JPH04179118A - Method and device for improving crystallizability of semiconductor - Google Patents

Method and device for improving crystallizability of semiconductor

Info

Publication number
JPH04179118A
JPH04179118A JP30533490A JP30533490A JPH04179118A JP H04179118 A JPH04179118 A JP H04179118A JP 30533490 A JP30533490 A JP 30533490A JP 30533490 A JP30533490 A JP 30533490A JP H04179118 A JPH04179118 A JP H04179118A
Authority
JP
Japan
Prior art keywords
crystallinity
semiconductor
crystallizability
improving
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30533490A
Other languages
Japanese (ja)
Inventor
Seiji Kawabata
川端 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30533490A priority Critical patent/JPH04179118A/en
Publication of JPH04179118A publication Critical patent/JPH04179118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the inspection and the improvement of the crystallizability to be effected by one device almost simultaneously by a method wherein the crystallizability in the fine region of a semiconductor crystal is evaporated so as to improve the crystallizability in the very fine region. CONSTITUTION:The laser beams 1 are focussed to irradiate a semiconductor specimen 9 so as to evaluate the crystallizability of the semiconductor by the produced Raman spectrum. At this time, the peak position and the half value width of the Raman spectrum of the measured semiconductor are compared with those of a reference control. When said peak position and the half value width are notably slipped from those of the reference control, the laser beam intensity is heightened or the very measured position is laser-annealed using the other prepared annealing laser to improve the crystallizability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体の結晶性を改善する方法およびその装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for improving the crystallinity of a semiconductor.

〔従来の技術〕[Conventional technology]

第4図は例えば、河東1)隆著「レーザラマン分光法に
よる半導体の評価」東京大学出版会p17に示された従
来のラマン分光法の装置の例であり、図において、1は
Ar+レーザ、3はミラー、5はラマン光検出器、6は
分光器、7は集光光学系、9は試料である。
Figure 4 is an example of a conventional Raman spectroscopy apparatus shown in "Evaluation of Semiconductors by Laser Raman Spectroscopy" by Takashi Kawato 1), University of Tokyo Press, p. 17. In the figure, 1 is an Ar+ laser, 3 5 is a mirror, 5 is a Raman photodetector, 6 is a spectroscope, 7 is a condensing optical system, and 9 is a sample.

次に動作について説明する。Ar+レーザlからのレー
ザ光を、ミラー3.集光光学系7を介して試料9に照射
し、ラマン光を、分光器6で分光し、ラマン光検出器5
で検出し、ラマン・スペクトルを得る。試料からのラマ
ン・スペクトルのピ−りの位置と半値巾は、試料の結晶
性に応じて変化する。結晶のラマン・スペクトルのピー
ク位置と半値巾をリファレンスにすると、結晶性が悪い
ときのピーク位置は、結晶のそれと一致しなくなり、半
値l]は広がる。従って、試料のラマン・スペクトルの
ピーク位置と半値巾と、結晶のそれらとの比較から、試
料の結晶性を判断できる。
Next, the operation will be explained. The laser beam from Ar+laser l is transmitted to mirror 3. The Raman light is irradiated onto the sample 9 through the condensing optical system 7, separated into spectra by the spectrometer 6, and sent to the Raman photodetector 5.
to obtain a Raman spectrum. The peak position and half-width of the Raman spectrum from a sample change depending on the crystallinity of the sample. If the peak position and half-value width of the Raman spectrum of the crystal are used as a reference, the peak position when the crystallinity is poor will no longer match that of the crystal, and the half-value 1] will become wider. Therefore, the crystallinity of a sample can be determined by comparing the peak position and half-width of the Raman spectrum of the sample with those of the crystal.

上記のように、ラマン・スペクトル測定後、不良部分が
検出された場合、その部分のみをアニールする方法はな
く、試料全体を、別のアニール装置に入れ、アニールす
る。
As described above, if a defective portion is detected after Raman spectrum measurement, there is no way to anneal only that portion; instead, the entire sample is placed in a separate annealing device and annealed.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来の方法は以上の様に、結晶性の評価とアニールとが
全く別の工程にあるため、結晶性の不良が微小部分であ
る場合に、これを改善するための方法としては、試料全
体をアニールすることが必要であり、結晶性の評価と微
小部分のアニールとを結びつけたプロセスを有すること
は皆無であった。
As mentioned above, in the conventional method, evaluation of crystallinity and annealing are completely different processes, so when the defect in crystallinity is in a minute part, the method to improve this is to evaluate the entire sample. Annealing is necessary, and there has never been a process that combines evaluation of crystallinity with annealing of minute parts.

