connection 1IA27.

第4図において、接続線27からの信号電圧はコンパレ
ータ35にプラス入力として加わる。コンパレータ35
のマイナス入力となる基準電圧は抵抗R7゜R8゜によ
り±E/2に設定されているので、コンパレータ35の
出力電圧は、接続線27からの入力電圧が高い、すなわ
ち第2図(a)、 (b)の■1相当のとき、ハイレベ
ル(+E)となる。このハイレベル出力により第1のサ
ンプル・ホールド回路47例のアナログスイッチ39が
オンになり、コンデンサC4で保持されたvI レベル
の電圧が電圧ホロワ42から出力される。差動増幅回路
45で、この■1 レベルの電圧より一定電圧E、が差
し引かれ、さらに2倍増幅されて■の出力となる。また
、接続線27からの入力電圧が低い、すなわち第2図(
a)、 (b)の■2相当のときには、コンパレータ3
5の出力電圧がロウレベル(0■)になるので、この出
力電圧を反転回路38で反転した信号により第2のサン
プル・ホールド回路48側のアナログスイッチ40がオ
ンになり、コンデンサC2で保持された■2レベルの電
圧が電圧ホロワ43より出力される。そして、この■2
レベルの電圧が差動増幅回路46で2倍増幅されて■の
出力となる。
In FIG. 4, the signal voltage from connection line 27 is applied to comparator 35 as a positive input. Comparator 35
Since the reference voltage, which is the negative input of When it corresponds to (b) 1, it becomes a high level (+E). This high-level output turns on the analog switch 39 of the first sample-and-hold circuit 47, and the voltage at the vI level held by the capacitor C4 is output from the voltage follower 42. In the differential amplifier circuit 45, a constant voltage E is subtracted from this voltage at the level 1, and the voltage is further amplified twice to produce an output 2. Also, if the input voltage from the connection line 27 is low, that is, as shown in FIG.
When corresponding to ■2 in a) and (b), comparator 3
5 becomes a low level (0■), the analog switch 40 on the second sample-and-hold circuit 48 side is turned on by the signal obtained by inverting this output voltage by the inverting circuit 38, and the signal is held by the capacitor C2. (2) Two levels of voltage are output from the voltage follower 43. And this ■2
The voltage at the level is amplified twice by the differential amplifier circuit 46 and becomes the output (2).

伝送信号の切換周期を判別する手段としては、第5図の
ように、前記コンパレータ35のハイレベル出力Oによ
るコンデンサC6の充電電圧をコンパレータ36のプラ
ス入力として、抵抗R2++  R22により設定され
たマイナス入力の基準電圧と比較し、伝送信号の切換周
期が長いときにはコンデンサC6の充電電圧が高くなる
ことを利用して、コンパレータ36の出力電圧をロウか
らハイに反転させ、そのハイレベル出力によりアナログ
スイッチ41をオンにしてコンデンサC1を充電し、そ
の電圧を電圧ホロワ44の■出力とする。この例では、
■出力のハイレベルのときがトリガスイッチ19のオフ
状態に対応する。
As shown in FIG. 5, as a means for determining the switching period of the transmission signal, the charged voltage of the capacitor C6 due to the high level output O of the comparator 35 is used as the positive input of the comparator 36, and the negative input set by the resistor R2++ R22 is used. The output voltage of the comparator 36 is inverted from low to high by utilizing the fact that the charging voltage of the capacitor C6 becomes higher when the switching period of the transmission signal is longer than the reference voltage of the analog switch 41. is turned on to charge the capacitor C1, and the voltage is set as the output of the voltage follower 44. In this example,
(2) The high level of the output corresponds to the off state of the trigger switch 19.

また、信号電圧■、のゼロの状態を判別する信号レベル
判別手段としては、第6図の例のように、信号変換回路
24の■出力をコンパレータ37のマイナス入力として
抵抗R26,R2,、により設定されたプラス入力の基
準電圧と比較し、■出力がゼロになったとき、コンパレ
ータ37の出力をロウからハイに反転させるようにして
、その出力を[F]出力とする。この例では、■出力の
ハイレベルのときがインチングスイッチ16のオン状態
に対応する。
Further, as a signal level determination means for determining the zero state of the signal voltage ■, as shown in the example in FIG. It is compared with the set reference voltage of the positive input, and when the output becomes zero, the output of the comparator 37 is inverted from low to high, and the output is set as the [F] output. In this example, the high level of the output (2) corresponds to the on state of the inching switch 16.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ワイヤ送給装置側と溶接電源側に簡単
な制御回路を追加するだけで、リモコン装置およびワイ
ヤ送給装置と溶接電源との間の接続線の本数を大幅に削
減でき、中継ケーブルの軽量化により、その取扱を容易
にすることができる。
According to the present invention, by simply adding a simple control circuit to the wire feeding device and the welding power source, the number of connection wires between the remote control device and the wire feeding device and the welding power source can be significantly reduced. By reducing the weight of the relay cable, its handling can be made easier.