この発明は上記のような問題点を解消するためになされ
たもので、結晶性の検査と改善を同一の装置で、しかも
ほぼ同時刻に行うことのできる半導体結晶性改良方法お
よび装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a method and device for improving semiconductor crystallinity, which can perform crystallinity inspection and improvement using the same device and at almost the same time. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体結晶性改良方法および装置は、レーザラ
マン分光法等を利用して半導体結晶の微小領域の結晶性
を評価し、同一装置においてまさにその微小領域をレー
ザアニール等することにより、結晶性を改良するように
したものである。
The method and device for improving semiconductor crystallinity of the present invention evaluates the crystallinity of a minute region of a semiconductor crystal using laser Raman spectroscopy, etc., and then performs laser annealing on that very minute region in the same device to improve the crystallinity. It is intended to be improved.

〔作用〕[Effect]

この発明における半導体結晶性改良方法および装置は、
微小領域の結晶性の評価と改良のプロセスを引き続いて
行え、結晶性の悪い領域のみの改良が行えるから、微小
領域の不良によって全体を不良とする必要がなくなり、
歩留りを向上できる。
The method and device for improving semiconductor crystallinity in this invention include:
The process of evaluating and improving the crystallinity of minute regions can be performed continuously, and only the regions with poor crystallinity can be improved, so there is no need to make the entire product defective due to a defect in a minute region.
Yield can be improved.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による半導体結晶性改良方
法を実施するm装置のシステム構成図である。
FIG. 1 is a system configuration diagram of an m apparatus that implements a method for improving semiconductor crystallinity according to an embodiment of the present invention.

図において、lはAr+レーザ、2は可変NDフィルタ
、3はミラー、4はこのシステムをコントロールするC
PU、5はラマン光検出器、6は分光器、7はレーザ光
を集光する集光光学系、8はX−Yステージ、9は試料
である。
In the figure, l is an Ar+ laser, 2 is a variable ND filter, 3 is a mirror, and 4 is a C that controls this system.
PU, 5 is a Raman photodetector, 6 is a spectroscope, 7 is a condensing optical system for condensing laser light, 8 is an XY stage, and 9 is a sample.

次に本実施例の半導体結晶性改良方法について説明する
Next, a method for improving semiconductor crystallinity according to this embodiment will be explained.

レーザ光を数μm程度に集光させて、半導体試料に照射
し、これによって得られるラマン・スペクトルから半導
体の結晶性を評価する。このとき、あらかじめ、リファ
レンスとなる結晶半導体のラマン・スペクトルを前もっ
て測定しておき、データファイルに記憶させておく。次
に、試料のラマン・スペクトルと、このリファレンスの
ラマン・スペクトルを比較し、試料の結晶性に関する情
報を得る。本実施例においては、結晶が多結晶状態であ
り、これを改良しようとする場合を想定する。
A semiconductor sample is irradiated with a laser beam focused on the order of several micrometers, and the crystallinity of the semiconductor is evaluated from the Raman spectrum obtained. At this time, the Raman spectrum of the crystalline semiconductor serving as a reference is measured in advance and stored in a data file. Next, the Raman spectrum of the sample is compared with the Raman spectrum of this reference to obtain information regarding the crystallinity of the sample. In this embodiment, it is assumed that the crystal is in a polycrystalline state and that this is to be improved.

ラマン・スペクトルにおいて、結晶性の指標となるもの
は、結晶格子振動に起因した、ローレンツ型をした波形
であり、この波形のピーク位置および半値巾が、結晶性
の良否を判断する目安となっている。
In a Raman spectrum, the index of crystallinity is a Lorentzian waveform caused by crystal lattice vibrations, and the peak position and half-width of this waveform are used as a guide to judge whether the crystallinity is good or bad. There is.

従って、測定した半導体のラマン・スペクトルのピーク
位置と半値1】をリファレンスの結晶のそれらと比較す
る。そして、それらかリファレンスの結晶のものと大き
くずれた場合には、レーザ光強度を増加させる、あるい
は、他に用意したアニール用レーザを用いて、測定した
正にその場所をレーザアニールし、結晶性を向上させる
Therefore, the peak position and half value 1] of the measured Raman spectrum of the semiconductor are compared with those of the reference crystal. If there is a large deviation from that of the reference crystal, increase the laser light intensity or use another annealing laser to anneal the exact location where the crystal was measured. improve.

次に、本実施例方法、即ち本実施例装置の動作を第2図
のフローチャートを参照して詳細に説明する。
Next, the method of this embodiment, that is, the operation of the apparatus of this embodiment will be explained in detail with reference to the flowchart of FIG.

第2図において、まず試料9のラマン・スペトクルを測
定する。このスペクトルのピーク位置。
In FIG. 2, first, the Raman spectrum of sample 9 is measured. The peak position of this spectrum.

半値巾をCPU4により判断する(ステップ1)。The half value width is determined by the CPU 4 (step 1).

このとき例えば、リファレンス・サンプルのラマン・ス
ペクトルのピーク位置、半値IJをそれぞれω3゜++
r’++*rとし1.上記試料9のそれらをそれぞれω
s64.F51とすると、 1ωRcI −ωSan+  l≦n]  ・・・■l
 T’Rel −r、、、  l≦M   −0m、M
は結晶性の許容範囲に応じた定数という判断基?((に
、よって結晶性の判断をする(ステップ2)。
At this time, for example, the peak position and half-value IJ of the Raman spectrum of the reference sample are set to ω3°++, respectively.
Let r'++*r1. Each of those of sample 9 above is ω
s64. If F51, 1ωRcI −ωSan+ l≦n] ・・・■l
T'Rel −r, , l≦M −0m, M
Is it a criterion that is a constant depending on the allowable range of crystallinity? ((Accordingly, determine the crystallinity (Step 2).

この基べI−に適合しない場合、可変NDフィルタ2を
移動させて、AI−” レーザlのレーザ光を強くし、
レーザアニールを行う(ステップ3)。適合した場合、
X−Yステージ8を動かして、次の測定点に移動する(
ステップ4)。いずれの場合にも、次にラマン・スペク
トルの測定を行い、同じ判断を行い、これらを繰返す。
If this basis does not conform to I-, move the variable ND filter 2 to make the laser beam of the AI-" laser stronger,
Perform laser annealing (step 3). If it is compatible,
Move the X-Y stage 8 to the next measurement point (
Step 4). In either case, the Raman spectrum is then measured, the same judgment is made, and these are repeated.

測定点が終了すれば動作を終了する。Once the measurement points are completed, the operation ends.

第3図は試料がSiである場合のリファレンスのラマン
・スペクトル八と試料のラマン・スペクトルBとを示し
た図であり、図中のAのようにωRat =520 C
m−’+  rear = 3. 5 Cm−’とした
場合、要求される6)及びFの範囲m、 MをIcm−
’、Icm−’とすることによって、結晶の質の良否の
判定かでき、これにはずれるもの、例えば図中のBのよ
うにωRam −500cm−’、 T’ Sam =
5cm ’である場合には、結晶性不良として、判定さ
れる。
Figure 3 is a diagram showing reference Raman spectrum 8 and sample Raman spectrum B when the sample is Si, and as shown in A in the figure, ωRat = 520 C
m-'+ rear = 3. 5 Cm-', the required range m of 6) and F, M is Icm-
', Icm-', it is possible to judge whether the quality of the crystal is good or not, and those that fail this, for example, as shown in B in the figure, ωRam -500cm-', T' Sam =
If it is 5 cm', it is determined that the crystallinity is poor.

このω□)+T’Rel とm、Mはあらかじめ、完全
結晶のラマン測定から決めるもので、例えばGaAsの
場合、6)Ret ”290Cm−’+  V Rcl
 =5cm−’と決める。
These ω□)+T'Rel, m, and M are determined in advance from Raman measurement of a perfect crystal. For example, in the case of GaAs, 6) Ret "290Cm-'+ V Rcl
=5cm-'.

このように本実施例ではラマン散乱分光法により半導体
の微小領域における結晶性を評価でき、該評価の結果、
結晶性不良と判定された微小領域は、正にその微小領域
に対して直ちにレーザアニールを行うことができ、」1
記半導体の微小領域の結晶性を向上させることかできる
ので、従来てあれば半導体の微小領域の不良によって、
全体が不良となっていた半導体デバイスを再生すること
ができ、歩留りを向上できる効果がある。
In this way, in this example, the crystallinity in a micro region of a semiconductor can be evaluated by Raman scattering spectroscopy, and as a result of this evaluation,
Microregions determined to have poor crystallinity can be laser annealed immediately.
Since it is possible to improve the crystallinity of a micro region of a semiconductor, it is possible to improve the crystallinity of a micro region of a semiconductor.
Semiconductor devices that are completely defective can be regenerated, which has the effect of improving yield.