接続線の本数を少な(する一つの方法として、ワイヤ送
給装置にワイヤ送給に関する制御回路の全てを内蔵させ
ることも考えられるが、この方法は、ワイヤ送給装置内
で制御用電源をつくるために制御用トランスが必要にな
るなどの理由から、ワイヤ送給装置が重く、かさばった
ものとなり、扱いにくいばかりでなく、耐衝撃性に劣る
という欠点がある。これに対し本発明では、ワイヤ送給
装置側の追加部品は小形プリント基板1孜程度でよく、
制御用トランスなどを必要としないため、上記のような
欠点がない。
One way to reduce the number of connection wires is to have all the control circuits related to wire feeding built into the wire feeding device, but this method creates the power supply for control within the wire feeding device. For reasons such as the need for a control transformer, the wire feeding device becomes heavy and bulky, making it difficult to handle and having poor impact resistance. The additional parts on the feeder side only need to be about 1 piece of a small printed circuit board.
Since it does not require a control transformer, it does not have the above drawbacks.

また、V−F (電圧−周波数)変換により設定信号を
パルス信号として伝送する方式では、溶接電流より発生
する雑音ノイズの影響を受けやすい欠点があるが、本発
明では設定信号をアナログ信号のまま時分割して伝送す
る方式をとっているため、そのような欠点もなく、安定
な動作が得られる。
In addition, the method of transmitting the setting signal as a pulse signal by V-F (voltage-frequency) conversion has the disadvantage that it is easily affected by the noise generated by the welding current, but in the present invention, the setting signal is transmitted as an analog signal. Since it uses a time-division transmission method, there is no such drawback and stable operation can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す接続構成図、第2図は
第1図の実施例における信号波形の説明図、第3図はリ
モコン装置側に設ける信号切換回路の具体的回路例を示
す図、第4図〜第6図は溶接電源側に設ける信号変換回
路の具体的回路例を示す図、第7図は従来技術によるリ
モコン装置およびワイヤ送給装置と溶接電源間の接続構
成図である。 1′・・・溶接電源、3・・・出力制御回路、4・・・
ワイヤ送給制御回路、5・・・シーケンス制御回路、1
0・・・溶接トーチ、13′・・・リモコン装置、14
′・・・第1の設定器、15′・・・第2の設定器、1
6・・・インチングスイッチ、17′・・・ワイヤ送給
装置、18・・・ワイヤ送給用モータ、19・・・トリ
ガスイッチ、23・・・信号切換回路、24・・・信号
変換回路、25〜28・・・接続線、E、・・・制御用
電源、19,31.  Cz 、 Rz 、 Rh・・
・切換周期変更手段、16.  C3・・・信号レベル
制御手段、36゜41、44.  C,、C,、R2゜
〜R24・・・切換周期判別手段、37. Rzs〜R
z、・・・信号レベル判別手段。
Fig. 1 is a connection configuration diagram showing one embodiment of the present invention, Fig. 2 is an explanatory diagram of signal waveforms in the embodiment of Fig. 1, and Fig. 3 is a specific circuit example of a signal switching circuit provided on the remote control device side. FIGS. 4 to 6 are diagrams showing specific circuit examples of a signal conversion circuit provided on the welding power source side. FIG. 7 is a connection configuration between a remote control device, a wire feeding device, and a welding power source according to the prior art. It is a diagram. 1'... Welding power source, 3... Output control circuit, 4...
Wire feeding control circuit, 5... Sequence control circuit, 1
0...Welding torch, 13'...Remote control device, 14
'...First setting device, 15'...Second setting device, 1
6... Inching switch, 17'... Wire feeding device, 18... Wire feeding motor, 19... Trigger switch, 23... Signal switching circuit, 24... Signal conversion circuit, 25-28... Connection line, E,... Control power supply, 19, 31. Cz, Rz, Rh...
- Switching cycle changing means, 16. C3...Signal level control means, 36°41, 44. C,, C,, R2° to R24...Switching cycle determining means, 37. Rzs〜R
z, . . . signal level determination means.

Claims (1)

【特許請求の範囲】 1、溶接電圧(または電流)、ワイヤ送給量、さらには
アーク起動停止等の制御機能を有する溶接電源、該溶接
電源に接続使用されるワイヤ送給装置、前記溶接電源に
接続され、溶接電圧(または電流)とワイヤ送給量を外
部から調整するためのリモートコントロール装置(以下
、リモコン装置と略す)およびアーク起動用のトリガス
イッチを有する溶接トーチ等から構成される半自動アー
ク溶接機において、前記リモコン装置を前記ワイヤ送給
装置に内蔵し、このワイヤ送給装置と前記溶接電源の間
を接続する複数の接続線の内の2線を溶接電源からリモ
コン装置への制御用電源の給電線とし、該給電線の内の
1線と該給電線に含まれない第3の接続線とで溶接電圧
(または電流)設定信号およびワイヤ送給量設定信号を
リモコン装置から溶接電源へ伝送するように構成すると
ともに、前記リモコン装置側に互に異なる電圧範囲を調
整範囲として溶接電圧(または電流)設定信号に相当す
る電圧とワイヤ送給量設定信号に相当する電圧をそれぞ
れ出力する第1および第2の設定器と、前記2つの設定
器から出力される電圧を所定の周期で交互に切り換えて
前記第3の接続線へ送り出す信号切換回路を設け、溶接
電源側には前記第3の接続線から受けた前記2つの電圧
をそれぞれの属する電圧範囲により判別し、溶接電圧(
または電流)設定信号とワイヤ送給量設定信号とに分離
して取り出す信号変換回路を設けたことを特徴とする半
自動アーク溶接機の制御装置。 2、前記溶接電源から前記リモコン装置への制御用電源
の給電線の1線を溶接電源からワイヤ送給用モータへの
給電線の1線と共用したことを特徴とする請求項1記載
の半自動アーク溶接機の制御装置。 3、前記リモコン装置側に前記信号切換回路の切換周期
を前記トリガスイッチのオン状態とオフ状態にそれぞれ
対応して2つの異なる周期に設定する切換周期変更手段
を設け、溶接電源側には伝送信号の前記2つの周期を判
別して、それぞれ前記トリガスイッチのオン状態とオフ
状態に対応した信号を出力する切換周期判別手段を設け
たことを特徴とする請求項1記載の半自動アーク溶接機
の制御装置。 4、前記リモコン装置側にワイヤ空送り用のインチング
スイッチのオン状態に対応して前記信号切換回路から送
り出す溶接電圧(または電流)設定信号を電圧ゼロとす
る信号レベル制御手段を設け、溶接電源側にはこの溶接
電圧(または電流)設定信号の電圧ゼロの状態を判別し
て、前記インチングスイッチのオンの状態に対応した信
号を出力する信号レベル判別手段を設けたことを特徴と
する請求項1記載の半自動アーク溶接機の制御装置。
[Claims] 1. A welding power source having control functions such as welding voltage (or current), wire feed amount, and arc starting/stopping, a wire feeding device connected to the welding power source, and the welding power source. A semi-automatic device that is connected to a welding torch, etc., and has a remote control device (hereinafter referred to as the remote control device) for externally adjusting the welding voltage (or current) and wire feed amount, and a trigger switch for starting the arc. In the arc welding machine, the remote control device is built into the wire feeding device, and two of a plurality of connection lines connecting the wire feeding device and the welding power source are controlled from the welding power source to the remote control device. The welding voltage (or current) setting signal and wire feed rate setting signal are transmitted from the remote control device to one line of the feeding line and a third connection line not included in the feeding line. It is configured to transmit to a power source, and outputs a voltage corresponding to a welding voltage (or current) setting signal and a voltage corresponding to a wire feed rate setting signal to the remote control device, respectively, with different voltage ranges as adjustment ranges. a signal switching circuit that alternately switches the voltage output from the two setting devices at a predetermined period and sends it to the third connection line; The two voltages received from the third connection line are determined according to the voltage range to which they belong, and the welding voltage (
A control device for a semi-automatic arc welding machine, comprising a signal conversion circuit that separates and extracts a wire feed amount setting signal and a wire feed amount setting signal. 2. The semi-automatic device according to claim 1, wherein one line of the power supply line of the control power source from the welding power source to the remote control device is shared with one line of the power supply line from the welding power source to the wire feeding motor. Arc welding machine control device. 3. A switching period changing means is provided on the remote control device side for setting the switching period of the signal switching circuit to two different periods corresponding to the on state and off state of the trigger switch, respectively, and a transmission signal is provided on the welding power source side. 2. The control for a semi-automatic arc welding machine according to claim 1, further comprising a switching period determining means for determining the two periods and outputting signals corresponding to the on state and off state of the trigger switch, respectively. Device. 4. A signal level control means is provided on the remote control device side to set the welding voltage (or current) setting signal sent from the signal switching circuit to zero voltage in response to the on state of the inching switch for wire feed, and the welding power source side Claim 1 characterized in that the welding voltage (or current) setting signal is provided with a signal level determining means for determining a zero voltage state of the welding voltage (or current) setting signal and outputting a signal corresponding to the on state of the inching switch. Control device for the semi-automatic arc welding machine described.
JP2118787A 1990-05-10 1990-05-10 Control device for semi-automatic arc welding machine Expired - Lifetime JP2992307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2118787A JP2992307B2 (en) 1990-05-10 1990-05-10 Control device for semi-automatic arc welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2118787A JP2992307B2 (en) 1990-05-10 1990-05-10 Control device for semi-automatic arc welding machine