なお、上記実施例ではAr+レーザIの強度を可変とす
るために、可変NDフィルタ2をレーザ光路中に挿入し
ているが、他のレーザ(例えばYAGあるいはC02レ
ーザ)を適当な光学系を付与して増設してもよく、同等
の効果が得られる。
In the above embodiment, a variable ND filter 2 is inserted in the laser optical path in order to make the intensity of the Ar+laser I variable, but another laser (for example, YAG or C02 laser) may be provided with an appropriate optical system. The same effect can be obtained by adding it.

また、上記実施例では結晶性の評価にラマン・スペクト
ルを用いているが、ラマン・スペクトルの代わりにフォ
トルミネッセンスを用いてもよい。
Furthermore, although Raman spectra are used to evaluate crystallinity in the above embodiments, photoluminescence may be used instead of Raman spectra.

この場合、フォトルミネッセンス・スペクトルのピーク
位置および半値111から結晶性を判断できるため、上
記と同様に先の■、■式による判断基準が使用でき、上
記第2図に示すフローチャートを使用できる。また、測
定系も検知器の検出帯域を変更するたけてよく、同様の
効果を期待てきる。
In this case, since the crystallinity can be judged from the peak position and half value 111 of the photoluminescence spectrum, the judgment criteria based on the equations (1) and (2) above can be used in the same way as above, and the flowchart shown in FIG. 2 can be used. In addition, the measurement system can also change the detection band of the detector, and similar effects can be expected.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、半導体の微小領域の結晶
性を評価する手段と、上記評価手段により結晶性を評価
した正にその微小領域における結晶性を改良する手段と
を備えたので、微小領域の結晶性の評価と改良のプロセ
スを引き続いて行え、微小な結晶性の改良を、結晶性の
悪い領域のみ等任意の領域について行える。これによっ
て、従来であれば微小領域の不良によって、全体が不良
となっていた半導体デバイスを再生することかでき、歩
留りを向上できる効果がある。
As described above, the present invention includes a means for evaluating the crystallinity of a minute region of a semiconductor, and a means for improving the crystallinity in the very minute region whose crystallinity was evaluated by the evaluation means. The process of evaluating and improving the crystallinity of minute regions can be performed continuously, and minute crystallinity improvements can be made for arbitrary regions such as only regions with poor crystallinity. As a result, it is possible to regenerate a semiconductor device that would conventionally be defective as a whole due to a defect in a minute area, and has the effect of improving yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による半導体結晶性改良方法
のシステム構成図、第2図はそのシステムのフローチャ
ート図、第3図はラマン・スペクトル、第4図は従来の
実施例の構成図である。 図において、lはAr+レーザ、2は可変NDフィルタ
、3はミラー、4はCPU、5はラマン光検出器、6は
分光器、7は顕微鏡、8はX−Yステージ、9は試料で
ある。 なお図中同一符号は同−又は相当部分を示す。
Figure 1 is a system configuration diagram of a method for improving semiconductor crystallinity according to an embodiment of the present invention, Figure 2 is a flowchart of the system, Figure 3 is a Raman spectrum, and Figure 4 is a configuration diagram of a conventional embodiment. It is. In the figure, l is an Ar+ laser, 2 is a variable ND filter, 3 is a mirror, 4 is a CPU, 5 is a Raman photodetector, 6 is a spectrometer, 7 is a microscope, 8 is an X-Y stage, and 9 is a sample. . Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)半導体の微小領域の結晶性を評価する手段と、 上記評価手段により結晶性を評価したまさにその微小領
域における結晶性を改良する手段とを有する半導体結晶
性改良装置。
(1) A semiconductor crystallinity improving device comprising means for evaluating the crystallinity of a minute region of a semiconductor, and means for improving the crystallinity in the very minute region whose crystallinity has been evaluated by the above-mentioned evaluation means.
(2)半導体の微小領域の結晶性を評価する工程と、 上記評価工程により結晶性を評価したまさにその微小領
域における結晶性を改良する工程とを有する半導体結晶
性改良方法。
(2) A method for improving semiconductor crystallinity, which includes a step of evaluating the crystallinity of a minute region of a semiconductor, and a step of improving the crystallinity of the very minute region whose crystallinity was evaluated in the above evaluation step.
(3)請求項1記載の半導体結晶性改良装置において、 上記評価方法はラマン散乱分光によって半導体の結晶性
を評価するものであることを特徴とする半導体結晶性改
良装置。
(3) The semiconductor crystallinity improving device according to claim 1, wherein the evaluation method evaluates the crystallinity of the semiconductor by Raman scattering spectroscopy.
(4)請求項1記載の半導体結晶性改良装置において、 上記評価手段はレーザアニールによって半導体の微小領
域における結晶性を改良するものであることを特徴とす
る半導体結晶性改良装置。
(4) The semiconductor crystallinity improving apparatus according to claim 1, wherein the evaluation means improves the crystallinity in a micro region of the semiconductor by laser annealing.
JP30533490A 1990-11-08 1990-11-08 Method and device for improving crystallizability of semiconductor Pending JPH04179118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30533490A JPH04179118A (en) 1990-11-08 1990-11-08 Method and device for improving crystallizability of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30533490A JPH04179118A (en) 1990-11-08 1990-11-08 Method and device for improving crystallizability of semiconductor