Publications (2)

Publication Number Publication Date
JPH0417977A true JPH0417977A (en) 1992-01-22
JP2992307B2 JP2992307B2 (en) 1999-12-20

Family

ID=14745082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2118787A Expired - Lifetime JP2992307B2 (en) 1990-05-10 1990-05-10 Control device for semi-automatic arc welding machine

Country Status (1)

Country Link
JP (1) JP2992307B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041037A1 (en) * 2009-09-30 2011-04-07 Illinois Tool Works Inc. Welding systems with auxiliary powered conduit used for powering and exchanging data
WO2013051200A1 (en) 2011-10-06 2013-04-11 パナソニック株式会社 Electrical equipment system
CN105312730A (en) * 2015-11-04 2016-02-10 上海威特力焊接设备制造股份有限公司 Remote-control unit used for welding machine
KR20170036090A (en) 2014-09-30 2017-03-31 세키스이가세이힝코교가부시키가이샤 Amide elastomer foam particles, method for producing same, foam molded body and method for producing foam molded body
US9718141B2 (en) 2014-03-28 2017-08-01 Illinois Tool Works Inc. Systems and methods for prioritization of wireless control of a welding power supply
US9724778B2 (en) 2014-03-28 2017-08-08 Illinois Tool Works Inc. Systems and methods for wireless control of a welding power supply
US9943924B2 (en) 2014-03-28 2018-04-17 Illinois Tool Works Inc. Systems and methods for wireless control of an engine-driven welding power supply

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041037A1 (en) * 2009-09-30 2011-04-07 Illinois Tool Works Inc. Welding systems with auxiliary powered conduit used for powering and exchanging data
US9796038B2 (en) 2009-09-30 2017-10-24 Illinois Tool Works Inc. Welding system with power line communication
WO2013051200A1 (en) 2011-10-06 2013-04-11 パナソニック株式会社 Electrical equipment system
US10203680B2 (en) 2011-10-06 2019-02-12 Panasonic Intellectual Property Management Co., Ltd. Electric equipment system
US9718141B2 (en) 2014-03-28 2017-08-01 Illinois Tool Works Inc. Systems and methods for prioritization of wireless control of a welding power supply
US9724778B2 (en) 2014-03-28 2017-08-08 Illinois Tool Works Inc. Systems and methods for wireless control of a welding power supply
US9943924B2 (en) 2014-03-28 2018-04-17 Illinois Tool Works Inc. Systems and methods for wireless control of an engine-driven welding power supply
KR20170036090A (en) 2014-09-30 2017-03-31 세키스이가세이힝코교가부시키가이샤 Amide elastomer foam particles, method for producing same, foam molded body and method for producing foam molded body
CN105312730A (en) * 2015-11-04 2016-02-10 上海威特力焊接设备制造股份有限公司 Remote-control unit used for welding machine

Also Published As

Publication number Publication date
JP2992307B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JP3155786B2 (en) Semi-automatic arc welding machine
IE57559B1 (en) Current-fed,forward converter switching at zero current
JPH03285768A (en) Tig welding power source controller
CN1006349B (en) Circuit arrangement for producing a.c. voltage
JPH0417977A (en) Controller for semiautomatic arc welding machine
MY127169A (en) Power supply apparatus and power supply system
US4975630A (en) Constant power supply unit of electric heating apparatus
JPH01187613A (en) Ips insulation type switch mode power source controller
JPWO2002069518A1 (en) Two-wire power transmission / reception communication apparatus and method
WO2008154958A1 (en) A control system for controlling at least one industrial robot
WO2017138675A1 (en) Dc power supply apparatus
JPH01503093A (en) 2-wire loop electrical circuit device
JPH11299093A (en) Power supply adapter, electronic unit and signal transmission system
US8076886B2 (en) Device and a method for providing electrical energy to an actuator, and an actuator system
KR102352141B1 (en) Switched capacitor transformer
JPS60106375A (en) Momentary large current generator
JPH01316026A (en) A/f conversion transmitter
CN111697835B (en) DC conversion system and control method thereof
JP3684791B2 (en) Analog multiplexer with flying capacitor method
JPH0446059B2 (en)
EP3892409A3 (en) Welding-type power supplies for synergically controling a welding-type output during a welding-type operation
SU1529200A1 (en) Method of stabilizing dc voltage of pulsed multiple-link stabilizer
JP2003324957A (en) Power supply device and its controlling method
SU957374A1 (en) Pulse forming device
JP2000209081A (en) Phase control type solid state relay

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11