Publications (1)

Publication Number Publication Date
JPH04179118A true JPH04179118A (en) 1992-06-25

Family

ID=17943867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30533490A Pending JPH04179118A (en) 1990-11-08 1990-11-08 Method and device for improving crystallizability of semiconductor

Country Status (1)

Country Link
JP (1) JPH04179118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066607A (en) * 2004-08-26 2006-03-09 Sumitomo Heavy Ind Ltd Crystallinity-measuring method for silicon film, and manufacturing method for semiconductor device
JP2011054861A (en) * 2009-09-04 2011-03-17 Sony Corp Method of manufacturing semiconductor device, semiconductor inspection device, and crystallinity inspection method
WO2012120775A1 (en) * 2011-03-04 2012-09-13 パナソニック株式会社 Crystalline evaluation method, crystalline evaluation device, and computer software

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066607A (en) * 2004-08-26 2006-03-09 Sumitomo Heavy Ind Ltd Crystallinity-measuring method for silicon film, and manufacturing method for semiconductor device
JP2011054861A (en) * 2009-09-04 2011-03-17 Sony Corp Method of manufacturing semiconductor device, semiconductor inspection device, and crystallinity inspection method
WO2012120775A1 (en) * 2011-03-04 2012-09-13 パナソニック株式会社 Crystalline evaluation method, crystalline evaluation device, and computer software
JPWO2012120775A1 (en) * 2011-03-04 2014-07-07 パナソニック株式会社 Crystallinity evaluation method, crystallinity evaluation apparatus, and computer software thereof
US9121829B2 (en) 2011-03-04 2015-09-01 Joled Inc. Crystallinity evaluation method, crystallinity evaluation device, and computer software thereof

Similar Documents

Publication Publication Date Title
US7327444B2 (en) Substrate inspection apparatus and method
US5455673A (en) Apparatus and method for measuring and applying a convolution function to produce a standard Raman spectrum
DE19924583B4 (en) Method and device for surface condition monitoring
JP2015173268A (en) Method and system for inspecting indirect bandgap semiconductor structure
US20020160586A1 (en) Method and system for evaluating polsilicon, and method and system for fabricating thin film transistor
CN107843560A (en) High-spatial-resolution pumping-detection micro-area measuring device, system and method
US7139071B2 (en) Spectroscopy apparatus and method
US20030016349A1 (en) Film quality inspecting method and film quality inspecting apparatus
CN114839145A (en) Laser damage analysis test instrument
US20220373465A1 (en) Raman spectroscopy based measurement system
JPH11316201A (en) Method for inspecting surface of sample and x-ray analyser used therein
JPH04179118A (en) Method and device for improving crystallizability of semiconductor
JP2013528808A (en) Method for measuring interfering impurities in semiconductor materials using edge-oriented photoluminescence
WO2004010121A1 (en) Detection method and apparatus
JP2002008976A (en) Method and equipment of manufacturing semiconductor device
WO2021130757A1 (en) Combined ocd and photoreflectance method and system
US6744501B2 (en) Method of analyzing silicon-germanium alloys and apparatus for manufacturing semiconductor layer structures with silicon-germanium alloy layers
US11193825B2 (en) Short pulsewidth high repetition rate nanosecond transient absorption spectrometer
JPH09243569A (en) Apparatus and method for evaluating semiconductor substrate
JPH01182738A (en) Measurement of impurity in compound semiconductor crystal
US20200286794A1 (en) Dynamic amelioration of misregistration measurement
JP4339746B2 (en) Method for determining excitation light irradiation timing of fluorescence detection apparatus
WO2004008119A1 (en) Detection method and apparatus
JPH09246337A (en) Method and device for detecting crystal defect
JPH03109719A (en) Manufacture of semiconductor device